Ändra sökning
Avgränsa sökresultatet
1234567 101 - 150 av 380
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 101.
    Cufar, Aljaz
    et al.
    Jozef Stefan Inst, Reactor Phys Dept, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia.;EUROfus Consortium, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Vallejos, Pablo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushan
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Calculations to support JET neutron yield calibration: Modelling of neutron emission from a compact DT neutron generator2017Ingår i: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 847, s. 199-204Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    At the Joint European Torus (JET) the ex-vessel fission chambers and in-vessel activation detectors are used as the neutron production rate and neutron yield monitors respectively. In order to ensure that these detectors produce accurate measurements they need to be experimentally calibrated. A new calibration of neutron detectors to 14 MeV neutrons, resulting from deuterium tritium (DT) plasmas, is planned at JET using a compact accelerator based neutron generator (NG) in which a D/T beam impinges on a solid target containing T/D, producing neutrons by DT fusion reactions. This paper presents the analysis that was performed to model the neutron source characteristics in terms of energy spectrum, angle energy distribution and the effect of the neutron generator geometry. Different codes capable of simulating the accelerator based DT neutron sources are compared and sensitivities to uncertainties in the generator's internal structure analysed. The analysis was performed to support preparation to the experimental measurements performed to characterize the NG as a calibration source. Further extensive neutronics analyses, performed with this model of the NG, will be needed to support the neutron calibration experiments and take into account various differences between the calibration experiment and experiments using the plasma as a source of neutrons.

  • 102.
    Curuia, Marian
    et al.
    Inst Atom Phys, Magurele, Ilfov, Romania..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Upgrade of the tangential gamma-ray spectrometer beam-line for JET DT experiments2017Ingår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 123, s. 749-753Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The JET tangential gamma-ray spectrometer is undergoing an extensive upgrade in order to make it compatible with the forthcoming deuterium-tritium (DT) experiments. The paper presents the results of the design for the main components for the upgrade of the spectrometer beam-line: tandem collimators, gamma-ray shields, and neutron attenuators. The existing tandem collimators will be upgraded by installing two additional collimator modules. Two gamma-ray shields will define the gamma-ray field of-view at the detector end of the spectrometer line-of-sight. A set of three lithium hydride neutron attenuators will be used to control the level of the fast neutron flux on the gamma-ray detector. The design of the upgraded spectrometer beam-line has been supported by extensive radiation (neutron and photon) transport calculations using both large volume and point radiation sources.

  • 103.
    Dal Molin, A.
    et al.
    Univ Milano Bicocca, Dipartimento Fis G Occhialini, Milan, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Development of a new compact gamma-ray spectrometer optimised for runaway electron measurements2018Ingår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 89, nr 10, artikel-id 10I134Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A new compact gamma-ray spectrometer was developed in order to optimise the measurement of bremsstrahlung radiation emitted from runaway electrons in the MeV range. The detector is based on a cerium doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) scintillator coupled to a silicon photomultiplier and is insensitive to magnetic fields. Adedicated electronic board was developed to optimise the signal readout as well as for online control of the device. The detector combines a dynamic range up to 10 MeV with moderate energy non-linearity, counting rate capabilities in excess of 1 MHz, and an energy resolution that extrapolates to a few % in the MeV range, thus meeting the requirements for its application to runaway electron studies by bremsstrahlung measurements in the gamma-ray energy range.

  • 104.
    Darby-Lewis, D.
    et al.
    UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England..
    Tennyson, J.
    UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Synthetic spectra of BeH, BeD and BeT for emission modeling in JET plasmas2018Ingår i: Journal of Physics B: Atomic, Molecular and Optical Physics, ISSN 0953-4075, E-ISSN 1361-6455, Vol. 51, nr 18, artikel-id 185701Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A theoretical model for isotopologues of beryllium monohydride, BeH, BeD and BeT, A (2)Pi to X (2)Sigma(+) visible and X (2)Sigma(+) to X (2)Sigma(+) infrared rovibronic spectra is presented. The MARVEL procedure is used to compute empirical rovibronic energy levels for BeH, BeD and BeT, using experimental transition data for the X (2)Sigma(+), A (2)Pi, and C (2)Sigma(+) states. The energy levels from these calculations are then used in the program Duo to produce a potential energy curve for the ground state, X (2)Sigma, and to fit an improved potential energy curve for the first excited state, A (2)Pi, including a spin-orbit coupling term, a A-doubling state to state (A-X states) coupling term, and Born-Oppenheimer breakdown terms for both curves. These, along with a previously computed ab initio dipole curve for the X and A states are used to generate vibrational-rotational wavefunctions, transition energies and A-values. From the transition energies and Einstein coefficients, accurate assigned synthetic spectra for BeH and its isotopologues are obtained at given rotational and vibrational temperatures. The BeH spectrum is compared with a high resolution hollow-cathode lamp spectrum and the BeD spectrum with high resolution spectra from JET giving effective vibrational and rotational temperatures. Full A-X and X-X line lists are given for BeH, BeD and BeT and provided as supplementary data on the ExoMol website.

  • 105. de la Luna, E.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    et al.,
    Understanding the physics of ELM pacing via vertical kicks in JET in view of ITER2016Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, nr 2, artikel-id 026001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Experiments on JET, with both the previous carbon wall (JET-C) and the new Be/W wall (JET-ILW), have demonstrated the efficacy of using a fast vertical plasma motion (known as vertical kicks in JET) for active ELM control. In this paper we report on a series of experiments that have been recently conducted in JET-ILW with the goal of further improving the physics understanding of the processes governing the triggering of ELMs via vertical kicks. This is a necessary step to confidently extrapolate this ELM control method to ITER. Experiments have shown that ELMs can be reliably triggered provided a minimum vertical plasma displacement and velocity is imposed. The magnitude of the minimum displacement depends on the plasma parameters, being smaller for higher pedestal temperatures and lower collisionalities, which is encouraging in view of ITER. Modelling and stability analysis suggest that a localized current density induced by the vertical plasma movement close to the separatrix plays a major role in the ELM triggering mechanism, which is consistent with the experimental observations. The implications of these results for the extrapolation of this ELM control scheme to ITER are discussed.

  • 106. de Vries, P. C.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    et al.,
    Scaling of the MHD perturbation amplitude required to trigger a disruption and predictions for ITER2016Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, nr 2, artikel-id 026007Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The amplitude of locked instabilities, likely magnetic islands, seen as precursors to disruptions has been studied using data from the JET, ASDEX Upgrade and COMPASS tokamaks. It was found that the thermal quench, that often initiates the disruption, is triggered when the amplitude has reached a distinct level. This information can be used to determine thresholds for simple disruption prediction schemes. The measured amplitude in part depends on the distance of the perturbation to the measurement coils. Hence the threshold for the measured amplitude depends on the mode location (i.e. the rational q-surface) and thus indirectly on parameters such as the edge safety factor, q(95), and the internal inductance, li(3), that determine the shape of the q-profile. These dependencies can be used to set the disruption thresholds more precisely. For the ITER baseline scenario, with typically q(95) = 3.2, li(3) = 0.9 and taking into account the position of the measurement coils on ITER, the maximum allowable measured locked mode amplitude normalized to engineering parameters was estimated to be a.B-ML(r

  • 107.
    de Vries, P. C.
    et al.
    ITER Org, Route Vinon Verdon, St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Multi-machine analysis of termination scenarios with comparison to simulations of controlled shutdown of ITER discharges2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 2, artikel-id 026019Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To improve our understanding of the dynamics and control of ITER terminations, a study has been carried out on data from existing tokamaks. The aim of this joint analysis is to compare the assumptions for ITER terminations with the present experience basis. The study examined the parameter ranges in which present day devices operated during their terminations, as well as the dynamics of these parameters. The analysis of a database, built using a selected set of experimental termination cases, showed that, the H-mode density decays slower than the plasma current ramp-down. The consequential increase in f(GW) limits the duration of the H-mode phase or result in disruptions. The lower temperatures after the drop out of H-mode will allow the plasma internal inductance to increase. But vertical stability control remains manageable in ITER at high internal inductance when accompanied by a strong elongation reduction. This will result in ITER terminations remaining longer at low q (q(95) similar to 3) than most present-day devices during the current ramp-down. A fast power ramp-down leads to a larger change in beta(P) at the H-L transition, but the experimental data showed that these are manageable for the ITER radial position control. The analysis of JET data shows that radiation and impurity levels significantly alter the H-L transition dynamics. Self-consistent calculations of the impurity content and resulting radiation should be taken into account when modelling ITFR termination scenarios. The results from this analysis can be used to better prescribe the inputs for the detailed modelling and preparation of ITER termination scenarios.

  • 108.
    Delabie, E.
    et al.
    EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Annan organisation.
    et al.,
    In situ wavelength calibration of the edge CXS spectrometers on JET2016Ingår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, nr 11, artikel-id 11E525Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A method for obtaining an accurate wavelength calibration over the entire focal plane of the JET edge CXS spectrometers is presented that uses a combination of the fringe pattern created with a Fabry-Perot etalon and a neon lamp for cross calibration. The accuracy achieved is 0.03 angstrom, which is the same range of uncertainty as when neglecting population effects on the rest wavelength of the CX line. For the edge CXS diagnostic, this corresponds to a flow velocity of 4.5 km/s in the toroidal direction or 1.9 km/s in the poloidal direction.

  • 109.
    Denis, J.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henrik
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, S.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, P
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zhou, Y
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Dynamic modelling of local fuel inventory and desorption in the whole tokamak vacuum vessel for auto-consistent plasma-wall interaction simulations2019Ingår i: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 19, s. 550-557Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An extension of the SolEdge2D-EIRENE code package, named D-WEE, has been developed to add the dynamics of thermal desorption of hydrogen isotopes from the surface of plasma facing materials. To achieve this purpose, D-WEE models hydrogen isotopes implantation, transport and retention in those materials. Before launching autoconsistent simulation (with feedback of D-WEE on SolEdge2D-EIRENE), D-WEE has to be initialised to ensure a realistic wall behaviour in terms of dynamics (pumping or fuelling areas) and fuel content. A methodology based on modelling is introduced to perform such initialisation. A synthetic plasma pulse is built from consecutive SolEdge2D-EIRENE simulations. This synthetic pulse is used as a plasma background for the D-WEE module. A sequence of plasma pulses is simulated with D-WEE to model a tokamak operation. This simulation enables to extract at a desired time during a pulse the local fuel inventory and the local desorption flux density which could be used as initial condition for coupled plasma-wall simulations. To assess the relevance of the dynamic retention behaviour obtained in the simulation, a confrontation to post-pulse experimental pressure measurement is performed. Such confrontation reveals a qualitative agreement between the temporal pressure drop obtained in the simulation and the one observed experimentally. The simulated dynamic retention during the consecutive pulses is also studied.

  • 110.
    Devynck, P.
    et al.
    CEA IRFM, F-13108 St Paul Les Durance, France.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Scaling of the frequencies of the type one edge localized modes and their effect on the tungsten source in JET ITER-like wall2016Ingår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 58, nr 12, artikel-id 125014Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A database of 250 pulses taken randomly during the experimental campaigns of JET with the ITER-like wall (ILW) is used to study the frequency dependences of the type I edge localized modes (ELM). A scaling of the ELM frequency is presented as a function of the pedestal density drop dN(ped) and a very simple model to interpret this scaling is discussed. In this model, the frequency of the ELMs is governed by the time needed by the neutral flux to refill the density of the pedestal. The filling rate is the result of a small imbalance between the neutral flux filling the pedestal and the outward flux that expels the particles to the SOL. The ELM frequency can be governed by such a mechanism if the recovery time of the temperature of the pedestal in JET occurs before or at the same time as the one of the density. This is observed to be the case. An effect of the fuelling is measured when the number of injected particles is less than 1 x 10(22) particles s(-1). In that case an increase of the inter-ELM time is observed which is related to the slower recovery of the density pedestal. Additionally, a scaling is found for the source of tungsten during the ELMs. The number of tungsten atoms eroded by the ELMs per second is proportional to dNped multiplied by the ELM frequency. This is possible only if the tungsten sputtering yield is independent of the energy of the impinging particle hitting the divertor. This result is in agreement with Guillemault et al (2015 Plasma Phys. Control. Fusion 57 085006) and is compatible with the D+ ions hitting the divertor having energies above 2 keV. Finally, by plotting the W-content/W-source ratio during ELM crash, a global decreasing behaviour with the ELM frequency is found. However at frequencies below 40 Hz a scatter towards upper values is found. This scatter is found to correlate with the gas injection level. In a narrow ELM frequency band around 20 Hz, it is found that both the ratio W-content/W-source and W-source decrease with the gas injection.

  • 111.
    Ding, B. J.
    et al.
    Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Ratynskaia, Svetlana V.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Vallejos Olivares, Pablo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zhou, Y.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Review of recent experimental and modeling advances in the understanding of lower hybrid current drive in ITER-relevant regimes2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 9, artikel-id 095003Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Progress in understanding lower hybrid current drive (LHCD) at high density has been made through experiments and modeling, which is encouraging given the need for an efficient off-axis current profile control technique in burning plasma. By reducing the wall recycling of neutrals, the edge temperature is increased and the effect of parametric instability (PI) and collisional absorption (CA) is reduced, which is beneficial for increasing the current drive efficiency. Strong single pass absorption is preferred to prevent CA and high LH operating frequency is essential for wave propagation to the core region at high density, presumably to mitigate the effect of PI. The dimensionless parameter that characterizes LH wave accessibility and wave refraction for the experiments in this joint study is shown to bracket the region in parameter space where ITER LHCD experiments will operate in the steady state scenario phase. Further joint experiments and cross modeling are necessary to understand the LHCD physics in weak damping regimes which would increase confidence in predictions for ITER where the absorption is expected to be strong.

  • 112.
    Doerk, H.
    et al.
    Culham Sci Ctr, EUROfus Consortium, JET, Abingdon OX14 3DB, Oxon, England.;Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Gyrokinetic study of turbulence suppression in a JET-ILW power scan2016Ingår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 58, nr 11, artikel-id 115005Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    For exploring tokamak operation regimes that deliver both high beta and good energy confinement, power scans at JET with ITER-like wall have been performed. Relatively weak degradation of the confinement time coincides with increased core temperature of the ions at high power. The changes in core turbulence characteristics during a power scan with an optimized (broad) q profile are analyzed by means of nonlinear gyrokinetic simulations. The increase in beta is crucial for stabilizing ion temperature gradient driven turbulence, accompanied by increased ion to electron temperature ratio, the presence of a dynamic fast ion species, as well as the geometric stabilization by increased thermal and suprathermal pressure. A sensitivity study with respect to the q profile reveals that electromagnetic effects are more pronounced at larger values of q. Further, it is confirmed that turbulence suppression due to rotation becomes less effective in such strongly electromagnetic systems. Electrostatic simplified models may thus perform well in present-day devices, in which high beta is often correlated with high rotation, but provide poor extrapolation towards low rotation devices. Implications for ITER and reactor plasmas are discussed.

  • 113.
    Donne, A. J. H.
    et al.
    EUROfus Consortium, JET, Culham Sci Ctr, Programme Management Unit, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Risk Mitigation for ITER by a Prolonged and Joint International Operation of JET2016Ingår i: Journal of fusion energy, ISSN 0164-0313, E-ISSN 1572-9591, Vol. 35, nr 1, s. 85-93Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Prolonged operation of the Joint European Torus (JET) in a set-up involving all ITER partners will be beneficial for ITER. Experiments at JET with its ITER-like wall and using a D-T plasma mixture will help to mitigate risks in the ITER research plan. Training of the ITER operators, technicians and engineers at JET will safe valuable time when ITER comes into operation. Moreover, the way in which the future ITER experiments will be organized can already be experienced at JET, by imposing a similar organisational structure. This paper will present arguments in favour of an extension of JET and additionally briefly discuss a number of enhancements that will make experiments on JET even more relevant for ITER.

  • 114.
    Drake, James Robert
    et al.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Brunsell, Per R.
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Yadikin, Dmitriy
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Cecconello, Marco
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hedqvist, Anders
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Kuldkepp, Mattias
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Menmuir, Sheena
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Experiments on feedback control of multiple resistive wall modes comparing different active coil arrays and sensor types2006Ingår i: IAEA-F1-CN-149, 2006, s. Paper EX/P8-11-Konferensbidrag (Refereegranskat)
  • 115.
    Drenik, A.
    et al.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Slovenian Fusion Assoc, Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Evaluation of the plasma hydrogen isotope content by residual gas analysis at JET and AUG2017Ingår i: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T170, artikel-id 014021Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The isotope content of the plasma reflects on the dynamics of isotope changeover experiments, efficiency of wall conditioning and the performance of a fusion device in the active phase of operation. The assessment of the isotope ratio of hydrogen and methane molecules is used as a novel method of assessing the plasma isotope ratios at JET and ASDEX-Upgrade (AUG). The isotope ratios of both molecules in general shows similar trends as the isotope ratio detected by other diagnostics. At JET, the absolute values of RGA signals are in relatively good agreement with each other and with spectroscopy data, while at AUG the deviation from neutral particle analyser data are larger, and the results show a consistent spatial distribution of the isotope ratio. It is further shown that the isotope ratio of the hydrogen molecule can be used to study the degree of dissociation of the injected gas during changeover experiments.

  • 116.
    Dumortier, P.
    et al.
    LPP, ERM KMS, TEC Partner, B-1000 Brussels, Belgium.;CCFE, Culham Sci Ctr, Abingdon, Oxon, England.;Koninklijke Militaire Sch Ecole Royale Militaire, Lab Plasma Phys, B-1000 Brussels, Belgium..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Commissioning and first results of the reinstated JET ICRF ILA2017Ingår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 123, s. 285-288Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The JET ICRF ITER-like Antenna (ILA) has been operated at 33,42 and 47 MHz in 2008-2009 but stopped operation in 2009 due to the failure of one of the tuning capacitors inside the antenna. Tests on a spare capacitor showed that a micro-leak was caused by the cycle wear of a capacitor's internal bellows. The ILA was reinstated with a new operating scheme minimizing the full stroke requests of the capacitor. This contribution gives an overview of the works undertaken to reinstate the JET ILA up to the first results on plasma. The capacitors were replaced and high voltage tests of the capacitors were performed. An extensive calibration of all the measurements in the RF circuit was carried out. New simulation tools were created and control algorithms were implemented for the - toroidal and poloidal - phase control of the array as well as for the matching of the second stage. New protections are being implemented for the thermal and voltage protection of the capacitors. Low voltage matching tests were performed before the high power commissioning. Finally the first results on plasma are presented, showing that the new controls allow extending the range of the operation to lower (29 MHz) and higher (51 MHz) frequencies than previously achieved.

  • 117.
    Eich, T.
    et al.
    Max Planck Inst Plasma Phys, Garching, Germany..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Eich, Th.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas Joe
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    ELM divertor peak energy fluence scaling to ITER with data from JET, MAST and ASDEX upgrade2017Ingår i: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 12, s. 84-90Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A newly established scaling of the ELM energy fluence using dedicated data sets from JET operation with CFC & ILW plasma facing components (PFCs), ASDEX Upgrade (AUG) operation with both CFC and full-W PFCs and MAST with CFC walls has been generated. The scaling reveals an approximately linear dependence of the peak ELM energy with the pedestal top electron pressure and with the minor radius; a square root dependence is seen on the relative ELM loss energy. The result of this scaling gives a range in parallel peak ELM energy fluence of 10-30 MJm(-2) for ITER Q = 10 operation and 2.5-7.5 MJm(-2) for intermediate ITER operation at 7.5 MA and 2.65 T. These latter numbers are calculated using a numerical regression (epsilon(II) = 0.28 MJ/m(2) n(e)(0.75) T-e(1) Delta E-ELM(0.5) R-1(geo)). A simple model for ELM induced thermal load is introduced, resulting in an expression for the ELM energy fluence of epsilon(II) congruent to 6 pi p(e) R-geo q(edge). The relative ELM loss energy in the data is between 2-10% and the ELM energy fluence varies within a range of 10(0.5) similar to 3 consistently for each individual device. The so far analysed power load database for ELM mitigation experiments from JET-EFCC and Kicks, MAST-RMP and AUG-RMP operation are found to be consistent with both the scaling and the introduced model, ie not showing a further reduction with respect to their pedestal pressure. The extrapolated ELM energy fluencies are compared to material limits in ITER and found to be of concern.

  • 118.
    Eich, T.
    et al.
    Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 3, artikel-id 034001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position alpha(sep) increases about linearly with the separatrix density normalized to Greenwald density, n(e,sep)/n(GW) for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n(e,sep)/n(GW) approximate to 0.4-0.5 at values for alpha(sep) approximate to 2-2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.

  • 119.
    Eriksson, F.
    et al.
    Chalmers Univ Technol, SE-41296 Gothenburg, Sweden.;Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, S.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, P
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zhou, Y
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Impact of fast ions on density peaking in JET: fluid and gyrokinetic modeling2019Ingår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, nr 7, artikel-id 075008Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position rho(t) = 0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile.

  • 120.
    Eriksson, F.
    et al.
    Chalmers Univ Technol, SE-41296 Gothenburg, Sweden.;EUROfus Consortium JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Chalmers Univ Technol, Dept Space Earth & Environm, SE-41296 Gothenburg, Sweden..
    Bergsåker, Henrik
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Fridström, Richard
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Moon, Sunwoo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, P
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zhou, Y
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I
    EUROfus Consortium JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Natl Ctr Nucl Res NCBJ, PL-05400 Otwock, Poland..
    et al,
    Interpretative and predictive modelling of Joint European Torus collisionality scans2019Ingår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, nr 11, artikel-id 115004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as (E)over-right-arrow x (b)over-right-arrow shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.

  • 121.
    Eriksson, J.
    et al.
    Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden.;Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Measuring fast ions in fusion plasmas with neutron diagnostics at JET2019Ingår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, nr 1, artikel-id 014027Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fast ions in fusion plasmas often leave characteristic signatures in the neutron emission from the plasma. In this paper, we show how neutron measurements can be used to study fast ions and give examples of physics results obtained on present day tokamaks. The focus is on measurements with dedicated neutron spectrometers and with compact neutron detectors used in each channel of neutron profile monitors. A measured neutron spectrum can be analyzed in several different ways, depending on the physics scenario under consideration. Gross features of a fast ion energy distribution can be studied by applying suitably chosen thresholds to the measured spectrum, thus probing ions with different energies. With this technique it is possible to study the interaction between fast ions and MHD activity, such as toroidal Alfven eigenmodes (TAEs) and sawtooth instabilities. Quantitative comparisons with modeling can be performed by a direct computation of the neutron emission expected from a given fast ion distribution. Within this framework it is also possible to determine physics parameters, such as the supra-thermal fraction of the neutron emission, by fitting model parameters to the data. A detailed, model-independent estimate of the fast ion distribution can be obtained by analyzing the data in terms of velocity space weight functions. Using this method, fast ion distributions can be resolved in both energy and pitch by combining neutron and gamma-ray measurements obtained along several different sightlines. Fast ion measurements of the type described in this paper will also be possible at ITER, provided that the spectrometers have the dynamic range required to resolve the fast ion spectral features in the presence of the dominating thermonuclear neutron emission. A dedicated high-resolution neutron spectrometer has been designed for this purpose.

  • 122.
    Faugeras, Blaise
    et al.
    Univ Cote dAzur, CNRS, INRIA, Lab JA Dieudonne, Parc Valrose, F-06108 Nice 2, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Equilibrium reconstruction at JET using Stokes model for polarimetry2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 10, artikel-id 106032Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents the first application to real JET data of the new equilibrium code NICE which enables the consistent resolution of the inverse equilibrium reconstruction problem in the framework of non-linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry. The conducted numerical experiments enable first of all to validate NICE by comparing it to the well-established EFIT code on 4 selected high performance shots. Secondly the results indicate that the fit to polarimetry measurements clearly benefits from the use of Stokes vector measurements compared to the classical case of Faraday measurements, and that the reconstructed p' and ff' profiles are better constrained with smaller error bars and are closer to the profiles reconstructed by EFTM, the EFIT JET code using internal MSE constraints.

  • 123.
    Felici, F.
    et al.
    Eindhoven Univ Technol, Dept Mech Engn, Control Syst Technol Grp, POB 513, NL-5600 MB Eindhoven, Netherlands.;Ecole Polytech Fed Lausanne, SPC, CH-1015 Lausanne, Switzerland..
    Bergsåker, Henrik
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, S
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zhou, Y
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 9, artikel-id 096006Artikel i tidskrift (Refereegranskat)
  • 124. Ferreira, Diogo R.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Robust regression with CUDA and its application to plasma reflectometry2015Ingår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 86, nr 11, artikel-id 113507Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In many applications, especially those involving scientific instrumentation data with a large experimental error, it is often necessary to carry out linear regression in the presence of severe outliers which may adversely affect the results. Robust regression methods do exist, but they are much more computationally intensive, making it difficult to apply them in real-time scenarios. In this work, we resort to graphics processing unit (GPU)-based computing to carry out robust regression in a time-sensitive application. We illustrate the results and the performance gains obtained by parallelizing one of the most common robust regression methods, namely, least median of squares. Although the method has a complexity of O(n(3) log n), with GPU computing, it is possible to accelerate it to the point that it becomes usable within the required time frame. In our experiments, the input data come from a plasma diagnostic system installed at Joint European Torus, the largest fusion experiment in Europe, but the approach can be easily transferred to other applications.

  • 125. Field, A. R.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    et al.,
    Dynamics and stability of divertor detachment in H-mode plasmas on JET2017Ingår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, nr 9, artikel-id 095003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The dynamics and stability of divertor detachment in N-2 seeded, type-I, ELMy H-mode plasmas with dominant NBI heating in the JET ITER-like wall device is studied by means of an integrated analysis of diagnostic data from several systems, classifying data relative to the ELM times. It is thereby possible to study the response of the detachment evolution to the control parameters (SOL input power, upstream density and impurity fraction) prevailing during the inter-ELM periods and the effect of ELMs on the detached divertor. A relatively comprehensive overview is achieved, including the interaction with the targets at various stages of the ELM cycle, the role of ELMs in affecting the detachment process and the overall performance of the scenario. The results are consistent with previous studies in devices with an ITER-like, metal wall, with the important advance of distinguishing data from intra-and inter-ELM periods. Operation without significant degradation of the core confinement can be sustained in the presence of strong radiation from the x-point region (MARFE).

  • 126.
    Figueiredo, J.
    et al.
    Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon, Oxon, England.;Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal.;Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England.;Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    JET diagnostic enhancements in preparation for DT operations2016Ingår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, nr 11, artikel-id 11D443Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In order to complete the exploitation of the JET ITER-like Wall and to take full benefit from deuterium-tritium experiments on JET, a set of diagnostic system refurbishments or upgrades is in progress. These diagnostic enhancements focus mainly on neutron, gamma, fast ions, instabilities, and operations support. These efforts intend to provide better spatial, temporal, and energy resolution while increasing measurement coverage. Also previously non-existing capabilities, such as Doppler reflectometry is now available for scientific exploitation. Guaranteeing diagnostic reliability and consistency during the expected DT conditions is also a critical objective of the work and systems being implemented. An overview of status and scope of the ongoing projects is presented.

  • 127. Figueiredo, J.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    JET diagnostic enhancements testing and commissioning in preparation for DT scientific campaigns2018Ingår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 89, nr 10, artikel-id 10K119Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In order to optimize the scientific exploitation of JET (Joint European Torus) during the upcoming deuterium-tritium experiments, a set of diagnostic systems is being enhanced. These upgrades focus mainly on the experimental and operational conditions expected during tritium campaigns. It should be stressed that measurements relevant for burning plasmas are specifically targeted. Previously non-available capabilities, such as a current measurement system fully covering all poloidal field circuits, are described in detail. Instrument descriptions, performance prediction, testing, and initial commissioning results of these systems are presented.

  • 128.
    Fil, A.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET2015Ingår i: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 22, nr 6, artikel-id 062509Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    JOREK 3D non-linear MHD simulations of a D-2 Massive Gas Injection (MGI) triggered disruption in JET are presented and compared in detail to experimental data. The MGI creates an overdensity that rapidly expands in the direction parallel to the magnetic field. It also causes the growth of magnetic islands (m/n = 2/1 and 3/2 mainly) and seeds the 1/1 internal kink mode. O-points of all island chains (including 1/1) are located in front of the MGI, consistently with experimental observations. A burst of MHD activity and a peak in plasma current take place at the same time as in the experiment. However, the magnitude of these two effects is much smaller than in the experiment. The simulated radiation is also much below the experimental level. As a consequence, the thermal quench is not fully reproduced. Directions for progress are identified. Radiation from impurities is a good candidate.

  • 129.
    Fitzgerald, M.
    et al.
    JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Full-orbit and drift calculations of fusion product losses due to explosive fishbones on JET2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 1, artikel-id 016004Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fishbones are ubiquitous in high-performance JET plasmas and are typically considered to be unimportant for scenario design. However, during recent high-performance hybrid scenario experiments, sporadic and explosive fishbone oscillations with sawtooth reconnection were observed coinciding with reduced performance and a main chamber hotspot. Fast ion loss diagnostics showed fusion products ejected from the plasma by the fishbones. We present calculations of the perturbed motion of non-resonant fusion products in the presence of fishbones assuming a fixed linear mode structure and frequency. Using careful reconstruction of the equilibrium and measurements of the perturbation, we show that the measured fishbone spatial structure in these experiments can be well modelled as a linear MHD internal kink mode. Both drift and full-orbit calculations predict losses of fusion products at the same location of the observed hotspot, however the calculated energy content of those losses is negligible and cannot be contributing significantly. The fast ions responsible for the hotspot and the reason for their loss both remain unexplained.

  • 130.
    Fonnesu, N.
    et al.
    ENEA, Dept Fus & Nucl Safety Technol, I-00044 Rome, Italy.;Univ Roma Tor Vergata, Dept Ind Engn, Via Politecn 1, I-00133 Rome, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    The preparation of the Shutdown Dose Rate experiment for the next JET Deuterium-Tritium campaign2017Ingår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 123, s. 1039-1043Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The assessment of the Shutdown Dose Rate (SDR) due to neutron activation is a major safety issue for fusion devices and in the last decade several benchmark experiments have been conducted at JET during Deuterium-Deuterium experiments for the validation of the numerical tools used in ITER nuclear analyses. The future Deuterium-Tritium campaign at JET (DTE2) will provide a unique opportunity to validate the codes under ITER-relevant conditions through the comparison between numerical predictions and measured quantities (C/E). For this purpose, a novel SDR experiment, described in the present work, is in preparation in the frame of the WPJET3-NEXP subproject within EUROfusion Consortium. The experimental setup has been accurately designed to reduce measurement uncertainties; spherical air-vented ionization chambers (ICs) will be used for on-line ex-vessel decay gamma dose measurements during JET shutdown following DT operations and activation foils have been selected for measuring the neutron fluence near ICs during operations. Active dosimeters (based on ICs) have been calibrated over a broad energy range (from about 30 keV to 1.3 MeV) with X and gamma reference beam qualities. Neutron irradiation tests confirmed the capability of active dosimeters of performing on-line decay gamma dose rate measurements, to follow gamma dose decay at the end of neutron irradiation as well as insignificant activation of the ICs.

  • 131.
    Fonnesu, N.
    et al.
    ENEA, Dept Fus & Nucl Safety Technol, I-00044 Rome, Italy.;Univ Roma Tor Vergata, Dept Ind Engn, I-00133 Rome, Italy.;ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Shutdown dose rate measurements after the 2016 Deuterium-Deuterium campaign at JET2018Ingår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 136, s. 1348-1353Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The EUROfusion Work Package JET3 programme, established to enable the technological exploitation of the JET experiments over the next years, includes, within the NEXP subproject, a novel Shutdown Dose Rate (SDR) experiment. Considering its ITER-relevance, SDR experiments at JET represent a unique opportunity to validate the numerical tools for ITER nuclear analysis, through the comparison between numerical predictions and measured quantities (C/E). Within this framework, two active gamma dosimeters based on spherical air-vented ionization chambers (ICs) have been installed in ex-vessel positions close to the horizontal ports of the tokamak in Octants 1 and 2. The first JET campaign exploited in the novel SDR experiment is the latest 5-week Deuterium-Deuterium campaign (c36b), which achieved the best results in recent years in terms of high power operation. The present work is dedicated to the analysis of dose rate measurements carried out during this campaign and after shutdown. Proper correction factors are evaluated and applied to the instrument reading, while influence quantities and error sources are analyzed in order to calculate the overall experimental uncertainty.

  • 132.
    Frassinetti, Lorenzo
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bergsåker, Henrik
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, S.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, P
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zhou, Y
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    et al,
    Role of the pedestal position on the pedestal performance in AUG, JET-ILW and TCV and implications for ITER2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 7, artikel-id 076038Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The role of the pedestal position on the pedestal performance has been investigated in AUG, JET-ILW and TCV. When the pedestal is peeling-ballooning (PB) limited, the three machines show a similar behaviour. The outward shift of the pedestal density relative to the pedestal temperature can lead to the outward shift of the pedestal pressure which, in turns, reduces the PB stability, degrades the pedestal confinement and reduces the pedestal width. Once the experimental density position is considered, the EPED model is able to correctly predict the pedestal height. An estimate of the impact of the density position on a ITER baseline scenario shows that the maximum reduction in the pedestal height is 10% while the reduction in the fusion power is between 10% and 40% depending on the assumptions for the core transport model used. In other plasmas, where the pedestal density is shifted even more outwards relative to the pedestal temperature, the pedestal does not seem PB limited and a different behaviour is observed. The outward shift of the density is still empirically correlated with the pedestal degradation but no change in the pressure position is observed and the PB model is not able to correctly predict the pedestal height. On the other hand, the outward shift of the density leads to a significant increase of eta(e) and eta(i) (where eta(e,i) is the ratio of density to temperature scale lengths, eta(e,i) = L-eta e,L-i/L-Te,L-i) which leads to the increase of the growth rate of microinstabilities (mainly ETG and ITG) by 50%. This suggests that, in these plasmas, the increase in the turbulent transport due to the outward shift of the density might play an important role in the decrease of the pedestal performance.

  • 133.
    Gallart, D.
    et al.
    BSC, Barcelona, Spain.;Barcelona Supercomp Ctr, Barcelona, Spain..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and NBI heating2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 10, artikel-id 106037Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    During the 2015-2016 JET campaigns, many efforts have been devoted to the exploration of high-performance plasma scenarios envisaged for DT operation in JET. In this paper, we review various key recent hybrid discharges and model the combined ICRF+NBI heating. These deuterium discharges with deuterium beams had the ICRF antenna frequency tuned to match the cyclotron frequency of minority H at the centre of the tokamak coinciding with the second harmonic cyclotron resonance of D. The modelling takes into account the synergy between ICRF and NBI heating through the second harmonic cyclotron resonance of D beam ions, allowing us to assess its impact on the neutron rate R-NT. For discharges carried out with a fixed ICRF antenna frequency and changing toroidal magnetic field to vary the resonance position, we evaluate the influence of the resonance position on the heating performance and central impurity control. The H concentration is varied between discharges in order to test its role in the heating performance. It is found that discharges with a resonance beyond similar to 0.15 m from the magnetic axis R-0 suffer from MHD activity and impurity accumulation in these plasma conditions. According to our modelling, the ICRF enhancement of R-NT increases with the ICRF power absorbed by deuterons as the H concentration decreases. We find that in the recent hybrid discharges, this ICRF enhancement varies due to a variation of H concentration and is in the range of 10%-25%. The modelling of a recent record high-performance hybrid discharge shows that ICRF fusion yield enhancement of similar to 30% and similar to 15% respectively can be achieved in the ramp-up phase and during the main heating phase. We extrapolate the results to DT and find that the best performing hybrid discharges correspond to an equivalent fusion power of similar to 7.0 MW in DT. Finally, an optimization analysis of the bulk ion heating for the DT scenario reveals around 15%-20% larger bulk ion heating for the He-3 minority scenario as compared to the H minority scenario.

  • 134. Gao, Y.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    et al.,
    Characteristics of pre-ELM structures during ELM control experiment on JET with n=2 magnetic perturbations2016Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 56, nr 9, artikel-id 092011Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Radially propagating pre-ELM (edge localized mode) structures in the heat flux profile on the outer divertor have been observed both with and without magnetic perturbations on Joint European Torus. Recently pre-ELM structures over 80% of the ELM cycle are observed. The effects of n = 2 fields on pre-ELM structures are presented and analysed in detail. Redistribution of the inter-ELM heat load with the appearances of pre-ELM structures suggest that a wider energy wetted area could be achieved by the application of n = 2 fields. The influences of q(95) and gas puffing position on the change of pre-ELM structures are studied. Pre-ELM structures are normally long lived (several milliseconds) and appear consecutively with n = 2 fields, but do not necessarily lead to an ELM crash. The experimental observations suggest that the changed magnetic topology might be a possible explanation for the propagating structures.

  • 135. Garcia, J.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    et al.,
    Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 5, artikel-id 053007Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Extensive linear and non-linear gyrokinetic simulations and linear magnetohydrodynamic (MHD) analyses performed for JET hybrid discharges with improved confinement have shown that the large population of fast ions found in the plasma core under particular heating conditions has a strong impact on core microturbulence and edge MHD by reducing core ion heat fluxes and increasing pedestal pressure in a feedback mechanism. In the case of the ITER like wall, it is shown how this mechanism plays a decisive role for the transition to plasma regimes with improved confinement and it can explain the weak power degradation obtained in dedicated power scans. The mechanism is found to be highly dependent on plasma triangularity as it changes the balance between the improvement in the plasma core and the edge. The feedback mechanism can play a similar role in the ITER hybrid scenario as in the JET discharges analysed due to its high triangularity plasmas and the large amount of fast ions generated in the core by the heating systems and the alpha power.

  • 136. Garcia, J.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    et al.,
    Challenges in the extrapolation from DD to DT plasmas: experimental analysis and theory based predictions for JET-DT2017Ingår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, nr 1, artikel-id 014023Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A strong modelling program has been started in support of the future JET-DT campaign with the aim of guiding experiments in deuterium (D) towards maximizing fusion energy production in Deuterium-Tritium (DT). Some of the key elements have been identified by using several of the most updated and sophisticated models for predicting heat and particle transport, pedestal pressure and heating sources in an integrated modelling framework. For the high beta and low gas operational regime, the density plays a critical role and a trend towards higher fusion power is obtained at lower densities. Additionally, turbulence stabilization by E x B flow shear is shown to generate an isotope effect leading to higher confinement for DT than DD and therefore plasmas with high torque are suitable for maximizing fusion performance. Future JET campaigns will benefit from this modelling activity by defining clear priorities on their scientific program.

  • 137.
    Garcia, J.
    et al.
    Culham Sci Ctr, Eurofus Consortium JET, Abingdon OX14 3DB, Oxon, England. CEA, IRFM, St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    On the universality of power laws for tokamak plasma predictions2018Ingår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, nr 2, artikel-id 025028Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Significant deviations from well established power laws for the thermal energy confinement time, obtained from extensive databases analysis as the IPB98(y, 2), have been recently reported in dedicated power scans. In order to illuminate the adequacy, validity and universality of power laws as tools for predicting plasma performance, a simplified analysis has been carried out in the framework of a minimal modeling for heat transport which is, however, able to account for the interplay between turbulence and collinear effects with the input power known to play a role in experiments with significant deviations from such power laws. Whereas at low powers, the usual scaling laws are recovered with little influence of other plasma parameters, resulting in a robust power low exponent, at high power it is shown how the exponents obtained are extremely sensitive to the heating deposition, the q-profile or even the sampling or the number of points considered due to highly non-linear behavior of the heat transport. In particular circumstances, even a minimum of the thermal energy confinement time with the input power can be obtained, which means that the approach of the energy confinement time as a power law might be intrinsically invalid. Therefore plasma predictions with a power law approximation with a constant exponent obtained from a regression of a broad range of powers and other plasma parameters which can non-linearly affect and suppress heat transport, can lead to misleading results suggesting that this approach should be taken cautiously and its results continuously compared with modeling which can properly capture the underline physics, as gyrokinetic simulations.

  • 138.
    Garcia, J.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;EUROfus Consortium JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henrik
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Fridström, Richard
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, A
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Moon, Sunwoo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, P
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zhou, Y
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I
    EUROfus Consortium JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Natl Ctr Nucl Res NCBJ, PL-05400 Otwock, Poland..
    et al,
    First principles and integrated modelling achievements towards trustful fusion power predictions for JET and ITER2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 8, artikel-id 086047Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Predictability of burning plasmas is a key issue for designing and building credible future fusion devices. In this context, an important effort of physics understanding and guidance is being carried out in parallel to JET experimental campaigns in H and D by performing analyses and modelling towards an improvement of the understanding of DT physics for the optimization of the JET-DT neutron yield and fusion born alpha particle physics. Extrapolations to JET-DT from recent experiments using the maximum power available have been performed including some of the most sophisticated codes and a broad selection of models. There is a general agreement that 11-15 MW of fusion power can be expected in DT for the hybrid and baseline scenarios. On the other hand, in high beta, torque and fast ion fraction conditions, isotope effects could be favourable leading to higher fusion yield. It is shown that alpha particles related physics, such as TAE destabilization or fusion power electron heating, could be studied in ITER relevant JET-DT plasmas.

  • 139.
    Garcia, J.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;EUROfus Consortium JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henrik
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Fridström, Richard
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Moon, Sunwoo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, P
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Partikel- och astropartikelfysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zhou, Y
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I
    EUROfus Consortium JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Natl Ctr Nucl Res NCBJ, PL-05400 Otwock, Poland..
    et al,
    A new mechanism for increasing density peaking in tokamaks: improvement of the inward particle pinch with edge E x B shearing2019Ingår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 61, nr 10, artikel-id 104002Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Developing successful tokamak operation scenarios, as well as confident extrapolation of present-day knowledge requires a rigorous understanding of plasma turbulence, which largely determines the quality of the confinement. In particular, accurate particle transport predictions are essential due to the strong dependence of fusion power or bootstrap current on the particle density details. Here, gyrokinetic turbulence simulations are performed with physics inputs taken from a JET power scan, for which a relatively weak degradation of energy confinement and a significant density peaking is obtained with increasing input power. This way physics parameters that lead to such increase in the density peaking shall be elucidated. While well-known candidates, such as the collisionality, previously found in other studies are also recovered in this study, it is furthermore found that edge E x B shearing may adopt a crucial role by enhancing the inward pinch. These results may indicate that a plasma with rotational shear could develop a stronger density peaking as compared to a non-rotating one, because its inward convection is increased compared to the outward diffusive particle flux as long as this rotation has a significant on E x B flow shear stabilization. The possibly significant implications for future devices, which will exhibit much less torque compared to present day experiments, are discussed.

  • 140.
    Garzotti, L.
    et al.
    Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England.;CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Stefániková, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik. CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Petersson, Per
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Ratynskaia, Svetlana V.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Rymd- och plasmafysik.
    Vallejos, Pablo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Zhou, Yushan
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Scenario development for D-T operation at JET2019Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, nr 7, artikel-id 076037Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The JET exploitation plan foresees D-T operations in 2020 (DTE2). With respect to the first D-T campaign in 1997 (DTE1), when JET was equipped with a carbon wall, the experiments will be conducted in presence of a beryllium-tungsten ITER-like wall and will benefit from an extended and improved set of diagnostics and higher additional heating power (32 MW neutral beam injection + 8 MW ion cyclotron resonance heating). There are several challenges presented by operations with the new wall: a general deterioration of the pedestal confinement; the risk of heavy impurity accumulation in the core, which, if not controlled, can cause the radiative collapse of the discharge; the requirement to protect the divertor from excessive heat loads, which may damage it permanently. Therefore, an intense activity of scenario development has been undertaken at JET during the last three years to overcome these difficulties and prepare the plasmas needed to demonstrate stationary high fusion performance and clear alpha particle effects. The paper describes the status and main achievements of this scenario development activity, both from an operational and plasma physics point of view.

  • 141.
    Gaspar, J.
    et al.
    CEA Cadarache, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Heat flux analysis of Type-I ELM impact on a sloped, protruding surface in the JET bulk tungsten divertor2018Ingår i: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 17, s. 182-187Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Tungsten (W) melting due to transient power loads, for example those delivered by edge localised modes (ELMs), is a major concern for next step fusion devices. A series of experiments has been performed on JET to investigate the dynamics of Type-I ELM-induced transient melting. Following initial exposures in 2013 of a W-lamella with sharp leading edge in the bulk W outer divertor, new experiments have been performed in 2016-2017 on a protruding W-lamella with a 15 degrees slope, allowing direct and spatially resolved (0.85 mm/pixel) observation of the top surface using the IR thermography system viewing from the top of the poloidal cross-section. Thermal and IR analysis have already been conducted assuming the geometrical projection of the parallel heat flux on the W-lamellas, thus ignoring the gyro-radius orbit of plasma particles. Although it is well justified during L-mode or inter-ELM period, the hypothesis becomes questionable during ELM when the ion Larmor radius is larger. The goal of this paper is to extend the previous analysis based on the forward approach to the H-mode discharges and investigate in particular the gyro-radius effect during the Type-I ELMs, those used to achieve transient melting on the slope of the protruding W-lamella. Surface temperatures measured by the IR camera are compared with reconstructed synthetic data from 3D thermal modelling using heat loads derived from optical projection of the parallel heat flux (ignoring the gyro-radius orbit), 2D gyro-radius orbit and particle-in-cell (PIC) simulations describing the influence of finite Larmor-radius effects and electrical potential on the deposited power flux. Results show that the ELM power deposition behaves differently than the optical projection of the parallel heat flux, contrary to the L-mode observations, and may thus be due to the much larger gyro-orbits of the energetic ELM ions in comparison to L-mode or inter-ELM conditions.

  • 142. Gerasimov, S. N.
    et al.
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    et al.,
    JET and COMPASS asymmetrical disruptions2015Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, nr 11, artikel-id 113006Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Asymmetrical disruptions may occur during ITER operation and they may be accompanied by large sideways forces and rotation of the asymmetry. This is of particular concern because resonance of the rotating asymmetry with the natural frequencies of the vacuum vessel (and other in-vessel components) could lead to large dynamic amplification of the forces. A significant fraction of non-mitigated JET disruptions have toroidally asymmetric currents that flow partially inside the plasma and partially inside the surrounding vacuum vessel ('wall'). The toroidal asymmetries (otherwise known as the appearance of 3D structures) are clearly visible in the plasma current (I-p) and the first plasma current moments. For the first time we present here the asymmetries in toroidal flux measured by the diamagnetic loops and also propose a physical interpretation. The presented data covers the period of JET operation with a C-wall (JET-C from 2005 until late 2009) and with an ITER-like wall (JET-ILW from 2011 until late 2014), during which pick-up coil and saddle loop data at four toroidally orthogonal locations were routinely recorded. The observed rotations of the Ip asymmetries are in the range from -5 turns to +10 turns (a negative value is counted to the negative plasma current). Initial observations on COMPASS of asymmetric disruptions are presented, which are in line with JET data. The whole of the JET-ILW disruption database and the limited number of COMPASS disruptions examined confirm that the development of the toroidal asymmetry precedes the drop to unity of q95. It is shown that massive gas injection (MGI), which is routinely used to mitigate disruptions, significantly reduces the I-p asymmetries in JET. However, MGI produces fast plasma current quench and consequently high vessel eddy currents, which expose the machine to additional stresses. The effect of the large gas quantity used during the injection is of particular concern as well.

  • 143.
    Ghani, Z.
    et al.
    EUROfus Consortium, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England.;CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Characterisation of neutron generators and monitoring detectors for the in-vessel calibration of JET2018Ingår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 136, s. 233-238Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A calibration of the JET neutron detectors was carried out prior to the upcoming deuterium-tritium experimental campaign. Two Compact DT neutron generators (NGs) were purchased for this purpose from VNIIA, Russia. These generators are capable of producing approximately 2 x 10(8) neutrons/s with a DT fusion energy spectrum. Preceding the in-vessel calibration measurements, these compact generators were tested and fully characterised at the UK's National Physical Laboratory (NPL). In order to support the characterisation measurements, detailed neutronics models were developed of the NGs, monitoring detectors and remote handling (RH) apparatus. Neutron spectra calculated from these models have been used to help determine NPL long counter efficiencies and effective centres, as well as NPL reference iron and aluminium activation foil reaction rates. The neutron emission rate has been measured for both generators as a function of angle using absolutely calibrated long counters and the relative emission rate by monitoring single crystal diamond detectors. The measured anisotropy profile is shown to be reproducible with a detailed NG MCNP model. Consequently, the neutron source routine and the MCNP model of the NGs can be reliably used for the analysis of the in-vessel calibration at JET.

  • 144.
    Giacomelli, L.
    et al.
    CNR, Ist Fis Plasma P Caldirola, Milan, Italy.;Univ Milano Bicocca, I-20126 Milan, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors2016Ingår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, nr 11, artikel-id 11D822Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This work presents measurements done at the Peking University Van de Graaff neutron source of the response of single crystal synthetic diamond (SD) detectors to quasi-monoenergetic neutrons of 14-20 MeV. The results show an energy resolution of 1% for incoming 20 MeV neutrons, which, together with 1% detection efficiency, opens up to new prospects for fast ion physics studies in high performance nuclear fusion devices such as SD neutron spectrometry of deuterium-tritium plasmas heated by neutral beam injection.

  • 145.
    Giacomelli, L.
    et al.
    CNR, Ist Fis Plasma P Caldirola, Milan, Italy.;IFP CNR, Via R Cozzi 53, I-20125 Milan, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Neutron emission spectroscopy of D plasmas at JET with a compact liquid scintillating neutron spectrometer2018Ingår i: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 89, nr 10, artikel-id 10I113Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Neutron emission spectroscopy is a diagnostic technique that allows for energy measurements of neutrons born in nuclear reactions. The JET tokamak fusion experiment (Culham, UK) has a special role in this respect as advanced spectrometers for 2.5 MeV and 14 MeV neutrons have been developed here for the first time for measurements of the neutron emission spectrum from D and DT plasmas with unprecedented accuracy. Twin liquid scintillating neutron spectrometers were built and calibrated at the Physikalisch-Technische Bundesanstalt (PTB) (Braunschweig, Germany) and installed on JET in the recent years with tangential-equatorial (KM12) and vertical-radial (KM13) view lines, with the latter only recently operational. This article reports on the performance of KM12 and on the development of the data analysis methods in order to extract physics information upon D ions kinematics in JET auxiliary-heated D plasmas from 2.5 MeV neutron measurements. The comparison of these results with the correspondents from other JET neutron spectrometers is also presented: their agreement allows for JET unique capability of multi-lines of sight neutron spectroscopy and for benchmarking other 14 MeV neutron spectrometers installed on the same lines of sight in preparation for the DT experimental campaign at JET.

  • 146.
    Giegerich, T.
    et al.
    Karlsruhe Inst Technol, Inst Tech Phys, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany.;Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Jonsson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Advanced design of the Mechanical Tritium Pumping System for JET DTE22016Ingår i: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 109, s. 359-364Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    For tritium processing in JET during the next Deuterium-Tritium-Experiment (DTE2), a fully tritium compatible and continuously working vacuum pumping system has been developed. This pump train will be used as roughing pump to cover a pressure regime between 10(-1) Pa and ambient pressure. Therefore, a two-stage liquid ring pump in combination with a booster vapor diffusion pump will be applied. In this paper, a close-to-final design of the pumps is being described. Finite element (FEM) simulation results of components where high mechanical stresses due to thermal gradients are expected are presented. Furthermore, the final design of the control and data acquisition system is shown and explained.

  • 147.
    Giegerich, Thomas
    et al.
    Karlsruhe Inst Technol, Inst Tech Phys, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany..
    Bergsåker, Henric
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Garcia Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Giegerich, T.
    Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany..
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik, Atom- och molekylfysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Tholerus, Simon
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Conceptual design of the mechanical tritium pumping system for jet DTE22015Ingår i: Fusion science and technology, ISSN 1536-1055, E-ISSN 1943-7641, Vol. 68, nr 3, s. 630-634Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper describes the conceptual design of the Mechanical Tritium Pumping System (MTPS) that shall be installed and tested at JET during the next Deuterium-Tritium-Experiment (DTE2). This pump train uses a two-stage liquid ring pump in combination with a booster pump to cover a pressure regime from 10(-1) Pa to 10(5) Pa. As working fluid for all pumps, mercury will be used for tritium compatibility reasons. Starting from the requirements to MTPS, the pumps and their arrangement will be described in this paper as well as the mercury containment strategy and safety- and control issues.

  • 148.
    Girardo, Jean-Baptiste
    et al.
    Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Elevant, Thomas
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ivanova, Darya
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas2016Ingår i: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 23, nr 1, artikel-id 012505Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfven Eigenmodes inside the q = 1 surface (also called "tornado" modes) which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutron camera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed.

  • 149.
    Giudicotti, L.
    et al.
    Padova Univ, Dept Phys & Astron, Via Marzolo 8, I-35131 Padua, Italy.;Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    First observation of the depolarization of Thomson scattering radiation by a fusion plasma2018Ingår i: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, nr 4, artikel-id 044003Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report the first experimental observation of the depolarization of the Thomson scattering (TS) radiation, a relativistic effect expected to occur in very high T-e plasmas and never observed so far in a fusion machine. A set of unused optical fibers in the collection optics of the high resolution Thomson scattering system of JET has been used to detect the depolarized TS radiation during a JET campaign with T-e <= 8 keV. A linear polarizer with the axis perpendicular to the direction of the incident E-field was placed in front of a fiber optic pair observing a region close to the plasma core, while another fiber pair with no polariser simultaneously observed an adjacent plasma region. The measured intensity ratio was found to be consistent with the theory, taking into account sensitivity coefficients of the two measurement channels determined with post-experiment calibrations and Raman scattering. This depolarization effect is at the basis of polarimetric TS, a different and complementary method for the analysis of TS spectra that can provide significant advantages for T-e measurements in very hot plasmas such as in ITER (T-e <= 40 keV).

  • 150.
    Goniche, M.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Bykov, Igor
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Frassinetti, Lorenzo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Garcia-Carrasco, Alvaro
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Hellsten, Torbjörn
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Johnson, Thomas
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Menmuir, Sheena
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Petersson, Per
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Rachlew, Elisabeth
    KTH, Skolan för teknikvetenskap (SCI), Fysik.
    Ratynskaia, Svetlana
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Rubel, Marek
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Stefanikova, Estera
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Ström, Petter
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tholerus, Emmi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Tolias, Panagiotis
    KTH, Skolan för elektro- och systemteknik (EES), Rymd- och plasmafysik.
    Olivares, Pablo Vallejos
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik.
    Weckmann, Armin
    KTH, Skolan för elektro- och systemteknik (EES), Fusionsplasmafysik.
    Zhou, Yushun
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Fusionsplasmafysik. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios2017Ingår i: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, nr 5, artikel-id 055001Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n(H)/n(e) but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I-p. =. 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4MA), tungsten accumulation can be only avoided with 5MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW, very low tungsten concentration in the core (similar to 10(-5)) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.

1234567 101 - 150 av 380
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf