kth.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1234 11 - 20 av 31
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 11.
    Kulkarni, Rohan Ajit
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Apazidis, Nicholas
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Larsson, Per Tomas
    Wallenberg Wood Sci Ctr, S-11428 Stockholm, Sweden..
    Lundell, Fredrik
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik.
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser.
    Experimental studies of dynamic compression of cellulose pulp fibers2023Ingår i: Sustainable Materials and Technologies, ISSN 2214-9937, Vol. 38, artikel-id e00774Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The ability to control the structure of the wood-pulp fiber cell wall is an attractive means to obtain increased accessibility to the fiber interior, providing routes for functionalization of the fibers that support further processing and novel material concepts, e.g. improved degree of polymerization, nanofiltration as demonstrated in previous studies. It has been proposed that dynamic compression and decompression of the cellulose pulp fibers in the wet state make it possible to modify the cell wall significantly. We hypothesize that hydrostatic pressure exerted on fibers fully submerged in water will increase the accessibility of the fiber wall by penetrating the fiber through weak spots in the cell wall. To pursue this, we have developed an experimental facility that can subject wet cellulose pulp samples to a pressure pulse -10 ms long and with a peak pressure of -300 MPa. The experiment is thus specifically designed to elucidate the effect of a rapid high-pressure pulse passing through the cellulose sample and enables studies of changes in structural properties over different size ranges. Different characterization techniques, including Scanning electron microscopy, X-ray diffraction, and wide- and small-angle X-ray scattering, have been used to evaluate the material exposed to pulsed pressure. The mechanism of pressure build-up is estimated computationally to complement the results. Key findings from the experiments consider a decrease in crystallinity and changes in the surface morphology of the cellulose sample.

  • 12.
    Rosén, Tomas
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Department of Chemistry, Stony Brook University, Stony Brook, 11794-3400, NY, United States.
    He, HongRui
    Wang, Ruifu
    Gordeyeva, Korneliya
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Motezakker, Ahmad Reza
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Fluerasu, Andrei
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser.
    Hsiao, Benjamin S.
    Exploring nanofibrous networks with x-ray photon correlation spectroscopy through a digital twin2023Ingår i: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 108, nr 1, artikel-id 014607Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We demonstrate a framework of interpreting data from x-ray photon correlation spectroscopy experiments with the aid of numerical simulations to describe nanoscale dynamics in soft matter. This is exemplified with the transport of passive tracer gold nanoparticles in networks of charge-stabilized cellulose nanofibers. The main structure of dynamic modes in reciprocal space could be replicated with a simulated system of confined Brownian motion, a digital twin, allowing for a direct measurement of important effective material properties describing the local environment of the tracers. 

  • 13.
    Ribca, Iuliana
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Sochor, Benedikt
    Deutsches-Elektronen Synchrotron (DESY).
    Betker, Marie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser. Deutsches-Elektronen Synchrotron (DESY).
    Roth, Stephan V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. Deutsches-Elektronen Synchrotron (DESY).
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Sevastyanova, Olena
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Meier, Michael A.R.
    Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany;Institute of Biological and Chemical Systems─Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
    Johansson, Mats
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Impact of lignin source on the performance of thermoset resins2023Ingår i: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 194, s. 112141-112141, artikel-id 112141Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A series of different technical hardwood lignin-based resins have been successfully synthesized, characterized, and utilised to produce thiol-ene thermoset polymers. Firstly, technical lignin was fractionated and allylated, whereafter it was crosslinked with a trifunctional thiol. Structural and morphological characteristics of the lignin fractions were studied by 1H NMR, 31P NMR, SEC, FTIR, DSC, TGA, and WAXS. The hardwood lignin fractions have a high content of C5-substituted OH groups. The WAXS studies on lignin fractions revealed the presence of two π-π stacking conformations, sandwiched (4.08–4.25 Å) and T-shaped (6.52–6.91 Å). The presence of lignin superstructures with distances/sizes between 10.5 and 12.8 Å was also identified. The curing reaction of the thermosets was investigated by RT-FTIR. Almost all thermosets (excepting one fraction) reached 95% of the thiol conversion in less than 17 h, revealing the enhanced reactivity of the allylated hardwood lignin samples.

    The mechanical properties of the thermosets were investigated by DMA. The curing performance, as well as the final thermoset properties, have been correlated to variations in chemical composition and morphological differences of lignin fractions. The described results clearly demonstrate that technical hardwood lignins can be utilized for these applications, but also that significant differences compared to softwood lignins have to be considered for material design.

    Ladda ner (pdf)
    Impact of lignin source on the performance of thermoset resins
  • 14.
    Betker, Marie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Harder, Constantin
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Erbes, Elisabeth
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Institute for X-ray Physics, Goettingen University, Friedrich Hund Platz 1, 37077 Goettingen, Germany, Friedrich Hund Platz 1.
    Heger, Julian Eliah
    Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Alexakis, Alexandros Efraim
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Sochor, Benedikt
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Chen, Qing
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Schwartzkopf, Matthias
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Körstgens, Volker
    Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1.
    Müller-Buschbaum, Peter
    Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany, James-Franck-Straße 1; Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748 Garching, Germany, Lichtenbergstr. 1.
    Schneider, Konrad
    Abteilung Werkstofftechnik, Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany.
    Techert, Simone Agnes
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85; Institute for X-ray Physics, Goettingen University, Friedrich Hund Platz 1, 37077 Goettingen, Germany, Friedrich Hund Platz 1.
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser.
    Roth, Stephan V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany, Notkestr. 85.
    Sprayed Hybrid Cellulose Nanofibril-Silver Nanowire Transparent Electrodes for Organic Electronic Applications2023Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 6, nr 14, s. 13677-13688Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In times of climate change and resource scarcity, researchers are aiming to find sustainable alternatives to synthetic polymers for the fabrication of biodegradable, eco-friendly, and, at the same time, high-performance materials. Nanocomposites have the ability to combine several favorable properties of different materials in a single device. Here, we evaluate the suitability of two kinds of inks containing silver nanowires for the fast, facile, and industrial-relevant fabrication of two different types of cellulose-based silver nanowire electrodes via layer-by-layer spray deposition only. The Type I electrode has a layered structure, which is composed of a network of silver nanowires sprayed on top of a cellulose nanofibrils layer, while the Type II electrode consists of a homogeneous mixture of silver nanowires and cellulose nanofibrils. A correlation between the surface structure, conductivity, and transparency of both types of electrodes is established. We use the Haacke figure of merit for transparent electrode materials to demonstrate the favorable influence of cellulose nanofibrils in the spray ink by identifying Type II as the electrode with the lowest sheet resistance (minimum 5 ± 0.04 Ω/sq), while at the same time having a lower surface roughness and shorter fabrication time than Type I. Finally, we prove the mechanical stability of the Type II electrode by bending tests and its long-time stability under ambient conditions. The results demonstrate that the mixed spray ink of silver nanowires and cellulose nanofibrils is perfectly suitable for the fast fabrication of highly conductive organic nanoelectronics on an industrial scale.

  • 15.
    Redlinger-Pohn, Jakob D.
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser. Treesearch, S-11428 Stockholm, Sweden..
    Petkovsek, Martin
    Univ Ljubljana, Fac Mech Engn, Lab Water & Turbine Machines, Ljubljana 1000, Slovenia..
    Gordeyeva, Korneliya
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Zupanc, Mojca
    Univ Ljubljana, Fac Mech Engn, Lab Water & Turbine Machines, Ljubljana 1000, Slovenia..
    Gordeeva, Alisa
    Stockholm Univ, Dept Mat & Environm Chem, S-11418 Stockholm, Sweden..
    Zhang, Qilun
    Linköping Univ, Lab Organ Elect, S-58330 Linköping, Sweden..
    Dular, Matevz
    Univ Ljubljana, Fac Mech Engn, Lab Water & Turbine Machines, Ljubljana 1000, Slovenia..
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser.
    Cavitation Fibrillation of Cellulose Fiber2022Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 23, nr 3, s. 847-862Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cellulose fibrils are the structural backbone of plants and, if carefully liberated from biomass, a promising building block for a bio-based society. The mechanism of the mechanical release-fibrillation-is not yet understood, which hinders efficient production with the required reliable quality. One promising process for fine fibrillation and total fibrillation of cellulose is cavitation. In this study, we investigate the cavitation treatment of dissolving, enzymatically pretreated, and derivatized (TEMPO oxidized and carboxymethylated) cellulose fiber pulp by hydrodynamic and acoustic (i.e., sonication) cavitation. The derivatized fibers exhibited significant damage from the cavitation treatment, and sonication efficiently fibrillated the fibers into nanocellulose with an elementary fibril thickness. The breakage of cellulose fibers and fibrils depends on the number of cavitation treatment events. In assessing the damage to the fiber, we presume that microstreaming in the vicinity of imploding cavities breaks the fiber into fibrils, most likely by bending. A simple model showed the correlation between the fibrillation of the carboxymethylated cellulose (CMCe) fibers, the sonication power and time, and the relative size of the active zone below the sonication horn.

  • 16.
    Gowda, V. Krishne
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Rosén, Tomas
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Roth, Stephan V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. DESY, D-22607 Hamburg, Germany..
    Söderberg, Daniel
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser.
    Lundell, Fredrik
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik.
    Nanofibril Alignment during Assembly Revealed by an X-ray Scattering-Based Digital Twin2022Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 16, nr 2, s. 2120-2132Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The nanostructure, primarily particle orientation, controls mechanical and functional (e.g., mouthfeel, cell compatibility, optical, morphing) properties when macroscopic materials are assembled from nanofibrils. Understanding and controlling the nanostructure is therefore an important key for the continued development of nanotechnology. We merge recent developments in the assembly of biological nanofibrils, X-ray diffraction orientation measurements, and computational fluid dynamics of complex flows. The result is a digital twin, which reveals the complete particle orientation in complex and transient flow situations, in particular the local alignment and spatial variation of the orientation distributions of different length fractions, both along the process and over a specific cross section. The methodology forms a necessary foundation for analysis and optimization of assembly involving anisotropic particles. Furthermore, it provides a bridge between advanced in operandi measurements of nanostructures and phenomena such as transitions between liquid crystal states and in silico studies of particle interactions and agglomeration.

  • 17.
    Nordenström, Malin
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Benselfelt, Tobias
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Hollertz, Rebecca
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wennmalm, Stefan
    KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biofysik.
    Larsson, Per A.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Mehandzhiyski, Aleksandar
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrköping, Sweden..
    Rolland, Nicolas
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrköping, Sweden..
    Zozoulenko, Igor
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrköping, Sweden..
    Söderberg, Daniel
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser.
    Wågberg, Lars
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The structure of cellulose nanofibril networks at low concentrations and their stabilizing action on colloidal particles2022Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 297, s. 120046-, artikel-id 120046Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The structure and dynamics of networks formed by rod-shaped particles can be indirectly investigated by measuring the diffusion of spherical tracer particles. This method was used to characterize cellulose nanofibril (CNF) networks in both dispersed and arrested states, the results of which were compared with coarse-grained Brownian dynamics simulations. At a CNF concentration of 0.2 wt% a transition was observed where, below this concentration tracer diffusion is governed by the increasing macroscopic viscosity of the dispersion. Above 0.2 wt%, the diffusion of small particles (20-40 nm) remains viscosity controlled, while particles (100-500 nm) become trapped in the CNF network. Sedimentation of silica microparticles (1-5 mu m) in CNF dispersions was also determined, showing that sedimentation of larger particles is significantly affected by the presence of CNF. At concentrations of 0.2 wt%, the sedimentation velocity of 5 mu m particles was reduced by 99 % compared to pure water.

  • 18.
    Kalbfleisch, Sebastian
    et al.
    Lund Univ, Max IV Lab, S-22100 Lund, Sweden..
    Zhang, Yuhe
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Kahnt, Maik
    Lund Univ, Max IV Lab, S-22100 Lund, Sweden..
    Buakor, Khachiwan
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Langer, Max
    Univ Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup,Grenoble INP,TIMC, F-38000 Grenoble, France..
    Dreier, Till
    Lund Univ, Dept Med Radiat Phys, Clin Sci Lund, S-22185 Lund, Sweden.;Excillum AB, Jan Stenbecks Torg 17, S-16440 Kista, Sweden..
    Dierks, Hanna
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Stjarneblad, Philip
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Larsson, Emanuel
    Lund Univ, Dept Construct Sci, Div Solid Mech, S-22100 Lund, Sweden.;Lund Univ, Dept Construct Sci, LUNARC, S-22100 Lund, Sweden..
    Gordeyeva, Korneliya
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Chayanun, Lert
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser.
    Wallentin, Jesper
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    Bech, Martin
    Lund Univ, Dept Med Radiat Phys, Clin Sci Lund, S-22185 Lund, Sweden..
    Villanueva-Perez, Pablo
    Lund Univ, Dept Phys, Div Synchrotron Radiat Res & NanoLund, S-22100 Lund, Sweden..
    X-ray in-line holography and holotomography at the NanoMAX beamline2022Ingår i: Journal of Synchrotron Radiation, ISSN 0909-0495, E-ISSN 1600-5775, Vol. 29, s. 224-229Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Coherent X-ray imaging techniques, such as in-line holography, exploit the high brilliance provided by diffraction-limited storage rings to perform imaging sensitive to the electron density through contrast due to the phase shift, rather than conventional attenuation contrast. Thus, coherent X-ray imaging techniques enable high-sensitivity and low-dose imaging, especially for low-atomic-number (Z) chemical elements and materials with similar attenuation contrast. Here, the first implementation of in-line holography at the NanoMAX beamline is presented, which benefits from the exceptional focusing capabilities and the high brilliance provided by MAX IV, the first operational diffractionlimited storage ring up to approximately 300 eV. It is demonstrated that in-line holography at NanoMAX can provide 2D diffraction-limited images, where the achievable resolution is only limited by the 70 nm focal spot at 13 keV X-ray energy. Also, the 3D capabilities of this instrument are demonstrated by performing holotomography on a chalk sample at a mesoscale resolution of around 155 nm. It is foreseen that in-line holography will broaden the spectra of capabilities of MAX IV by providing fast 2D and 3D electron density images from mesoscale down to nanoscale resolution.

  • 19.
    Rosén, Tomas
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hsiao, Benjamin S.
    Chemistry Department, Stony Brook University, Stony Brook, NY, 11794‐3400 USA.
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Elucidating the Opportunities and Challenges for Nanocellulose Spinning2021Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, nr 28, s. 2001238-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Man-made continuous fibers play an essential role in society today. With the increase in global sustainability challenges, there is a broad spectrum of societal needs where the development of advanced biobased fibers could provide means to address the challenges. Biobased regenerated fibers, produced from dissolved cellulose are widely used today for clothes, upholstery, and linens. With new developments in the area of advanced biobased fibers, it would be possible to compete with high-performance synthetic fibers such as glass fibers and carbon fibers as well as to provide unique functionalities. One possible development is to fabricate fibers by spinning filaments from nanocellulose, Nature's nanoscale high-performance building block, which will require detailed insights into nanoscale assembly mechanisms during spinning, as well as knowledge regarding possible functionalization. If successful, this could result in a new class of man-made biobased fibers. This work aims to identify the progress made in the field of spinning of nanocellulose filaments, as well as outline necessary steps for efficient fabrication of such nanocellulose-based filaments with controlled and predictable properties.

  • 20.
    Chen, Qing
    et al.
    DESY, D-22607 Hamburg, Germany.;Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Peoples R China..
    Brett, Calvin
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. DESY, D-22607 Hamburg, Germany..
    Chumakov, Andrei
    DESY, D-22607 Hamburg, Germany..
    Gensch, Marc
    DESY, D-22607 Hamburg, Germany.;Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat, D-85748 Garching, Germany..
    Schwartzkopf, Matthias
    DESY, D-22607 Hamburg, Germany..
    Koerstgens, Volker
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat, D-85748 Garching, Germany..
    Söderberg, Daniel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberprocesser.
    Plech, Anton
    Karlsruhe Inst Technol KIT, Inst Photon Sci & Synchrotron Radiat, D-76021 Karlsruhe, Germany..
    Zhang, Peng
    Sun Yat Sen Univ, Sch Mat Sci & Engn, PCFM Lab, Guangzhou 510275, Peoples R China..
    Mueller-Buschbaum, Peter
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat, D-85748 Garching, Germany.;Tech Univ Munich, Heinz Maier Leibniz Zentrum MLZ, D-85748 Garching, Germany..
    Roth, Stephan V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. DESY, D-22607 Hamburg, Germany..
    Layer-by-Layer Spray-Coating of Cellulose Nanofibrils and Silver Nanoparticles for Hydrophilic Interfaces2021Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 4, nr 1, s. 503-513Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Silver nanoparticles (AgNPs) and AgNP-based composite materials have attracted growing interest due to their structure-dependent optical, electrical, catalytic, and stimuli-responsive properties. For practical applications, polymeric materials are often combined with AgNPs to provide flexibility and offer a scaffold for homogenous distribution of the AgNPs. However, the control over the assembly process of AgNPs on polymeric substrates remains a big challenge. Herein, we report the fabrication of AgNP/cellulose nanofibril (CNF) thin films via layer-by-layer (LBL) spray-coating. The morphology and self-assembly of AgNPs with increasing number of spray cycles are characterized by atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), and grazing-incidence wide-angle X-ray scattering (GIWAXS). We deduce that an individual AgNP (radius = 15 +/- 3 nm) is composed of multiple nanocrystallites (diameter = 2.4 +/- 0.9 nm). Our results suggest that AgNPs are assembled into large agglomerates on SiO2 substrates during spray-coating, which is disadvantageous for AgNP functionalization. However, the incorporation of CNF substrates contributes to a more uniform distribution of AgNP agglomerates and individual AgNPs by its network structure and by absorbing the partially dissolved AgNP agglomerates. Furthermore, we demonstrate that the spray-coating of the AgNP/CNF mixture results in similar topography and agglomeration patterns of AgNPs compared to depositing AgNPs onto a precoated CNF thin film. Contact-angle measurements and UV/vis spectroscopy suggest that the deposition of AgNPs onto or within CNFs could increase the hydrophilicity of AgNP-containing surfaces and the localized surface plasmon resonance (LSPR) intensity of AgNP compared to AgNPs sprayed on SiO(2 )substrates, suggesting their potential applications in antifouling coatings or label-free biosensors. Thereby, our approach provides a platform for a facile and scalable production of AgNP/CNF films with a low agglomeration rate by two different methods as follows: (1) multistep layer-by-layer (LBL) spray-coating and (2) direct spray-coating of the AgNP/CNF mixture. We also demonstrate the ability of CNFs as a flexible framework for directing the uniform assembly of AgNPs with tailorable wettability and plasmonic properties.

1234 11 - 20 av 31
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf