kth.sePublications
Change search
Refine search result
123 101 - 108 of 108
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 101. Zampollo, M.
    et al.
    Madani, Hatef
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Lundqvist, Per
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    The role of heat pumps in smart grids2015In: Refrigeration Science and Technology, International Institute of Refrigeration, 2015, p. 3905-3913Conference paper (Refereed)
    Abstract [en]

    The spread of intermittent renewable energy sources and distributed generation units make load management an even more delicate aspect of energy system operations. Heat pump technology can provide a major contribution to energy system management once properly integrated in its infrastructure, as foreseen by the Smart Grid vision. This paper tackles the challenge of Smart Grids and gives a clear representation of the role that heat pump technology can play through its applications in the Smart Grids context. A broad description of the evolution process taking place in the current energy sector is the starting point to outline the new role of heat pumps in this paper. This description is followed by an introduction of the vision of the highly integrated and distributed energy system fostered by Smart Grids, showing how the potential of so called "prosumers" can be unlocked. A conceptual model of the system is developed to highlight the role of major stakeholders and their interactions and also to identify the key role of heat pumps in the future energy system. In addition to this, an assessment of the potential impact of heat pump technology in the Smart Grid context has been evaluated considering the economic savings that could be achieved by a demand response strategy.

  • 102.
    Öhman, Henrik
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Lundqvist, Per
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Comparison and analysis of performance using Low Temperature Power Cycles2013In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 52, no 1, p. 160-169Article in journal (Refereed)
    Abstract [en]

    Low Temperature Power Cycles have become increasingly interesting means of increasing energy efficiency of processes as well as for base load power generation from solar, and geothermal, heat. Theoretical understanding of the various processes, components and limitations is constantly increasing through extensive research. Practical utilisation of this knowledge is also increasing steadily though properly published field data is scarce. In this article a number of different solutions for power generation from low temperature heat sources have been gathered and analysed. Some of the studied units have not previously been described. A method for general evaluation of LTPC's is proposed and the outcome of the analysis is discussed as well as how to use it for practical purposes. By separating thermodynamic potential from irreversibilities the analysis indicates that the irreversibilities show limited dependency on temperature, size, thermodynamic cycle or working fluid. Instead performance of the studied units follows a relatively simple correlation with utilisation of the thermal potential. This correlation is defined and discussed. One conclusion is that the correlation allows for a possibility to express the maximum expected real power generation with knowledge of the characteristics of the heat source and heat sink only.

  • 103.
    Öhman, Henrik
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Lundqvist, Per
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Experimental investigation of a Lysholm Turbine operating with superheated, saturated and 2-phase inlet conditions2013In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 50, no 1, p. 1211-1218Article in journal (Refereed)
    Abstract [en]

    Low temperature power cycles can benefit from the use of multi-phase flow expansion devices from a thermodynamic cycle efficiency point of view. Particularly power cycles such as ORC, Kalina and Trilateral Flash Cycles can be improved by multi-phase expansion. This article presents the experimental findings in a series of laboratory tests on a semihermetic Lysholm Turbine operating with R134a with superheated, saturated and wet inlet gas conditions. The test arrangements are described as well as discussion on the relevance of such test data. Finally comparison is made with findings from other investigations and recommendations for further studies are made. A correlation between peak efficiency and sensitivity to inlet vapour fraction was discovered which allows for estimations of adiabatic efficiencies with 2-phase inlet conditions even when only test data, or simulations, from single phase inlet conditions exist. The conclusions made are that Lysholm Turbines are well suited for low temperature power generation and that further understanding of the performance during 2-phase conditions is required.

  • 104.
    Öhman, Henrik
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Lundqvist, Per
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    On high level evaluation and comparison of ORC power generators2015In: Proceedings of the 3rd International Seminar on ORC Power Systems, 2015Conference paper (Refereed)
    Abstract [en]

    A review of the thermodynamic performance of ORCs from public, as well as non-public sources hasrevealed a correlation suitable to be used as a rule of thumb for  high-level performance estimation ofORC power generators. Using the correlation, the limited amount of available test data can begeneralised leading to a high level evaluation of the commercial benefits of any potential applicationfor ORCs.Power generators using ORC-technology exist in relatively low numbers. Furthermore, fieldinstallations seldom imply comparable boundary conditions. As ORCs generally  operate at lowtemperature differences between source and sink it has been shown that their relative sensitivity tovariations in temperatures i.e. the finiteness of source- and sink, is larger than the sensitivity of powergenerators operating with large temperature differences. Therefore the establishing of practical rule ofthumb performance estimation, similar to the figure of merit, Coefficient of Performance, COP, asused in refrigeration and air conditioning industry, has previously not been successful.In order to arrange field data in a manner suitable for comparison a refinement of suitable figures ofmerit was required. The suggested, refined terms are presented and explained as well as criticallyevaluated against the most common  efficiency terms traditionally used.The current lack of a performance rule of thumb leaves room for less serious vendors and laymen tomake performance claims unrealistic to practical achievements. Scrutinizing such questionablestatements requires detail process simulations and a multitude of technical assumptions. Henceargumentation becomes ineffective. If a suitable rule of thumb can be established argumentationagainst dubious claims would become significantly more forceful.This paper suggests a new term to be used as rule of thumb and explains a  method on how to use it.

    Download full text (pdf)
    fulltext
  • 105.
    Öhman, Henrik
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Lundqvist, Per
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Screw expanders in ORC applications, review and a new perspective2015In: Proceedings of the 3rd International Seminar on ORC Power Systems, 2015Conference paper (Refereed)
    Abstract [en]

    Performance of Organic Rankine Cycles is sensitive not only to the entry  temperature ratio betweenheat source and heat sink but also to the temperature  degradation of the heat source flow, caused bythe heat transfer to the process in pre-heater, evaporator and super heater. In order to adopt the cycleto the great variety of heat sources a multitude of fluids are required. Alternatively fluid mixtures,trans-critical or supercritical fluid conditions can be used to match the process temperatures with theheat source. Screw expanders offer an alternative, new approach to the matching problem of ORC’s asthey allow for flexible multi-phase expansion. Hereby the vapour fraction at the expander entry can beused to  partially match the temperatures of the process to a particular heat source. To provide aperspective on the use of such screw expanders in ORC-systems previous experimental andcommercial experience have been reviewed and discussed.Screw expanders are versatile machines used for the production of mechanical work in power rangesfrom 3kW to 1.5MW. As the functional characteristics differ significantly  from dynamic expandersthe explanatory models used to generalise results are different. Plenty of research has resulted in wellgeneralized explanatory models for dynamic expander analysis. For screw expanders similarexplanatory models exist mainly in commercially confidential environments. A few public sourcesdisclose test data. In the few cases data has been investigated the analyses tend to rely onthermodynamic models suitable for dry gas expansion. Typically that leads to reasonable replicationof test results but seldom to models suitable for detailed understanding of the process. In applicationswith 2-phase expansion the theories used to simulate functional characteristics is entirely insufficient.The main reason for  the scarcity of work in this field is probably the empirical difficulties in obtaininggood measuring data in multi-phase conditions.This paper describes a review of multi-phase screw expander experiences and explains why a uniquetheory is required to model its characteristics. In the absence of such a unique theory a correlationbased in empirical data is presented. This allow for estimations of screw expander efficiency in multi-phase conditions. Measured efficiency with dry expansion, or such efficiency simulated, can be usedto estimate adiabatic efficiency with expansion entry vapor fractions ranging from 0 to 1 by using thiscorrelation. Hence estimating expansion efficiency during multi-phase expansion is simplified,allowing for better optimisation of the ORC-systems. This way a new perspective of screw expanderpotential in ORC system integration can be presented.

    Download full text (pdf)
    fulltext
  • 106.
    Öhman, Henrik
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Lundqvist, Per
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Theory and method for analysis of low temperature driven power cycles2012In: Applied Thermal Engineering, ISSN 1359-4311, no 37, p. 44-50Article in journal (Refereed)
    Abstract [en]

    A new method, using a combination of traditional first law and second law analysis, is developed to facilitate characterization and comparison of power cycles using low temperature heat sources. In trying to determine the best thermodynamic cycle and working media for a given application one must take the strongly non-linear effects of matching the pinch points of a particular cycle with a particular working media into account. The new method allows unbiased comparison of arbitrarily chosen power cycles, working fluids and component characteristics. The method also allows for operating conditions with finite capacity heat source and heat sink. The usefulness of the method is illustrated by the analysis of the effects of local temperature difference distribution for three different fully reversible power cycles using three different working media.

    The driver for developing this method is to simplify comparison and communication among users and industrial professionals and thus enable a better understanding of characteristics and design criteria for low temperature heat driven power cycles.

  • 107.
    Öhman, Henrik
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Per, Lundqvist
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Organic Rankine Cycles with variable vapour fraction expansion entry: Reduced sensitivity to choice of working fluid in modified Organic Rankine Cycles by using wet vapour expansion entry conditions2014Report (Other academic)
    Abstract [en]

    The task of reducing global carbon dioxide emissions leads to a need to reduce the average CO2-emission in power generation. A more energy efficient mix of power generation on national, or regional level, will require the re-use of waste heat and use of primary, low temperature heat for power generation purposes. Low Temperature Power Cycles, such as Organic Rankine Cycles, Trilateral Flash Cycles, Kalina Cycles offer a large degree of freedom in finding technical solutions for such power generation.

    Theoretical understanding of LTPC’s advance rapidly though practical achievements in the field show very humble improvements at a first glance. Cost of applying the new knowledge in real applications seems to be an important reason for the discrepancy. One central reason for the high cost level is the diversity of process fluids required and consequently the lack of standardization and industrialization of equipment. Uses of supercritical power cycle technology tend to cause the same dilemma. Furthermore upcoming regulations prohibiting the use of several process fluids tend to lead to remedies increasing plant cost.

    By using 2-phase, variable vapour fraction, expansion inlet conditions the need to use many different process fluids is reduced, allowing simpler and more cost efficient LTPC’s by easier matching with heat source temperature characteristics. This article explores some of the associated effects on cycle output and cost efficiency. A waste heat recovery application is investigated simulating cost efficiency, thermodynamic efficiencies and power generation while using fundamentally different working fluids, lumped component efficiencies, variable utilization of the waste heat and optimisation on expansion inlet vapour fraction.

    The conclusion made is that the sensitivity to choice of working fluid is lower than intuitively anticipated, in contrast to common consensus in science. Furthermore it is shown that exceptional component efficiencies are not required in order to achieve a performance comparable to current practise and that a good business case is possible under the assumed economic conditions.

    Download full text (pdf)
    fulltext
  • 108.
    Öhman, Henrik
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Per, Lundqvist
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Thermodynamic pre-determination of power generation potential in geothermal low-temperature applications2014In: Geothermal Energy, E-ISSN 2195-9706, Vol. 2, no 1, p. 1-10, article id 4Article in journal (Refereed)
    Abstract [en]

    Background: Small capacity, low temperature, geothermal heat sources providesignificant opportunities for distributed, small scale power generation. Projectdefinitions and pre-dimensioning however require advanced thermodynamicengineering at a cost independent of project size. In order to reduce this cost, anew method has been developed to allow basic level engineers to performpre-optimisation of thermodynamic potential as well as expected performance usingavailable power plant technology at such pre-optimized conditions.Results: By reducing the complexity of second-law computations, a simpletwo-dimensional diagram is shown representing the dimensioning criteria requiredfor maximum power generation using the particular heat source and sink whileconsidering expected power plant performance, using systems and componentson the market.Methods: By sensitivity analysis the combination of thermodynamic analysis and realworld data correlations was simplified and arranged for pre-dimensioning ofbusiness cases.Conclusions: Optimal pre-dimensioning of power generation system for anygeothermal heat source, with a defined heat sink, can be determined withoutadvanced thermodynamic expertise. This reduces the cost for business case proposals,pre-dimensioning and tender specifications of small-scale power generation systemsfor low temperature heat sources. The intended implication of this work is to increasethe use of low-temperature geothermal wells for distributed power generation.

    Download full text (pdf)
    fulltext
123 101 - 108 of 108
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf