Endre søk
Begrens søket
1234567 101 - 150 of 448
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 101. Ekedahl, A.
    et al.
    Rantamaki, K.
    Goniche, M.
    Mailloux, J.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    et al,
    Effect of gas injection during LH wave coupling at ITER-relevant plasma-wall distances in JET2009Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 51, nr 4Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Good coupling of lower hybrid (LH) waves has been demonstrated in different H-mode scenarios in JET, at high triangularity (delta similar to 0.4) and at large distance between the last closed flux surface and the LH launcher ( up to 15 cm). Local gas injection of D-2 in the region magnetically connected to the LH launcher is used for increasing the local density in the scrape-off layer ( SOL). Reciprocating Langmuir probe measurements magnetically connected to the LH launcher indicate that the electron density profile flattens in the far SOL during gas injection and LH power application. Some degradation in normalized H-mode confinement, as given by the H98(gamma,2)-factor, could be observed at high gas injection rates in these scenarios, but this was rather due to total gas injection and not specifically to the local gas puffing used for LH coupling. Furthermore, experiments carried out in L-mode plasmas in order to evaluate the effect on the LH current drive efficiency, when using local gas injection to improve the coupling, indicate only a small degradation (Delta I-LH/I-LH similar to 15%). This effect is largely compensated by the improvement in coupling and thus increase in coupled power when using gas puffing.

  • 102.
    Eriksson, J.
    et al.
    Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.;Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Measuring fast ions in fusion plasmas with neutron diagnostics at JET2019Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, nr 1, artikkel-id 014027Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Fast ions in fusion plasmas often leave characteristic signatures in the neutron emission from the plasma. In this paper, we show how neutron measurements can be used to study fast ions and give examples of physics results obtained on present day tokamaks. The focus is on measurements with dedicated neutron spectrometers and with compact neutron detectors used in each channel of neutron profile monitors. A measured neutron spectrum can be analyzed in several different ways, depending on the physics scenario under consideration. Gross features of a fast ion energy distribution can be studied by applying suitably chosen thresholds to the measured spectrum, thus probing ions with different energies. With this technique it is possible to study the interaction between fast ions and MHD activity, such as toroidal Alfven eigenmodes (TAEs) and sawtooth instabilities. Quantitative comparisons with modeling can be performed by a direct computation of the neutron emission expected from a given fast ion distribution. Within this framework it is also possible to determine physics parameters, such as the supra-thermal fraction of the neutron emission, by fitting model parameters to the data. A detailed, model-independent estimate of the fast ion distribution can be obtained by analyzing the data in terms of velocity space weight functions. Using this method, fast ion distributions can be resolved in both energy and pitch by combining neutron and gamma-ray measurements obtained along several different sightlines. Fast ion measurements of the type described in this paper will also be possible at ITER, provided that the spectrometers have the dynamic range required to resolve the fast ion spectral features in the presence of the dominating thermonuclear neutron emission. A dedicated high-resolution neutron spectrometer has been designed for this purpose.

  • 103. Erman, P.
    et al.
    Karawajczyk, A.
    Rachlew-Källne, Elisabeth
    KTH, Tidigare Institutioner                               , Fysik.
    Riu, J. R. I.
    Stankiewicz, M.
    Franzen, K. Y.
    Moen, A. W.
    Veseth, L.
    Non Franck-Condon effects in photoionization of molecular oxygen2000Inngår i: Physica scripta. T, ISSN 0281-1847, Vol. 62, nr 4, s. 294-300Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a theoretical and experimental analysis of non Franck-Condon effects in photoionization to the b (4)Sigma(g)(-), state of O-2(+). Experimentally, by dispersing the synchrotron radiation induced O-2(+) b (4)Sigma(g)(-) a (IIu)-I-4 fluorescence we derive the b (4)Sigma(g)(-), State vibrational branching ratios in the excitation energy range 21-34 eV. The vibrational branching ratios reveal features in the region 21-28 eV indicating strong non Franck-Condon effects. The experimental results have been analysed by computing ab initio the vibrational population branching ratios using a many-body perturbation method. Additionally the autoionizing neutral states existing in this energy region have been studied. We have computed the energies of the valence states up to an energy of 30 eV their transition moments for excitations from the ground state, and autoionization rates. Our calculations show, that strong non Franck-Condon effects recorded in the branching ratio spectrum (below 25 eV) are actually caused by the narrow 3 sigma(g) --> sigma(u) shape resonance, and its coupling to the 1 pi(u) --> pi(g) channel.

  • 104.
    Faugeras, Blaise
    et al.
    Univ Cote dAzur, CNRS, INRIA, Lab JA Dieudonne, Parc Valrose, F-06108 Nice 2, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Equilibrium reconstruction at JET using Stokes model for polarimetry2018Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 10, artikkel-id 106032Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper presents the first application to real JET data of the new equilibrium code NICE which enables the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry. The conducted numerical experiments enable first of all to validate NICE by comparing it to the well-established EFIT code on 4 selected high performance shots. Secondly the results indicate that the fit to polarimetry measurements clearly benefits from the use of Stokes vector measurements compared to the classical case of Faraday measurements, and that the reconstructed p' and ff' profiles are better constrained with smaller error bars and are closer to the profiles reconstructed by EFTM, the EFIT JET code using internal MSE constraints.

  • 105. Ferreira, Diogo R.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Robust regression with CUDA and its application to plasma reflectometry2015Inngår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 86, nr 11, artikkel-id 113507Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In many applications, especially those involving scientific instrumentation data with a large experimental error, it is often necessary to carry out linear regression in the presence of severe outliers which may adversely affect the results. Robust regression methods do exist, but they are much more computationally intensive, making it difficult to apply them in real-time scenarios. In this work, we resort to graphics processing unit (GPU)-based computing to carry out robust regression in a time-sensitive application. We illustrate the results and the performance gains obtained by parallelizing one of the most common robust regression methods, namely, least median of squares. Although the method has a complexity of O(n(3) log n), with GPU computing, it is possible to accelerate it to the point that it becomes usable within the required time frame. In our experiments, the input data come from a plasma diagnostic system installed at Joint European Torus, the largest fusion experiment in Europe, but the approach can be easily transferred to other applications.

  • 106.
    Ferreira, Diogo R.
    et al.
    Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal..
    Bergsåker, Henric
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Full-Pulse Tomographic Reconstruction with Deep Neural Networks2018Inngår i: Fusion science and technology, ISSN 1536-1055, E-ISSN 1943-7641, Vol. 74, nr 1-2, s. 47-56Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Plasma tomography consists of reconstructing a two-dimensional radiation profile of a poloidal cross section of a fusion device based on line-integrated measurements along several lines of sight. The reconstruction process is computationally intensive, and in practice, only a few reconstructions are usually computed per pulse. In this work, we trained a deep neural network based on a large collection of sample tomograms that have been produced at JET over several years. Once trained, the network is able to reproduce those results with high accuracy. More importantly, it can compute all the tomographic reconstructions for a given pulse in just a few seconds. This makes it possible to visualize several phenomena-such as plasma heating, disruptions, and impurity transport-over the course of the entire pulse.

  • 107. Field, A. R.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    et al.,
    Dynamics and stability of divertor detachment in H-mode plasmas on JET2017Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, nr 9, artikkel-id 095003Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The dynamics and stability of divertor detachment in N-2 seeded, type-I, ELMy H-mode plasmas with dominant NBI heating in the JET ITER-like wall device is studied by means of an integrated analysis of diagnostic data from several systems, classifying data relative to the ELM times. It is thereby possible to study the response of the detachment evolution to the control parameters (SOL input power, upstream density and impurity fraction) prevailing during the inter-ELM periods and the effect of ELMs on the detached divertor. A relatively comprehensive overview is achieved, including the interaction with the targets at various stages of the ELM cycle, the role of ELMs in affecting the detachment process and the overall performance of the scenario. The results are consistent with previous studies in devices with an ITER-like, metal wall, with the important advance of distinguishing data from intra-and inter-ELM periods. Operation without significant degradation of the core confinement can be sustained in the presence of strong radiation from the x-point region (MARFE).

  • 108.
    Figueiredo, J.
    et al.
    Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon, Oxon, England.;Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal.;Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England.;Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    JET diagnostic enhancements in preparation for DT operations2016Inngår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, nr 11, artikkel-id 11D443Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In order to complete the exploitation of the JET ITER-like Wall and to take full benefit from deuterium-tritium experiments on JET, a set of diagnostic system refurbishments or upgrades is in progress. These diagnostic enhancements focus mainly on neutron, gamma, fast ions, instabilities, and operations support. These efforts intend to provide better spatial, temporal, and energy resolution while increasing measurement coverage. Also previously non-existing capabilities, such as Doppler reflectometry is now available for scientific exploitation. Guaranteeing diagnostic reliability and consistency during the expected DT conditions is also a critical objective of the work and systems being implemented. An overview of status and scope of the ongoing projects is presented.

  • 109. Figueiredo, J.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    JET diagnostic enhancements testing and commissioning in preparation for DT scientific campaigns2018Inngår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 89, nr 10, artikkel-id 10K119Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In order to optimize the scientific exploitation of JET (Joint European Torus) during the upcoming deuterium-tritium experiments, a set of diagnostic systems is being enhanced. These upgrades focus mainly on the experimental and operational conditions expected during tritium campaigns. It should be stressed that measurements relevant for burning plasmas are specifically targeted. Previously non-available capabilities, such as a current measurement system fully covering all poloidal field circuits, are described in detail. Instrument descriptions, performance prediction, testing, and initial commissioning results of these systems are presented.

  • 110.
    Fil, A.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET2015Inngår i: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 22, nr 6, artikkel-id 062509Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    JOREK 3D non-linear MHD simulations of a D-2 Massive Gas Injection (MGI) triggered disruption in JET are presented and compared in detail to experimental data. The MGI creates an overdensity that rapidly expands in the direction parallel to the magnetic field. It also causes the growth of magnetic islands (m/n = 2/1 and 3/2 mainly) and seeds the 1/1 internal kink mode. O-points of all island chains (including 1/1) are located in front of the MGI, consistently with experimental observations. A burst of MHD activity and a peak in plasma current take place at the same time as in the experiment. However, the magnitude of these two effects is much smaller than in the experiment. The simulated radiation is also much below the experimental level. As a consequence, the thermal quench is not fully reproduced. Directions for progress are identified. Radiation from impurities is a good candidate.

  • 111.
    Fitzgerald, M.
    et al.
    JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Full-orbit and drift calculations of fusion product losses due to explosive fishbones on JET2019Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 1, artikkel-id 016004Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Fishbones are ubiquitous in high-performance JET plasmas and are typically considered to be unimportant for scenario design. However, during recent high-performance hybrid scenario experiments, sporadic and explosive fishbone oscillations with sawtooth reconnection were observed coinciding with reduced performance and a main chamber hotspot. Fast ion loss diagnostics showed fusion products ejected from the plasma by the fishbones. We present calculations of the perturbed motion of non-resonant fusion products in the presence of fishbones assuming a fixed linear mode structure and frequency. Using careful reconstruction of the equilibrium and measurements of the perturbation, we show that the measured fishbone spatial structure in these experiments can be well modelled as a linear MHD internal kink mode. Both drift and full-orbit calculations predict losses of fusion products at the same location of the observed hotspot, however the calculated energy content of those losses is negligible and cannot be contributing significantly. The fast ions responsible for the hotspot and the reason for their loss both remain unexplained.

  • 112.
    Fonnesu, N.
    et al.
    ENEA, Dept Fus & Nucl Safety Technol, I-00044 Rome, Italy.;Univ Roma Tor Vergata, Dept Ind Engn, Via Politecn 1, I-00133 Rome, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    The preparation of the Shutdown Dose Rate experiment for the next JET Deuterium-Tritium campaign2017Inngår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 123, s. 1039-1043Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The assessment of the Shutdown Dose Rate (SDR) due to neutron activation is a major safety issue for fusion devices and in the last decade several benchmark experiments have been conducted at JET during Deuterium-Deuterium experiments for the validation of the numerical tools used in ITER nuclear analyses. The future Deuterium-Tritium campaign at JET (DTE2) will provide a unique opportunity to validate the codes under ITER-relevant conditions through the comparison between numerical predictions and measured quantities (C/E). For this purpose, a novel SDR experiment, described in the present work, is in preparation in the frame of the WPJET3-NEXP subproject within EUROfusion Consortium. The experimental setup has been accurately designed to reduce measurement uncertainties; spherical air-vented ionization chambers (ICs) will be used for on-line ex-vessel decay gamma dose measurements during JET shutdown following DT operations and activation foils have been selected for measuring the neutron fluence near ICs during operations. Active dosimeters (based on ICs) have been calibrated over a broad energy range (from about 30 keV to 1.3 MeV) with X and gamma reference beam qualities. Neutron irradiation tests confirmed the capability of active dosimeters of performing on-line decay gamma dose rate measurements, to follow gamma dose decay at the end of neutron irradiation as well as insignificant activation of the ICs.

  • 113.
    Fonnesu, N.
    et al.
    ENEA, Dept Fus & Nucl Safety Technol, I-00044 Rome, Italy.;Univ Roma Tor Vergata, Dept Ind Engn, I-00133 Rome, Italy.;ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Shutdown dose rate measurements after the 2016 Deuterium-Deuterium campaign at JET2018Inngår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 136, s. 1348-1353Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The EUROfusion Work Package JET3 programme, established to enable the technological exploitation of the JET experiments over the next years, includes, within the NEXP subproject, a novel Shutdown Dose Rate (SDR) experiment. Considering its ITER-relevance, SDR experiments at JET represent a unique opportunity to validate the numerical tools for ITER nuclear analysis, through the comparison between numerical predictions and measured quantities (C/E). Within this framework, two active gamma dosimeters based on spherical air-vented ionization chambers (ICs) have been installed in ex-vessel positions close to the horizontal ports of the tokamak in Octants 1 and 2. The first JET campaign exploited in the novel SDR experiment is the latest 5-week Deuterium-Deuterium campaign (c36b), which achieved the best results in recent years in terms of high power operation. The present work is dedicated to the analysis of dose rate measurements carried out during this campaign and after shutdown. Proper correction factors are evaluated and applied to the instrument reading, while influence quantities and error sources are analyzed in order to calculate the overall experimental uncertainty.

  • 114.
    Frassinetti, Lorenzo
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Saarelma, S.
    Lomas, P.
    Nunes, I.
    Rimini, F.
    Beurskens, M. N. A.
    Bilkova, P.
    Boom, J. E.
    de la Luna, E.
    Delabie, E.
    Drewelow, P.
    Flanagan, J.
    Garzotti, L.
    Giroud, C.
    Hawks, N.
    Joffrin, E.
    Kempenaars, M.
    Kim, Hyun-Tae
    Kruezi, U.
    Loarte, A.
    Lomanowski, B.
    Lupelli, I.
    Meneses, L.
    Maggi, C. F.
    Menmuir, S.
    Peterka, M.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Romanelli, M.
    Stefániková, Estera
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Dimensionless scalings of confinement, heat transport and pedestal stability in JET-ILW and comparison with JET-C2017Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, nr 1, artikkel-id 014014Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Three dimensionless scans in the normalized Larmor radius rho*, normalized collisionality nu* and normalized plasma pressure beta have been performed in JET with the ITER-like wall (JET-ILW). The normalized energy confinement and the thermal diffusivity exhibit a scaling with rho* consistent with the earlier results obtained in the carbon wall JET (JET-C) and with a gyro-Bohm scaling. In the pedestal, experimental results show that the stability is not dependent on rho*, qualitatively in agreement with the peeling-ballooning (P-B) model. The nu* dimensionless scaling shows that JET-ILW normalized confinement has a stronger dependence on collisionality than JET-C. This leads to a reduction of the difference in the confinement between JET-ILW and JET-C to approximate to 10% at low nu*. The pedestal stability shows an improvement with decreasing nu*. This is ascribed to the increase of the bootstrap current, to the reduction of the pedestal width and to the reduction of the relative shift between pedestal density and temperature position. The beta dimensionless scan shows that, at low collisionality, JET-ILW normalized confinement has no clear dependence with beta, in agreement with part of the earlier scalings. At high collisionality, a reduction of the normalized confinement with increasing beta is observed. This behaviour is driven mainly by the pedestal where the stability is reduced with increasing beta. The P-B analysis shows that the stability reduction with increasing beta at high nu* is due to the destabilizing effect of the increased relative shift.

  • 115.
    Gallart, D.
    et al.
    BSC, Barcelona, Spain.;Barcelona Supercomp Ctr, Barcelona, Spain..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating2018Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 10, artikkel-id 106037Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    During the 2015-2016 JET campaigns, many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper, we review various key recent hybrid discharges and model the combined ICRF+NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to match the cyclotron frequency of minority H at the centre of the tokamak coinciding with the second harmonic cyclotron resonance of D. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of D beam ions, allowing us to assess its impact on the neutron rate R-NT. For discharges carried out with a fixed ICRF antenna frequency and changing toroidal magnetic field to vary the resonance position, we evaluate the influence of the resonance position on the heating performance and central impurity control. The H concentration is varied between discharges in order to test its role in the heating performance. It is found that discharges with a resonance beyond similar to 0.15 m from the magnetic axis R-0 suffer from MHD activity and impurity accumulation in these plasma conditions. According to our modelling, the ICRF enhancement of R-NT increases with the ICRF power absorbed by deuterons as the H concentration decreases. We find that in the recent hybrid discharges, this ICRF enhancement varies due to a variation of H concentration and is in the range of 10%-25%. The modelling of a recent record high-performance hybrid discharge shows that ICRF fusion yield enhancement of similar to 30% and similar to 15% respectively can be achieved in the ramp-up phase and during the main heating phase. We extrapolate the results to DT and find that the best performing hybrid discharges correspond to an equivalent fusion power of similar to 7.0 MW in DT. Finally, an optimization analysis of the bulk ion heating for the DT scenario reveals around 15%-20% larger bulk ion heating for the He-3 minority scenario as compared to the H minority scenario.

  • 116. Gao, Y.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    et al.,
    Characteristics of pre-ELM structures during ELM control experiment on JET with n=2 magnetic perturbations2016Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, nr 9, artikkel-id 092011Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Radially propagating pre-ELM (edge localized mode) structures in the heat flux profile on the outer divertor have been observed both with and without magnetic perturbations on Joint European Torus. Recently pre-ELM structures over 80% of the ELM cycle are observed. The effects of n = 2 fields on pre-ELM structures are presented and analysed in detail. Redistribution of the inter-ELM heat load with the appearances of pre-ELM structures suggest that a wider energy wetted area could be achieved by the application of n = 2 fields. The influences of q(95) and gas puffing position on the change of pre-ELM structures are studied. Pre-ELM structures are normally long lived (several milliseconds) and appear consecutively with n = 2 fields, but do not necessarily lead to an ELM crash. The experimental observations suggest that the changed magnetic topology might be a possible explanation for the propagating structures.

  • 117. Garcia, J.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    et al.,
    Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios2015Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 5, artikkel-id 053007Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Extensive linear and non-linear gyrokinetic simulations and linear magnetohydrodynamic (MHD) analyses performed for JET hybrid discharges with improved confinement have shown that the large population of fast ions found in the plasma core under particular heating conditions has a strong impact on core microturbulence and edge MHD by reducing core ion heat fluxes and increasing pedestal pressure in a feedback mechanism. In the case of the ITER like wall, it is shown how this mechanism plays a decisive role for the transition to plasma regimes with improved confinement and it can explain the weak power degradation obtained in dedicated power scans. The mechanism is found to be highly dependent on plasma triangularity as it changes the balance between the improvement in the plasma core and the edge. The feedback mechanism can play a similar role in the ITER hybrid scenario as in the JET discharges analysed due to its high triangularity plasmas and the large amount of fast ions generated in the core by the heating systems and the alpha power.

  • 118. Garcia, J.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    et al.,
    Challenges in the extrapolation from DD to DT plasmas: experimental analysis and theory based predictions for JET-DT2017Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, nr 1, artikkel-id 014023Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A strong modelling program has been started in support of the future JET-DT campaign with the aim of guiding experiments in deuterium (D) towards maximizing fusion energy production in Deuterium-Tritium (DT). Some of the key elements have been identified by using several of the most updated and sophisticated models for predicting heat and particle transport, pedestal pressure and heating sources in an integrated modelling framework. For the high beta and low gas operational regime, the density plays a critical role and a trend towards higher fusion power is obtained at lower densities. Additionally, turbulence stabilization by E x B flow shear is shown to generate an isotope effect leading to higher confinement for DT than DD and therefore plasmas with high torque are suitable for maximizing fusion performance. Future JET campaigns will benefit from this modelling activity by defining clear priorities on their scientific program.

  • 119.
    Garcia, J.
    et al.
    Culham Sci Ctr, Eurofus Consortium JET, Abingdon OX14 3DB, Oxon, England. CEA, IRFM, St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    On the universality of power laws for tokamak plasma predictions2018Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, nr 2, artikkel-id 025028Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Significant deviations from well established power laws for the thermal energy confinement time, obtained from extensive databases analysis as the IPB98(y, 2), have been recently reported in dedicated power scans. In order to illuminate the adequacy, validity and universality of power laws as tools for predicting plasma performance, a simplified analysis has been carried out in the framework of a minimal modeling for heat transport which is, however, able to account for the interplay between turbulence and collinear effects with the input power known to play a role in experiments with significant deviations from such power laws. Whereas at low powers, the usual scaling laws are recovered with little influence of other plasma parameters, resulting in a robust power low exponent, at high power it is shown how the exponents obtained are extremely sensitive to the heating deposition, the q-profile or even the sampling or the number of points considered due to highly non-linear behavior of the heat transport. In particular circumstances, even a minimum of the thermal energy confinement time with the input power can be obtained, which means that the approach of the energy confinement time as a power law might be intrinsically invalid. Therefore plasma predictions with a power law approximation with a constant exponent obtained from a regression of a broad range of powers and other plasma parameters which can non-linearly affect and suppress heat transport, can lead to misleading results suggesting that this approach should be taken cautiously and its results continuously compared with modeling which can properly capture the underline physics, as gyrokinetic simulations.

  • 120.
    García, Emilio Melero
    et al.
    KTH, Tidigare Institutioner, Fysik.
    Álvarez Ruiz, Jesús
    KTH, Tidigare Institutioner, Fysik.
    Erman, Peter
    KTH, Tidigare Institutioner, Fysik.
    Kivimäki, Antti Eerik
    KTH, Tidigare Institutioner, Fysik.
    Rachlew-Källne, Elisabeth
    KTH, Tidigare Institutioner, Fysik.
    Rius Riu, Jaume
    KTH, Tidigare Institutioner, Fysik.
    Stankiewicz, Marek
    KTH, Tidigare Institutioner, Fysik.
    Veseth, V.
    Neutral dissociation of superexcited states in nitric oxide2003Inngår i: Chemical Physics, ISSN 0301-0104, E-ISSN 1873-4421, Vol. 293, nr 1, s. 65-73Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Near-infrared dispersed fluorescence measurements of 13 different atomic multiplets of neutral atomic fragments from photon induced neutral dissociation processes in NO are reported. For excitation of the molecules narrow band synchrotron photons of energy 17.2-25.8 eV were used. Neither Rydberg series nor other molecular states in NO known so far can account for the collected data. From ab initio calculations we try to obtain more information regarding the NO precursor states, and the mechanism behind the observed neutral dissociation.

  • 121.
    Garzotti, L.
    et al.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.;CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik. CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Ratynskaia, Svetlana V.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Rymd- och plasmafysik.
    Vallejos, Pablo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Zhou, Yushan
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Scenario development for D-T operation at JET2019Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 7, artikkel-id 076037Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall and will benefit from an extended and improved set of diagnostics and higher additional heating power (32 MW neutral beam injection + 8 MW ion cyclotron resonance heating). There are several challenges presented by operations with the new wall: a general deterioration of the pedestal confinement; the risk of heavy impurity accumulation in the core, which, if not controlled, can cause the radiative collapse of the discharge; the requirement to protect the divertor from excessive heat loads, which may damage it permanently. Therefore, an intense activity of scenario development has been undertaken at JET during the last three years to overcome these difficulties and prepare the plasmas needed to demonstrate stationary high fusion performance and clear alpha particle effects. The paper describes the status and main achievements of this scenario development activity, both from an operational and plasma physics point of view.

  • 122.
    Gaspar, J.
    et al.
    CEA Cadarache, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Heat flux analysis of Type-I ELM impact on a sloped, protruding surface in the JET bulk tungsten divertor2018Inngår i: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 17, s. 182-187Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Tungsten (W) melting due to transient power loads, for example those delivered by edge localised modes (ELMs), is a major concern for next step fusion devices. A series of experiments has been performed on JET to investigate the dynamics of Type-I ELM-induced transient melting. Following initial exposures in 2013 of a W-lamella with sharp leading edge in the bulk W outer divertor, new experiments have been performed in 2016-2017 on a protruding W-lamella with a 15 degrees slope, allowing direct and spatially resolved (0.85 mm/pixel) observation of the top surface using the IR thermography system viewing from the top of the poloidal cross-section. Thermal and IR analysis have already been conducted assuming the geometrical projection of the parallel heat flux on the W-lamellas, thus ignoring the gyro-radius orbit of plasma particles. Although it is well justified during L-mode or inter-ELM period, the hypothesis becomes questionable during ELM when the ion Larmor radius is larger. The goal of this paper is to extend the previous analysis based on the forward approach to the H-mode discharges and investigate in particular the gyro-radius effect during the Type-I ELMs, those used to achieve transient melting on the slope of the protruding W-lamella. Surface temperatures measured by the IR camera are compared with reconstructed synthetic data from 3D thermal modelling using heat loads derived from optical projection of the parallel heat flux (ignoring the gyro-radius orbit), 2D gyro-radius orbit and particle-in-cell (PIC) simulations describing the influence of finite Larmor-radius effects and electrical potential on the deposited power flux. Results show that the ELM power deposition behaves differently than the optical projection of the parallel heat flux, contrary to the L-mode observations, and may thus be due to the much larger gyro-orbits of the energetic ELM ions in comparison to L-mode or inter-ELM conditions.

  • 123. Gerasimov, S. N.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    et al.,
    JET and COMPASS asymmetrical disruptions2015Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 11, artikkel-id 113006Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Asymmetrical disruptions may occur during ITER operation and they may be accompanied by large sideways forces and rotation of the asymmetry. This is of particular concern because resonance of the rotating asymmetry with the natural frequencies of the vacuum vessel (and other in-vessel components) could lead to large dynamic amplification of the forces. A significant fraction of non-mitigated JET disruptions have toroidally asymmetric currents that flow partially inside the plasma and partially inside the surrounding vacuum vessel ('wall'). The toroidal asymmetries (otherwise known as the appearance of 3D structures) are clearly visible in the plasma current (I-p) and the first plasma current moments. For the first time we present here the asymmetries in toroidal flux measured by the diamagnetic loops and also propose a physical interpretation. The presented data covers the period of JET operation with a C-wall (JET-C from 2005 until late 2009) and with an ITER-like wall (JET-ILW from 2011 until late 2014), during which pick-up coil and saddle loop data at four toroidally orthogonal locations were routinely recorded. The observed rotations of the Ip asymmetries are in the range from -5 turns to +10 turns (a negative value is counted to the negative plasma current). Initial observations on COMPASS of asymmetric disruptions are presented, which are in line with JET data. The whole of the JET-ILW disruption database and the limited number of COMPASS disruptions examined confirm that the development of the toroidal asymmetry precedes the drop to unity of q95. It is shown that massive gas injection (MGI), which is routinely used to mitigate disruptions, significantly reduces the I-p asymmetries in JET. However, MGI produces fast plasma current quench and consequently high vessel eddy currents, which expose the machine to additional stresses. The effect of the large gas quantity used during the injection is of particular concern as well.

  • 124.
    Ghani, Z.
    et al.
    EUROfus Consortium, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England.;CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Characterisation of neutron generators and monitoring detectors for the in-vessel calibration of JET2018Inngår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 136, s. 233-238Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A calibration of the JET neutron detectors was carried out prior to the upcoming deuterium-tritium experimental campaign. Two Compact DT neutron generators (NGs) were purchased for this purpose from VNIIA, Russia. These generators are capable of producing approximately 2 x 10(8) neutrons/s with a DT fusion energy spectrum. Preceding the in-vessel calibration measurements, these compact generators were tested and fully characterised at the UK's National Physical Laboratory (NPL). In order to support the characterisation measurements, detailed neutronics models were developed of the NGs, monitoring detectors and remote handling (RH) apparatus. Neutron spectra calculated from these models have been used to help determine NPL long counter efficiencies and effective centres, as well as NPL reference iron and aluminium activation foil reaction rates. The neutron emission rate has been measured for both generators as a function of angle using absolutely calibrated long counters and the relative emission rate by monitoring single crystal diamond detectors. The measured anisotropy profile is shown to be reproducible with a detailed NG MCNP model. Consequently, the neutron source routine and the MCNP model of the NGs can be reliably used for the analysis of the in-vessel calibration at JET.

  • 125.
    Giacomelli, L.
    et al.
    CNR, Ist Fis Plasma P Caldirola, Milan, Italy.;Univ Milano Bicocca, I-20126 Milan, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors2016Inngår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, nr 11, artikkel-id 11D822Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This work presents measurements done at the Peking University Van de Graaff neutron source of the response of single crystal synthetic diamond (SD) detectors to quasi-monoenergetic neutrons of 14-20 MeV. The results show an energy resolution of 1% for incoming 20 MeV neutrons, which, together with 1% detection efficiency, opens up to new prospects for fast ion physics studies in high performance nuclear fusion devices such as SD neutron spectrometry of deuterium-tritium plasmas heated by neutral beam injection.

  • 126.
    Giacomelli, L.
    et al.
    CNR, Ist Fis Plasma P Caldirola, Milan, Italy.;IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Neutron emission spectroscopy of D plasmas at JET with a compact liquid scintillating neutron spectrometer2018Inngår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 89, nr 10, artikkel-id 10I113Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Neutron emission spectroscopy is a diagnostic technique that allows for energy measurements of neutrons born in nuclear reactions. The JET tokamak fusion experiment (Culham, UK) has a special role in this respect as advanced spectrometers for 2.5 MeV and 14 MeV neutrons have been developed here for the first time for measurements of the neutron emission spectrum from D and DT plasmas with unprecedented accuracy. Twin liquid scintillating neutron spectrometers were built and calibrated at the Physikalisch-Technische Bundesanstalt (PTB) (Braunschweig, Germany) and installed on JET in the recent years with tangential-equatorial (KM12) and vertical-radial (KM13) view lines, with the latter only recently operational. This article reports on the performance of KM12 and on the development of the data analysis methods in order to extract physics information upon D ions kinematics in JET auxiliary-heated D plasmas from 2.5 MeV neutron measurements. The comparison of these results with the correspondents from other JET neutron spectrometers is also presented: their agreement allows for JET unique capability of multi-lines of sight neutron spectroscopy and for benchmarking other 14 MeV neutron spectrometers installed on the same lines of sight in preparation for the DT experimental campaign at JET.

  • 127.
    Giegerich, T.
    et al.
    Karlsruhe Inst Technol, Inst Tech Phys, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany.;Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Advanced design of the Mechanical Tritium Pumping System for JET DTE22016Inngår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 109, s. 359-364Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    For tritium processing in JET during the next Deuterium-Tritium-Experiment (DTE2), a fully tritium compatible and continuously working vacuum pumping system has been developed. This pump train will be used as roughing pump to cover a pressure regime between 10(-1) Pa and ambient pressure. Therefore, a two-stage liquid ring pump in combination with a booster vapor diffusion pump will be applied. In this paper, a close-to-final design of the pumps is being described. Finite element (FEM) simulation results of components where high mechanical stresses due to thermal gradients are expected are presented. Furthermore, the final design of the control and data acquisition system is shown and explained.

  • 128.
    Giegerich, Thomas
    et al.
    Karlsruhe Inst Technol, Inst Tech Phys, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Giegerich, T.
    Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany..
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Conceptual design of the mechanical tritium pumping system for jet DTE22015Inngår i: Fusion science and technology, ISSN 1536-1055, E-ISSN 1943-7641, Vol. 68, nr 3, s. 630-634Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper describes the conceptual design of the Mechanical Tritium Pumping System (MTPS) that shall be installed and tested at JET during the next Deuterium-Tritium-Experiment (DTE2). This pump train uses a two-stage liquid ring pump in combination with a booster pump to cover a pressure regime from 10(-1) Pa to 10(5) Pa. As working fluid for all pumps, mercury will be used for tritium compatibility reasons. Starting from the requirements to MTPS, the pumps and their arrangement will be described in this paper as well as the mercury containment strategy and safety- and control issues.

  • 129.
    Girardo, Jean-Baptiste
    et al.
    Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas2016Inngår i: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 23, nr 1, artikkel-id 012505Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfven Eigenmodes inside the q = 1 surface (also called "tornado" modes) which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutron camera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed.

  • 130.
    Giudicotti, L.
    et al.
    Padova Univ, Dept Phys & Astron, Via Marzolo 8, I-35131 Padua, Italy.;Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    First observation of the depolarization of Thomson scattering radiation by a fusion plasma2018Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 4, artikkel-id 044003Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high T-e plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with T-e <= 8 keV. A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for T-e measurements in very hot plasmas such as in ITER (T-e <= 40 keV).

  • 131.
    Goniche, M.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios2017Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, nr 5, artikkel-id 055001Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n(H)/n(e) but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I-p. =. 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4MA), tungsten accumulation can be only avoided with 5MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW, very low tungsten concentration in the core (similar to 10(-5)) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.

  • 132.
    Gravestijn, Robert
    et al.
    KTH, Tidigare Institutioner, Fysik.
    Drake, James R.
    KTH, Tidigare Institutioner, Alfvénlaboratoriet.
    Hedqvist, Anders
    KTH, Tidigare Institutioner, Fysik.
    Rachlew, Elisabeth
    KTH, Tidigare Institutioner, Fysik.
    Comparison of confinement in resistive-shell reversed-field pinch devices with two different magnetic shell penetration times2004Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 46, nr 1, s. 11-22Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A loop voltage is required to sustain the reversed-field pinch (RFP) equilibrium. The configuration is characterized by redistribution of magnetic helicity but with the condition that the total helicity is maintained constant. The magnetic field shell penetration time, tau(s), has a critical role in the stability and performance of the RFP Confinement in the EXTRAP device has been studied with two values of tau(s), first (EXTRAP-T2) with tau(s), of the order of the typical relaxation cycle timescale and then (EXTRAP-T2R) with tau(s), much longer than the relaxation cycle timescale, but still much shorter than the pulse length. Plasma parameters show significant improvements in confinement in EXTRAP-T2R. The typical loop voltage required to sustain comparable electron poloidal beta values is a factor of 3 lower in the EXTRAP-T2R device. The improvement is attributed to reduced magnetic turbulence.

  • 133.
    Grigore, E.
    et al.
    Natl Inst Laser Plasma & Radiat Phys, Bucharest, Romania.;Natl Inst Laser Plasma & Radiat Phys, Magurele, Romania..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Thermo-mechanical properties of W/Mo markers coatings deposited on bulk W2016Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, artikkel-id 014028Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the present paper marker structures consisting of W/Mo layers were deposited on bulk W samples by using a modified CMSII method. This technology, compared to standard CMSII, prevents the formation of nano-pore structures at interfaces. The thicknesses of the markers were in the range 20-35 mu m to balance the requirements associated with the wall erosion in ITER and thermo-mechanical performances. The coatings structure and composition were evaluated by glow discharge optical emission spectrometry (GDOES), and energy dispersive x-ray spectroscopy measurements (EDX). The adhesion of the coatings to the substrate has been assessed by scratch test method. In order to evaluate their effectiveness as potential markers for fusion applications, the marker coatings have been tested in an electron beam facility at a temperature of 1000 degrees C and a power density of about 3 MW m(-2). A number of 300 pulses with duration of 420 s (35 testing hours) were applied on the marker coated samples.

  • 134.
    Guillemaut, C.
    et al.
    JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;Univ Lisbon, Inst Plasmas & Fusao Nucl, Inst Super Tecnico, Lisbon, Portugal.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas Joe
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Main chamber wall plasma loads in JET-ITER-like wall at high radiated fraction2017Inngår i: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 12, s. 234-240Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Future tokamak reactors of conventional design will require high levels of exhaust power dissipation (more than 90% of the input power) if power densities at the divertor targets are to remain compatible with active cooling. Impurity seeded H-mode discharges in JET-ITER-like Wall (ILW) have reached a maximum radiative fraction (F-rad) of similar to 75%. Divertor Langmuir probe (LP) measurements in these discharges indicate, however, that less than similar to 3% of the thermal plasma power reaches the targets, suggesting a missing channel for power loss. This paper presents experimental evidence from limiter LP for enhanced cross-field particle fluxes on the main chamber walls at high F-rad. In H-mode nitrogen-seeded discharges with F-rad increasing from similar to 30% to up to similar to 75%, the main chamber wall particle fluence rises by a factor similar to 3 while the divertor plasma fluence drops by one order of magnitude. Contribution of main chamber wall particle losses to detachment, as suggested by EDGE2D-EIRENE modeling, is not sufficient to explain the magnitude of the observed divertor fluence reduction. An intermediate detached case obtained at F-rad similar to 60% with neon seeding is also presented. Heat loads were measured using the main chamber wall thermocouples. Comparison between thermocouple and bolometry measurements shows that the fraction of the input power transported to the main chamber wall remains below similar to 5%, whatever the divertor detachment state is. Main chamber sputtering of beryllium by deuterium is reduced in detached conditions only on the low field side. If the fraction of power exhaust dissipated to the main chamber wall by cross-field transport in future reactors is similar to the JET-ILW levels, wall plasma power loading should not be an issue. However, other contributions such as charge exchange may be a problem.

  • 135.
    Guillemaut, C.
    et al.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1699 Lisbon, Portugal.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    $$$Strom, P.
    KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden..
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Ion target impact energy during Type I edge localized modes in JET ITER-like Wall2015Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 57, nr 8, artikkel-id 085006Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode, with Delta W = 0.7 MJ mitigated edge localized modes (ELMs). Tungsten (W) is the material now decided for the divertor plasma-facing components from the start of plasma operations. W atoms sputtered from divertor targets during ELMs are expected to be the dominant source under the partially detached divertor conditions required for safe ITER operation. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of plasma-wall interaction during ELMs is important and a primary input for this is the energy of incoming ions during an ELM event. In this paper, coupled Infrared thermography and Langmuir Probe (LP) measurements in JET-ITER-Like-Wall unseeded H-mode experiments with ITER relevant ELM energy drop have been used to estimate the impact energy of deuterium ions (D+) on the divertor target. This analysis gives an ion energy of several keV during ELMs, which makes D+ responsible for most of the W sputtering in unseeded H-mode discharges. These LP measurements were possible because of the low electron temperature (T-e) during ELMs which allowed saturation of the ion current. Although at first sight surprising, the observation of low T-e at the divertor target during ELMs is consistent with the 'Free-Streaming' kinetic model which predicts a near-complete transfer of parallel energy from electrons to ions in order to maintain quasi-neutrality of the ELM filaments while they are transported to the divertor targets.

  • 136.
    Guillemaut, C.
    et al.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1699 Lisbon, Portugal.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Experimental estimation of tungsten impurity sputtering due to Type I ELMs in JET-ITER-like wall using pedestal electron cyclotron emission and target Langmuir probe measurements2016Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, artikkel-id 014005Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The ITER baseline scenario, with 500 MW of DT fusion power and Q = 10, will rely on a Type I ELMy H-mode and will be achieved with a tungsten (W) divertor. W atoms sputtered from divertor targets during mitigated ELMs are expected to be the dominant source in ITER. W impurity concentration in the plasma core can dramatically degrade its performance and lead to potentially damaging disruptions. Understanding the physics of the target W source due to sputtering during ELMs and inter-ELMs is important and can be helped by experimental measurements with improved precision. It has been established that the ELMy target ion impact energy has a simple linear dependence with the pedestal electron temperature measured by Electron Cyclotron Emission (ECE). It has also been shown that Langmuir Probes (LP) ion flux measurements are reliable during ELMs due to the surprisingly low electron temperature. Therefore, in this paper, LP and ECE measurements in JET-ITER-Like-Wall (ILW) unseeded Type I ELMy H-mode experiments have been used to estimate the W sputtering flux from divertor targets in ELM and inter-ELM conditions. Comparison with similar estimates using W I spectroscopy measurements shows a reasonable agreement for the ELM and inter-ELM W source. The main advantage of the method involving LP measurements is the very high time resolution of the diagnostic (similar to 10 mu s) allowing very precise description of the W sputtering source during ELMs.

  • 137.
    Guillemaut, C.
    et al.
    Culham Sci Ctr, EUROfus Consortium, JET, Abingdon OX14 3DB, Oxon, England.;Univ Lisbon, Inst Plasmas & Fusao Nucl, Inst Super Tecn, P-1049001 Lisbon, Portugal.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall2017Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, nr 4, artikkel-id 045001Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Burning plasmas with 500 MW of fusion power on ITER will rely on partially detached divertor operation to keep target heat loads at manageable levels. Such divertor regimes will be maintained by a real-time control system using the seeding of radiative impurities like nitrogen (N), neon or argon as actuator and one or more diagnostic signals as sensors. Recently, real-time control of divertor detachment has been successfully achieved in Type I ELMy H-mode JET-ITER-like wall discharges by using saturation current (I-sat) measurements from divertor Langmuir probes as feedback signals to control the level of N seeding. The degree of divertor detachment is calculated in real-time by comparing the outer target peak I-sat measurements to the peak I-sat value at the roll-over in order to control the opening of the N injection valve. Real-time control of detachment has been achieved in both fixed and swept strike point experiments. The system has been progressively improved and can now automatically drive the divertor conditions from attached through high recycling and roll-over down to a user-defined level of detachment. Such a demonstration is a successful proof of principle in the context of future operation on ITER which will be extensively equipped with divertor target probes.

  • 138.
    Guillemaut, C.
    et al.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal.;CEA, IRFM, F-13108 St Paul Les Durance, France.;Univ Lisbon, Inst Plasma & Fus Nucl, Inst Super Tecn, Lisbon, Portugal..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Experimental validation of an analytical kinetic model for edge-localized modes in JET-ITER-like wall2018Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 6, artikkel-id 066006Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The design and operation of future fusion devices relying on H-mode plasmas requires reliable modelling of edge-localized modes (ELMs) for precise prediction of divertor target conditions. An extensive experimental validation of simple analytical predictions of the time evolution of target plasma loads during ELMs has been carried out here in more than 70 JET-ITER-like wall H-mode experiments with a wide range of conditions. Comparisons of these analytical predictions with diagnostic measurements of target ion flux density, power density, impact energy and electron temperature during ELMs are presented in this paper and show excellent agreement. The analytical predictions tested here are made with the 'free-streaming' kinetic model (FSM) which describes ELMs as a quasi-neutral plasma bunch expanding along the magnetic field lines into the Scrape-Off Layer without collisions. Consequences of the FSM on energy reflection and deposition on divertor targets during ELMs are also discussed.

  • 139.
    Hatano, Y.
    et al.
    EUROfus Consortium, Culham Sci Ctr, JET, Abingdon OX14 3DB, Oxon, England.;Toyama Univ, Gofuku 3190, Toyama 9308555, Japan..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Tritium distributions on tungsten and carbon tiles used in the JET divertor2016Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, artikkel-id 014009Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Tritium distributions on the W-coated divertor tiles used with Be wall in JET 2011-2012 ITER-like wall (JET-ILW) campaign were measured using an imaging plate (IP) technique. The high intensity of photo-stimulated luminescence (PSL) from IP was observed at the regions covered by deposited Be layers. However, the PSL intensity was not simply proportional to the thickness of the deposited Be layers; the shadowed region of Tile 4 showed the highest PSL intensity though the thickness of deposited Be layer on this region was smaller than that on Tile 0 and the apron of Tile 1 by an order of magnitude. These observations indicated the influence of impurities such as oxygen on tritium retention in the deposited Be layers. The C tiles used in the 20072009 JET carbon wall (JET-C) campaign were also examined. The high PSL intensity was observed for the regions covered with deposited C layers in this case. The area of tile surfaces covered by the deposited tritium-rich layers on the W-coatedtiles used in the JET-ILW campaign was significantly smaller than that on the C tiles used in the JET-C campaign.

  • 140.
    Hatano, Y.
    et al.
    Culham Sci Ctr, EUROfus Consortium, JET, Abingdon OX14 3DB, Oxon, England.;Univ Toyama, Hydrogen Isotope Res Ctr, Toyama 9308555, Japan.;Univ Toyama, Toyama 9308555, Japan..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Tritium analysis of divertor tiles used in JET ITER-like wall campaigns by means of beta-ray induced x-ray spectrometry2017Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T170, artikkel-id 014014Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Energy spectra of beta-ray induced x-rays from divertor tiles used in ITER-like wall campaigns of the Joint European Torus were measured to examine tritium (T) penetration into tungsten (W) layers. The penetration depth of T evaluated from the intensity ratio of W(La) x-rays to W(M alpha) x-rays showed clear correlation with poloidal position; the penetration depth at the upper divertor region reached several micrometers, while that at the lower divertor region was less than 500 nm. The deep penetration at the upper part was ascribed to the implantation of high energy T produced by DD fusion reactions. The poloidal distribution of total x-ray intensity indicated higher T retention in the inboard side than the outboard side of the divertor region.

  • 141. Hawkes, N. C.
    et al.
    Andrew, Y.
    Challis, C. D.
    DeAngelis, R.
    Drozdov, V.
    Hobirk, J.
    Joffrin, E.
    Lotte, P.
    Mazon, D.
    Rachlew, Elisabeth
    KTH, Tidigare Institutioner                               , Fysik.
    Reyes-Cortes, S.
    Sattin, F.
    Solano, E.
    Stratton, B. C.
    Tala, T.
    Valisa, M.
    Efda Jet Workprogramme,
    The formation and evolution of extreme shear reversal in JET and its influence on local thermal transport2002Inngår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 44, nr 7, s. 1105-1125Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In JET discharges where lower hybrid heating and current drive (LHCD) is applied early during the current ramp, a region of the plasma with zero current density is formed near the axis. At the boundary of this region the current density is large and B-theta increases rapidly over a small distance. In the central region the safety factor, q, is effectively infinite, but this falls steeply in the boundary region. Outside the boundary region q reaches a minimum, where the magnetic shears equivalent to r/q (dq/dr) becomes zero. The formation of this region of zero current is dependent on both the heating and the current drive effects of the LHCD. When LHCD is switched off the current profile begins to relax towards the resistive peaked current distribution of fully inductive tokamak operation. If LHCD is not used in the current rise then these current profiles are not established. Although the physical mechanism exists to drive the central plasma current below zero, in most cases it appears to be prevented from going negative. At least one MHD mechanism has been identified which could be responsible for this. The presence of the zero central current is closely linked to the periodic relaxation events seen in these discharges. In these discharges, internal transport barriers have been observed with additional heating powers substantially below the values required to obtain barriers in monotonic q profile cases.

  • 142.
    Hawkes, N. C.
    et al.
    UKAEA, CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Instrumentation for the upgrade to the JET core charge-exchange spectrometers2018Inngår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 89, nr 10, artikkel-id 10D113Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Charge-exchange spectroscopy on JET has become particularly challenging with the introduction of the ITER-like wall. The line intensities are weaker and contaminated by many nuisance lines. We have therefore upgraded the instrumentation to improve throughput and allow the simultaneous measurement of impurity and fuel-ion charge exchange by splitting the light between two pairs of imaging spectrometers using dichroic beam splitters. Imaging instruments allow us to stack 11 x 1 mm diameter fibres on the entrance slits without cross talk. CCD cameras were chosen to have 512 x 512 pixels to allow frame transfer times <0.2 ms which with minimum exposure times of 5 ms give tolerable smearing even without a chopper. The image plane is optically demagnified 2:1 to match the sensor size of these cameras. Because the image plane of the spectrometer is tilted, the CCD must also be tilted to maintain focus over the spectrum (Scheimpflug condition). To avoid transverse keystoning (causing the vertical height of the spectra to change across the sensor), the configuration is furthermore designed to be telecentric by a suitable choice of the lens separation. The lens configuration is built almost entirely from commercial off-the-shelf components, which allowed it to be assembled and aligned relatively rapidly to meet the deadline for in-vessel calibration in the JET shutdown.

  • 143. Hawkes, N. C.
    et al.
    Stratton, B. C.
    Tala, T.
    Challis, C. D.
    Conway, G.
    DeAngelis, R.
    Giroud, C.
    Hobirk, J.
    Joffrin, E.
    Lomas, P.
    Lotte, P.
    Mailloux, J.
    Mazon, D.
    Rachlew, Elisabeth
    KTH, Tidigare Institutioner                               , Fysik.
    Reyes-Cortes, S.
    Solano, E.
    Zastrow, K. D.
    Observation of zero current density in the core of JET discharges with lower hybrid heating and current drive2001Inngår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 8711, nr 11, s. art. no.-115001Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Simultaneous current ramping and application of lower hybrid heating and current drive (LHCD) have produced a region with zero current density within measurement errors in the core (r/a less than or equal to 0.2) of JET tokamak optimized shear discharges. The reduction of core current density is consistent with a simple physical explanation and numerical simulations of radial current diffusion including the effects of LHCD. However, the core current density is clamped at zero, indicating the existence of a physical mechanism which prevents it from becoming negative.

  • 144.
    Hedqvist, Anders
    et al.
    KTH, Tidigare Institutioner, Fysik.
    O'Mullane, Martin
    Nordquist, Jonas
    KTH, Tidigare Institutioner, Fysik.
    Rachlew-Källne, Elisabeth
    KTH, Tidigare Institutioner, Fysik.
    Zastrow, Klaus-Dieter
    JET Joint Undertaking, United Kingdom .
    Contributions of thermal charge exchange excitation to the Rydberg series of Cl16+2000Inngår i: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455, Vol. 33, nr 3, s. 375-382Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Spectra from the Rydberg series 1s-np for the principal quantum numbers n greater than or equal to 8 of Cl16+ are observed on the JET tokamak. Individual lines up to n = 15 are resolved. The line intensity of n = 10 is enhanced, relative to the underlying 1/n(3) scaling, due to charge exchange collisions with neutral deuterium in the ground state. The observations are compared with predictions based on available partial charge exchange cross section data. There is generally good agreement, however, some details of the predicted n-shell distribution are different from those observed in the experiment.

  • 145. Heinola, K.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    et al.,
    Experience on divertor fuel retention after two ITER-Like Wall campaigns2017Inngår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T170, artikkel-id 014063Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The JET ITER-Like Wall experiment, with its all-metal plasma-facing components, provides a unique environment for plasma and plasma-wall interaction studies. These studies are of great importance in understanding the underlying phenomena taking place during the operation of a future fusion reactor. Present work summarizes and reports the plasma fuel retention in the divertor resulting from the two first experimental campaigns with the ITER-Like Wall. The deposition pattern in the divertor after the second campaign shows same trend as was observed after the first campaign: highest deposition of 10-15 mu m was found on the top part of the inner divertor. Due to the change in plasma magnetic configurations from the first to the second campaign, and the resulted strike point locations, an increase of deposition was observed on the base of the divertor. The deuterium retention was found to be affected by the hydrogen plasma experiments done at the end of second experimental campaign.

  • 146. Heinola, K.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    et al.,
    Long-term fuel retention and release in JET ITER-Like Wall at ITER-relevant baking temperatures2017Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, nr 8, artikkel-id 086024Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The fuel outgassing efficiency from plasma-facing components exposed in JET-ILW has been studied at ITER-relevant baking temperatures. Samples retrieved from the W divertor and Be main chamber were annealed at 350 and 240 degrees C, respectively. Annealing was performed with thermal desoprtion spectrometry (TDS) for 0, 5 and 15 h to study the deuterium removal effectiveness at the nominal baking temperatures. The remained fraction was determined by emptying the samples fully of deuterium by heating W and Be samples up to 1000 and 775 degrees C, respectively. Results showed the deposits in the divertor having an increasing effect to the remaining retention at temperatures above baking. Highest remaining fractions 54 and 87% were observed with deposit thicknesses of 10 and 40 mu m, respectively. Substantially high fractions were obtained in the main chamber samples from the deposit-free erosion zone of the limiter midplane, in which the dominant fuel retention mechanism is via implantation: 15 h annealing resulted in retained deuterium higher than 90%. TDS results from the divertor were simulated with TMAP7 calculations. The spectra were modelled with three deuterium activation energies resulting in good agreement with the experiments.

  • 147.
    Helou, W.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    ITER-like antenna capacitors voltage probes: Circuit/electromagnetic calculations and calibrations2016Inngår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, nr 10, artikkel-id 104705Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The analyses illustrated in this manuscript have been performed in order to provide the required data for the amplitude-and-phase calibration of the D-dot voltage probes used in the ITER-like antenna at the Joint European Torus tokamak. Their equivalent electrical circuit has been extracted and analyzed, and it has been compared to the one of voltage probes installed in simple transmission lines. A radio-frequency calibration technique has been formulated and exact mathematical relations have been derived. This technique mixes in an elegant fashion data extracted from measurements and numerical calculations to retrieve the calibration factors. The latter have been compared to previous calibration data with excellent agreement proving the robustness of the proposed radio-frequency calibration technique. In particular, it has been stressed that it is crucial to take into account environmental parasitic effects. A low-frequency calibration technique has been in addition formulated and analyzed in depth. The equivalence between the radio-frequency and low-frequency techniques has been rigorously demonstrated. The radio-frequency calibration technique is preferable in the case of the ITER-like antenna due to uncertainties on the characteristics of the cables connected at the inputs of the voltage probes. A method to extract the effect of a mismatched data acquisition system has been derived for both calibration techniques. Finally it has been outlined that in the case of the ITER-like antenna voltage probes can be in addition used to monitor the currents at the inputs of the antenna.

  • 148. Hender, T. C.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    et al.,
    The role of MHD in causing impurity peaking in JET hybrid plasmas2016Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, nr 6, artikkel-id 066002Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In hybrid plasma operation in JET with its ITER-like wall (JET-ILW) it is found that n > 1 tearing activity can significantly enhance the rate of on-axis peaking of high-Z impurities, which in turn significantly degrades discharge performance. Core n = 1 instabilities can be beneficial in removing impurities from the plasma core (e.g. sawteeth or fishbones), but can conversely also degrade core confinement (particularly in combination with simultaneous n = 3 activity). The nature of magnetohydrodynamic instabilities in JET hybrid discharges, with both its previous carbon wall and subsequent JET-ILW, is surveyed statistically and the character of the instabilities is examined. Possible qualitative models for how the n > 1 islands can enhance the on-axis impurity transport accumulation processes are presented.

  • 149.
    Hillesheim, J. C.
    et al.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak2016Inngår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, nr 6, artikkel-id 065002Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge E-r. We observe fine-scale spatial structures in the edge E-r well with a wave number k(r rho i) approximate to 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while below the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.

  • 150.
    Ho, A.
    et al.
    DIFFER Dutch Inst Fundamental Energy Res, Eindhoven, Netherlands..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Application of Gaussian process regression to plasma turbulent transport model validation via integrated modelling2019Inngår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 5, artikkel-id 056007Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper outlines an approach towards improved rigour in tokamak turbulence transport model validation within integrated modelling. Gaussian process regression (GPR) techniques were applied for profile fitting during the preparation of integrated modelling simulations allowing for rigourous sensitivity tests of prescribed initial and boundary conditions as both fit and derivative uncertainties are provided. This was demonstrated by a JETTO integrated modelling simulation of the JET ITER-like-wall H-mode baseline discharge #92436 with the QuaLiKiz quasilinear turbulent transport model, which is the subject of extrapolation towards a deuterium-tritium plasma. The simulation simultaneously evaluates the time evolution of heat, particle, and momentum fluxes over similar to 10 confinement times, with a simulation boundary condition at rho(tor) = 0.85. Routine inclusion of momentum transport prediction in multi-channel flux-driven transport modelling is not standard and is facilitated here by recent developments within the QuaLiKiz model. Excellent agreement was achieved between the fitted and simulated profiles for n(e), T-e, T-i, and Omega(tor) within 2 sigma, but the simulation underpredicts the mid-radius Ti and overpredicts the core n(e) and T-e profiles for this discharge. Despite this, it was shown that this approach is capable of deriving reasonable inputs, including derivative quantities, to tokamak models from experimental data. Furthermore, multiple figures-of-merit were defined to quantitatively assess the agreement of integrated modelling predictions to experimental data within the GPR profile fitting framework.

1234567 101 - 150 of 448
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf