Change search
Refine search result
3456789 251 - 300 of 11713
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 251.
    Alberdi-Muniain, Ane
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Gil-Negrete, N.
    Department of Applied Mechanics, CEIT and Tecnun (University of Navarra).
    Nieto, F.J.
    Department of Applied Mechanics, CEIT and Tecnun (University of Navarra).
    Kari, Leif
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Structural and vibroacoustics.
    Vinolas, J.
    Department of Applied Mechanics, CEIT and Tecnun (University of Navarra).
    An experimental study of magneto-sensitive natural rubber components applied in a vibration isolation system2009In: CONSTITUTIVE MODELS FOR RUBBER VI / [ed] Gert Heinrich, Michael Kaliske, Alexander Lion, London: Taylor & Francis, 2009, p. 99-104Conference paper (Refereed)
    Abstract [en]

    The effectiveness of magneto-sensitive natural rubber components applied in a vibration isolation system is experimentally investigated, where influences of excitation position, amplitude, frequency and magnetic field are examined. The magneto-sensitive elastomer consists of micron-sized, irregularly shaped iron particles blended in soft natural rubber at a concentration close to the critical particle volume fraction, shown to be the most favorable composition for optimum behaviour. A rigid aluminium mass supported on four vibration isolators is excited by an electro-dynamic shaker. Each component of this vibration isolation system is composed of two thin, square shaped, symmetrically positioned magneto-sensitive elements excited in simple shear with a magnetic field applied perpendicularly to the motion by an electromagnet. The magnetic field is varied by applying different intensities through the coil. The excitation position is either on the centre or on the edge of the surface of the mass, using step-sine excitation of various amplitudes in the frequency range of 0 to 300 Hz. The results show that it is possible to use magneto-sensitive rubber for vibration control purposes.

  • 252.
    Alberer, Daniel
    et al.
    Johannes Kepler University.
    Hjalmarsson, HåkanKTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.del Re, LuigiJohannes Kepler University.
    Identification for Automotive Systems2012Collection (editor) (Refereed)
  • 253.
    Alberer, Daniel
    et al.
    Johannes Kepler University.
    Hjalmarsson, Håkan
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    del Re, Luigi
    Johannes Kepler University.
    System Identification for Automotive Systems: Opportunities and Challenges2012In: Identification for Automotive Systems / [ed] Daniel Alberer, Håkan Hjalmarsson, Luigi del Re, Springer London, 2012, p. 1-10Chapter in book (Refereed)
    Abstract [en]

    Without control many essential targets of the automotive industry could not be achieved. As control relies directly or indirectly on models and model quality directly influences the control performance, especially in feedforward structures as widely used in the automotive world, good models are needed. Good first principle models would be the first choice, and their determination is frequently difficult or even impossible. Against this background methods and tools developed by the system identification community could be used to obtain fast and reliably models, but a large gap seems to exist: neither these methods are sufficiently well known in the automotive community, nor enough attention is paid by the system identification community to the needs of the automotive industry. This introduction summarizes the state of the art and highlights possible critical issues for a future cooperation as they arose from an ACCM Workshop on Identification for Automotive Systems recently held in Linz, Austria.

  • 254.
    Albernaz, Daniel
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Phase change, surface tension and turbulence in real fluids2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Sprays are extensively used in industry, especially for fuels in internal combustion and gas turbine engines. An optimal fuel/air mixture prior to combustion is desired for these applications, leading to greater efficiency and minimal levels of emissions. The optimization depends on details regarding the different breakups, evaporation and mixing processes. Besides, one should take into consideration that these different steps depend on physical properties of the gas and fuel, such as density, viscosity, heat conductivity and surface tension.

    In this thesis the phase change and surface tension of a droplet for different flow conditions are studied by means of numerical simulations.This work is part of a larger effort aiming to developing models for sprays in turbulent flows. We are especially interested in the atomization regime, where the liquid breakup causes the formation of droplet sizes much smaller than the jet diameter. The behavior of these small droplets is important to shed more light on how to achieve the homogeneity of the gas-fuel mixture as well as that it directly contributes to the development of large-eddy simulation (LES) models.

    The numerical approach is a challenging process as one must take into account the transport of heat, mass and momentum for a multiphase flow. We choose a lattice Boltzmann method (LBM) due to its convenient mesoscopic natureto simulate interfacial flows. A non-ideal equation of state is used to control the phase change according to local thermodynamic properties. We analyze the droplet and surrounding vapor for a hydrocarbon fuel close to the critical point. Under forced convection, the droplet evaporation rate is seen to depend on the vapor temperatureand Reynolds number, where oscillatory flows can be observed. Marangoni forces are also present and drivethe droplet internal circulation once the temperature difference at the droplet surface becomes significant.In isotropic turbulence, the vapor phase shows increasing fluctuations of the thermodynamic variables oncethe fluid approaches the critical point. The droplet dynamics is also investigated under turbulent conditions, where the presence of coherent structures with strong shear layers affects the mass transfer between the liquid-vapor flow, showing also a correlation with the droplet deformation. Here, the surface tension and droplet size play a major role and are analyzed in detail.

  • 255.
    Albernaz, Daniel
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Do, Quang Minh
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Amberg, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Multirelaxation-time lattice Boltzmann model for droplet heating and evaporation under forced convection2015In: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 91, no 4, article id 043012Article in journal (Refereed)
    Abstract [en]

    We investigate the evaporation of a droplet surrounded by superheated vapor with relative motion between phases. The evaporating droplet is a challenging process, as one must take into account the transport of mass, momentum, and heat. Here a lattice Boltzmann method is employed where phase change is controlled by a nonideal equation of state. First, numerical simulations are compared to the D-2 law for a vaporizing static droplet and good agreement is observed. Results are then presented for a droplet in a Lagrangian frame under a superheated vapor flow. Evaporation is described in terms of the temperature difference between liquid-vapor and the inertial forces. The internal liquid circulation driven by surface-shear stresses due to convection enhances the evaporation rate. Numerical simulations demonstrate that for higher Reynolds numbers, the dynamics of vaporization flux can be significantly affected, which may cause an oscillatory behavior on the droplet evaporation. The droplet-wake interaction and local mass flux are discussed in detail.

  • 256.
    Albernaz, Daniel L.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Amberg, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Do-Quang, Minh
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Simulation of a suspended droplet under evaporation with Marangoni effects2016In: International Journal of Heat and Mass Transfer, ISSN 0017-9310, E-ISSN 1879-2189, Vol. 91, p. 853-860Article in journal (Refereed)
    Abstract [en]

    We investigate the Marangoni effects in a hexane droplet under evaporation and close to its critical point. A lattice Boltzmann model is used to perform 3D numerical simulations. In a first case, the droplet is placed in its own vapor and a temperature gradient is imposed. The droplet locomotion through the domain is observed, where the temperature differences across the surface is proportional to the droplet velocity and the Marangoni effect is confirmed. The droplet is then set under a forced convection condition. The results show that the Marangoni stresses play a major role in maintaining the internal circulation when the superheated vapor temperature is increased. Surprisingly, surface tension variations along the interface due to temperature change may affect heat transfer and internal circulation even for low Weber number. Other results and considerations regarding the droplet surface are also discussed.

  • 257.
    Albernaz, Daniel L.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Do-Quang, Minh
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Amberg, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Lattice Boltzmann Method for the evaporation of a suspended droplet2013In: Interfacial phenomena and heat transfer, ISSN 2167-857X, Vol. 1, p. 245-258Article in journal (Refereed)
    Abstract [en]

    In this paper we consider a thermal multiphase lattice Boltzmann method (LBM) to investigate the heating and vaporization of a suspended droplet. An important benefit from the LBM is that phase separation is generated spontaneously and jump conditions for heat and mass transfer are not imposed. We use double distribution functions in order to solve for momentum and energy equations. The force is incorporated via the exact difference method (EDM) scheme where different equations of state (EOS) are used, including the Peng-Robinson EOS. The equilibrium and boundary conditions are carefully studied. Results are presented for a hexane droplet set to evaporate in a superheated gas, for static condition and under gravitational effects. For the static droplet, the numerical simulations show that capillary pressure and the cooling effect at the interface play a major role. When the droplet is convected due to the gravitational field, the relative motion between the droplet and surrounding gas enhances the heat transfer. Evolution of density and temperature fields are illustrated in details.

  • 258.
    Albernaz, Daniel L.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Do-Quang, Minh
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Hermanson, J. C.
    Amberg, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Droplet deformation and heat transfer in isotropic turbulence2017In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 820, p. 61-85Article in journal (Refereed)
    Abstract [en]

    The heat and mass transfer of deformable droplets in turbulent flows is crucial. to a wide range of applications, such as cloud dynamics and internal combustion engines. This study investigates a single droplet undergoing phase change in isotropic turbulence using numerical simulations with a hybrid lattice Boltzmann scheme. Phase separation is controlled by a non-ideal equation of state and density contrast is taken into consideration. Droplet deformation is caused by pressure and shear stress at the droplet interface. The statistics of thermodynamic variables are quantified and averaged over both the liquid and vapour phases. The occurrence of evaporation and condensation is correlated to temperature fluctuations, surface tension variation and turbulence intensity. The temporal spectra of droplet deformations are analysed and related to the droplet surface area. Different modes of oscillation are clearly identified from the deformation power spectrum for low Taylor Reynolds number Re, whereas nonlinearities are produced with the increase of Re A, as intermediate frequencies are seen to overlap. As an outcome, a continuous spectrum is observed, which shows a decrease in the power spectrum that scales as similar to f(-3) Correlations between the droplet Weber number, deformation parameter, fluctuations of the droplet volume and thermodynamic variables are also developed.

  • 259.
    Albernaz, Daniel L.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Do-Quang, Minh
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Hermanson, Jim C.
    University of Washington, USA.
    Amberg, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Droplet deformation and heat transfer in isotropic turbulence2016Manuscript (preprint) (Other academic)
    Abstract [en]

    The heat and mass transfer of deformable droplets in turbulent flows is crucial to a wide range of applications, such as cloud dynamics and internal combustion engines. This study investigates a droplet undergoing phase change in isotropic turbulence using numerical simulations with a hybrid lattice Boltzmann scheme. We solve the momentum and energy transport equations, where phase separation is controlled by a non-ideal equation of state and density contrast is taken into consideration. Deformation is caused by pressure and shear stress at the droplet interface. The statistics of thermodynamic variables is quantified and averaged in terms of the liquid and vapor phases. The occurrence of evaporation and condensation is correlated to temperature fluctuations, surface tension variation and turbulence intensity. The temporal spectra of droplet deformations are analyzed and related to the droplet surface area.Different modes of oscillation are clearly identified from the deformation power spectrum for low Taylor Reynolds number $Re_\lambda$, whereas nonlinearities are produced with the increase of $Re_\lambda$, as intermediate frequencies are seen to overlap. As an outcome a continuous spectrum is observed, which shows a decrease that scales as $\sim f^{-3}$.Correlations between the droplet Weber number, deformation parameter, fluctuations of the droplet volume and thermodynamic variables are also examined.

  • 260.
    Albernaz, Daniel L.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Do-Quang, Minh
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Hermanson, Jim C.
    University of Washington, USA.
    Amberg, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Real fluids near the critical point in isotropic turbulenceIn: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666Article in journal (Refereed)
    Abstract [en]

    We investigate the behavior of a uid near the critical point by using numerical simulations of weakly compressible three-dimensional isotropic turbulence. Much has been done for a turbulent ow with an ideal gas. The primary focus of this work is to analyze uctuations of thermodynamic variables (pressure, density and temperature) when a non-ideal Equation Of State (EOS) is considered. In order to do so, a hybrid lattice Boltzmann scheme is applied to solve the momentum and energy equations. Previously unreported phenomena are revealed as the temperature approaches the critical point. These phenomena include increased uctuations in pressure, density and temperature, followed by changes in their respective probability density functions (PDFs). Unlike the ideal EOS case, signicant dierences in the thermodynamic properties are also observed when the Reynolds number is increased. We also address issues related to the spectral behavior and scaling of density, pressure, temperature and kinetic energy.

  • 261. Albinsson, A.
    et al.
    Bruzelius, F.
    Jacobson, B.
    Gustafsson, T.
    Jonasson, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. Volvo Cars, Sweden.
    Identification of tyre characteristics using active force excitation2016In: The Dynamics of Vehicles on Roads and Tracks - Proceedings of the 24th Symposium of the International Association for Vehicle System Dynamics, IAVSD 2015, CRC Press, 2016, p. 501-510Conference paper (Refereed)
    Abstract [en]

    Knowledge of the maximum tyre-road friction coefficient can improve active safety systems by defining actuator boundaries and adaptable intervention thresholds. Estimation of the coefficient of friction based on tyre response measurements requires large level of force excitation. Under normal driving conditions, manoeuvres with large tyre utilizations are rare. This study investigates a method where wheel torques with opposite signs are applied to the front and rear axle simultaneously. This procedure allows for an intervention with large tyre excitations without disturbing the motion of the vehicle. The intervention is evaluated in simulations and experiments. Further, a method is proposed which does not require measurement of the vehicle longitudinal velocity. The results show that it is possible to estimate the current friction coefficient with the proposed method, although the assumption made in the proposed method makes the friction estimate sensitive to measurement noise on the wheel speed signal.

  • 262. Albinsson, Anton
    et al.
    Bruzelius, Fredrik
    Pettersson, Pierre
    Jonasson, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. Volvo Car Corporation, Sweden.
    Jacobson, Bengt
    Estimation of the inertial parameters of vehicles with electric propulsion2016In: Proceedings of the Institution of mechanical engineers. Part D, journal of automobile engineering, ISSN 0954-4070, E-ISSN 2041-2991, Vol. 230, no 9, p. 1155-1172Article in journal (Refereed)
    Abstract [en]

    More accurate information about the basic vehicle parameters can improve the dynamic control functions of a vehicle. Methods for online estimation of the mass, the rolling resistance, the aerodynamic drag coefficient, the yaw inertia and the longitudinal position of the centre of gravity of an electric hybrid vehicle is therefore proposed. The estimators use the standard vehicle sensor set and the estimate of the electric motor torque. No additional sensors are hence required and no assumptions are made regarding the tyre or the vehicle characteristics. Consequently, all information about the vehicle is available to the estimator. The estimators are evaluated using both simulations and experiments. Estimations of the mass, the rolling resistance and the aerodynamic drag coefficient are based on a recursive least-squares method with multiple forgetting factors. The mass estimate converged to within 3% of the measured vehicle mass for the test cases with sufficient excitation that were evaluated. Two methods to estimate the longitudinal position of the centre of gravity and the yaw inertia are also proposed. The first method is based on the equations of motion and was found to be sensitive to the measurement and parameter errors. The second method is based on the estimated mass and seat-belt indicators. This estimator is more robust and reduces the estimation error in comparison with that obtained by assuming static parameters. The results show that the proposed method improves the estimations of the inertial parameters. Hence, it enables online non-linear tyre force estimators and tyre-model-based tyre-road friction estimators to be used in production vehicles.

  • 263.
    Albiz, Niccolas
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Nilsson, Jonatan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Feasibility Study of Heating and Cooling Solutions for Wuxi Eco-City2013Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Wuxi city has a strong economy and is well located for an eco city project, only 128 km from Shanghai. Wuxi Eco-City is a Sino-Swedish initiative to build an environmentally friendly district. The 2.4 km2 area will include residential buildings, commercial buildings, offices and potentially a stadium. A preliminary urban plan has been made, providing housing for 20 000 people. China has a large energy demand and heating in the northern regions is responsible for around 30% of the annual energy usage. A heating solution that is efficient, scalable, sustainable and economical needs to be developed for the eco city to not increase the burden on the system. This report investigates what heating and cooling solutions would be optimal for the eco city, basing its evaluation on the performance, implementability, scalability and risk of the different solutions. A model was constructed for visualization purposes and to create a scenario of what the overall energy usage could be given certain parameters. The GSHP technology is deemed the most appropriate solution for Wuxi Eco-City and the estimated annual energy usage for the scenario was 1822 MWh.

     

    Further economic analyses of the cases when the annual heating/cooling load is low should be made to determine if there are cases in which an ASHP or a VRV system should be preferred. An alternative suggestion is to implement a minor centralized heating and cooling system using WSHPs. Studies should be performed concerning effect on Lake Taihu, economic viability, and expected performance before an implementation.

  • 264.
    Albutov, Alexey
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Reducing Energy Consumption through Optimization of the Operating Conditions of the Gas Trunk Pipeline2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Gas supplying process for consumers needs sufficient share of energy for upstream, midstream and downstream purposes. In spite of a huge amount of great investments into the industry it is still available to improve the efficiency of energy usage inside the industry. The biggest share of energy consumption is within transportation sector. Optimization of operating conditions of gas pipeline is a one of the cheapest ways for reducing energy consumption. Optimization doesn’t need any investments into the industry. It works only within operating parameters. Adjustable operating parameters of a gas pipeline are operative pressure, rotation speed of compressors, amount of operating units, gas temperature after a compressor station and others. The energy consumption depends on the combination of the parameters which determine an appropriate operation mode to provide the particular gas flow through a pipeline, the maximum capacity, the minimum energy consumption and others. From energy saving point of view it is possible to reduce energy demand in the gas industry due to optimization of the operation mode. A few approaches to achieving energy reduction through optimization are investigated in this work and presented in this article, such as saving energy through changing of loading between compressor stations, varying the depth of gas cooling and changing the loading of gas pumping units. The results of analyzing inside the study model reflect the possibility for improving efficiency of gas trunk pipelines.

  • 265.
    Aldajani, Waleed
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Towards Nearly Zero-Energy Buildings Renovation2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The objective of this thesis is to investigate the potential for a nearly Zero-Energy Building (nZEB) renovation, its benefits for real estate owners in Sweden, and their ability to comply with the current Swedish definition of nZEB. The study is carried out in co-operation with the Swedish real estate company Vasakronan, one of the country’s largest real estate owners. Several energy-efficiency and renewable energy measures are implemented in a case study at the building complex Telefonplan. The improvement measures chosen are based on their proven cost-optimality and potential to bring the buildings to nZEB energy consumption levels, and are calculated using an array of tools; PVSOL, EED and Excel. The results are analyzed using Boverket’s regulation for nZEB, which was set for new builds. The economic performance of the renovation is analyzed considering capital and operational expenses, energy savings, and the increase in property value. The results show that Telefonplan failed to reach the Swedish nZEB targets with pre-selected energy efficiency measures. However, the financial results in terms of annual savings as well as raised property value can stand as a strong motivation for real estate owners to consider such investments.

  • 266.
    ALDAJANI, WALEED
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Towards Nearly Zero-Energy Buildings Renovation: Case Study: Telefonplan2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The objective of this thesis is to investigate the potential for a nearly Zero-Energy Building (nZEB) renovation, its benefits for real estate owners in Sweden, and their ability to comply with the current Swedish definition of nZEB. The study is carried out in co-operation with the Swedish real estate company Vasakronan, one of the country’s largest real estate owners. Several energy-efficiency and renewable energy measures are implemented in a case study at the building complex Telefonplan. The improvement measures chosen are based on their proven cost-optimality and potential to bring the buildings to nZEB energy consumption levels, and are calculated using an array of tools; PVSOL, EED and Excel. The results are analyzed using Boverket’s regulation for nZEB, which was set for new builds. The economic performance of the renovation is analyzed considering capital and operational expenses, energy savings, and the increase in property value. The results show that Telefonplan failed to reach the Swedish nZEB targets with pre-selected energy efficiency measures. However, the financial results in terms of annual savings as well as raised property value can stand as a strong motivation for real estate owners to consider such investments.

  • 267.
    Aldén, Rickard
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Innovative Methods for Welding Ultra High Strength Steel with Resistance Spot Welding2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Resistance spot welding (RSW) is the most frequently used method for welding thin sheets in manufacturing industries such as the automotive industry, because of the high productivity of RSW. In order to reduce CO2 emissions the automotive industry strives towards creating structures of light weight, this is partly achieved by the use of lightweight materials such as Aluminum and composite materials. In parts of the car body designed to protect the driver and passengers in case of a collision High strength steel is used due to its high strength and relative high ductility. High strength steels are called Ultra High Strength Steels (UHSS) with typical ultimate tensile strength of 700 up to 2000 MPa and elongation of 10-40%. Because of the strive against lighter structures and great safety demands UHSS materials is of great interest for the automotive industry in order to create strong structures of light weight. In welding of modern materials such as UHSS with RSW, achieving adequate weld quality is a challenge. Hence this thesis aims to investigate new innovative ways to broaden the area of use and include modern materials such as UHSS for the traditional method of welding such as RSW. In RSW elliptical shaped welds are created between two or more faying metal sheets by passing current through the sheets. The current is applied to the sheets by copper electrodes in contact with the sheets on each side. The geometrical shape of these electrodes will affect multiple welding parameters such as applied stress, current density, electromagnetic stirring, temperature gradients and the possibility for the welded material to thermally expand during welding. Hence the geometrical shape of the electrodes will affect the final shape and size of the weld nugget. In this thesis RSW electrode geometries are modified and tested. The weld properties from modified electrodes are compared to the weld properties from standard RSW electrodes with respect to process robustness, weld nugget shape and size, micro hardness and weld tensile strength. Various modified geometries are used, all modified geometries are designed in order to allow the welded material to expand more, compared to standard electrodes. Previous work has been done and shown that hollow electrodes that allow the welded material to expand can improve the weld quality and process robustness. However, this has been to the cost of nugget growth in the normal direction to the welded sheet, leaving a non-uniform surface. Hence the aim of this thesis is to investigate if it is possible to widen the current range in the weld lobe diagram when welding UHSS material combinations with RSW by the use of hollow electrodes without affecting weld quality negatively compared to standard electrodes. Weld quality in this thesis will be evaluated based on surface condition, mechanical strength, micro-hardness and weld nugget size. The modified electrodes have shown better weld properties with respect of current range in the weld lobe curves in most cases tested but not all of the material combinations tested compared with standard electrodes. The surface conditions of the welded specimens have been controlled by measuring any indent and raise by line laser scanning. Modified RSW electrodes has showed improved welding properties with respect to current range in the weld lobe curves compared to standard RSW electrodes when welding UHSS material combinations. However modified electrodes have shown a higher sensitivity to misalignment and angle fault. Several material combinations of UHSS that has shown non-weldable behavior with standard RSW electrodes have shown improved current range. In the best case the current range was increased to 3,9 kA for an UHSS material combination that is non-weldable with standard electrodes. 

  • 268. Alegre-Martínez, C.
    et al.
    Choi, K. -S
    Tammisola, Outi
    KTH, School of Engineering Sciences (SCI), Mechanics.
    McNally, D.
    On the axial distribution of plaque stress: Influence of stenosis severity, lipid core stiffness, lipid core length and fibrous cap stiffness2019In: Medical Engineering and Physics, Vol. 68, p. 76-84Article in journal (Refereed)
    Abstract [en]

    Numerical simulations of blood flow through a partially-blocked axisymmetric artery are performed to investigate the stress distributions in the plaque. We show that the combined effect of stenosis severity and the stiffness of the lipid core can drastically change the axial stress distribution, strongly affecting the potential sites of plaque rupture. The core stiffness is also an important factor when assessing plaque vulnerability, where a mild stenosis with a lipid-filled core presents higher stress levels than a severe stenosis with a calcified plaque. A shorter lipid core gives rise to an increase in the stress levels. However, the fibrous cap stiffness does not influence the stress distributions for the range of values considered in this work. Based on these mechanical analyses, we identify potential sites of rupture in the axial direction for each case: the midpoints of the upstream and downstream regions of the stenosis (for severe, lipid-filled plaques), the ends of the lipid core (for short cores), and the middle of the stenosis (for mild stenoses with positive remodelling of the arterial wall). 

  • 269.
    Alemani, Mattia
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Particle emissions from car brakes: The influence of contact conditions on the pad-to-rotor interface2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Due to their adverse health effects emissions have been regulated for over three decades. Brake wear particulate matter is the most important non-exhaust source, however current knowledge is mainly limited to observational studies. This thesis aims to investigate relations between the brake system contact conditions and the related emissions on a model scale; validate the results on a component level; and understand to what extent they are significant on a full-scale.

    Paper A investigates the influence of nominal contact pressure on a model scale. Results show that higher pressure corresponds to higher emissions

    Paper B investigates the influence of the nominal contact pressure, for different friction materials, on a model scale. A temperature threshold, responsible for a relevant emission increase, is identified.

    Paper C investigates particle characteristics and wear mechanisms for different nominal contact pressures, on a model scale. Results show an enhanced tribo-layer at higher pressure levels.

    Paper D investigates the influence of brake system conditions on emissions, on a model scale. Results show that frictional power is the most important parameter. A transition temperature independent of the contact condition is identified.

    Paper E investigates similarities occurring on a component scale and a model scale in terms of emissions. Results show a promising correlation, and the possibility of using a pin-on-disc tribometer for R&D activities.

    Paper F investigates analogies occurring on a component scale and a model scale, in terms of friction performance, fictional surface and chemical composition. Results show similar phenomena occurring for the two test stands.

    Paper G analyses real brake system working conditions in a urban environment defining, by means of an inertia dyno bench, the related emissions. Results reveal emission factors compliant to EURO6 and EURO2 regulations, in terms of number and mass, respectively.

  • 270. Alemani, Mattia
    et al.
    Nosko, Oleksii
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Metinoz, Ibrahim
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    A study on emission of airborne wear particles from car brake friction pairs2015In: SAE International Journal of Materials & Manufacturing, ISSN 1946-3979, E-ISSN 1946-3987, Vol. 9, no 1, p. 147-157, article id 2015-01-2665Article in journal (Refereed)
    Abstract [en]

    The emission of airborne wear particles from friction material / cast iron pairs used in car brakes was investigated, paying special attention to the influence of temperature. Five low-metallic materials and one non-asbestos organic material were tested using a pin-on-disc machine. The machine was placed in a sealed chamber to allow airborne particle collection. The concentration and size distribution of 0.0056 to 10 μm particles were obtained by a fast mobility particle sizer and an optical particle sizer. The temperature was measured by a thermocouple installed in the disc. The experiments show that as the temperature increases from 100 to 300 °C the emission of ultrafine particles intensifies while that of coarse particles decreases. There is a critical temperature at which the ultrafine particle emission rate rises stepwise by 4 to 6 orders of magnitude. For the friction pairs investigated, the critical temperature was found to be between 165 and 190 °C. Below the critical temperature, fine particles outnumber coarse and ultrafine particles, although coarse particles make up the bulk of the particulate matter mass. The friction pairs differ in the ultrafine particle emission rate by 1 to 2 orders of magnitude. Above the critical temperature, ultrafine particles constitute almost 100% of the total particle number and their relative mass contribution can exceed 50%. Analysis of the particle size distributions revealed peaks at 0.19-0.29, 0.9 and 1.7 μm. Above the critical temperature, one more peak appears in the ultrafine particle range at 0.011-0.034 μm.

  • 271. Alemani, Mattia
    et al.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Perricone, Guido
    Söderberg, Anders
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Ciotti, Alessandro
    A study on the load level influence on particulate matter emissions from the sliding contact between a low steel friction material and cast iron2015Conference paper (Refereed)
  • 272. Alemani, Mattia
    et al.
    Perricone, Guido
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Söderberg, Anders
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Ciotti, Alessandro
    A proposed dyno bench test cycle to study particle emissions from disc brakes2014Conference paper (Refereed)
  • 273.
    Alemani, Mattia
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.). Brembo S.p.A, Stezzano, Italy.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Matějka, Vlastimil
    Metinöz, Ibrahim
    Söderberg, Anders
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements.
    Perricone, Guido
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.). Brembo S.p.A, Stezzano, Italy.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Scaling effects of measuring disc brake airborne particulate matter emissions – A comparison of a pin-on-disc tribometer and an inertia dynamometer bench under dragging conditions2018In: Proceedings of the Institution of mechanical engineers. Part J, journal of engineering tribology, ISSN 1350-6501, E-ISSN 2041-305XArticle in journal (Refereed)
    Abstract [en]

    An important contributor to non-exhaust emissions in urban areas is airborne particulate matter originating from brake systems. A well-established way to test such systems in industry is to use inertia dynamometer benches; although they are quite expensive to run. Pin-on-disc tribometers, on the other hand, are relatively cheap to run, but simplify the real system. The literature indicates promising correlations between these two test stands with regard to measured airborne number distribution. Recent studies also show a strong dependency between the airborne number concentration and the disc temperature. However, a direct comparison that also takes into account temperature effects is missing. The aim of this paper is, therefore, to investigate how the transition temperature is affected by the different test scales, under dragging conditions, and the effects on total concentration and size distribution. New and used low-steel pins/pads were tested against cast iron discs/rotors on both the aforementioned test stands, appositely designed for particulate emission studies. A constant normal load and constant rotational velocity were imposed in both test stands. Results show that a transition temperature can always be identified. However, it is influenced by the test scale and the frictional pair status. Nevertheless, emissions are assessed similarly when an equivalent frictional pair status is analysed (e.g. run-in). Further investigations for fully run-in samples on the pin-on-disc should be performed in order to finally assess the possibility of using the tribometers for the initial assessment of different friction materials.

  • 274.
    Alemani, Mattia
    et al.
    KTH.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.). KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Elements. KTH, School of Industrial Engineering and Management (ITM), Applied Mechanical Engineering (KTH Södertälje). KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    On the influence of car brake system parameters on particulate matter emissions2018In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 396, p. 67-74Article in journal (Refereed)
    Abstract [en]

    The influence of car brake system parameters on particulate matter emissions was investigated using a pin-on-disc tribometer. Samples from a low-steel friction material and a cast iron disc were tested for different sliding velocities, nominal contact pressures and frictional powers. Disc temperatures were also measured. Their impact on total concentration, size distribution, particle coefficient and transition temperature was analysed. Results show that frictional power is the most significant brake system parameter. However, temperature, as a response parameter, is the most influential, inducing a shift towards the ultrafine particulate fraction and raising emissions. A transition temperature, independent of the system parameters, was identified.

  • 275.
    Alenius, Emma
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics.
    CFD of Duct Acoustics for Turbocharger Applications2010Licentiate thesis, monograph (Other academic)
    Abstract [en]

    The search for quieter internal combustion engines drives the quest for a better understanding of the acoustic properties of engine duct components. In this work the main focus is the turbocharger compressor and a discussion of turbocharger acoustics and earlier work within the area is presented, giving an insight into its sound generating mechanisms and the damping effect it has on pressure pulses, i.e. incoming waves. However, despite the fact that turbo-charging was developed during the first part of the 20th century, there is not much research results available within the area of centrifugal compressor acoustics.

    To improve the understanding of the acoustics of engine duct components, methods based on compressible Large Eddy Simulation (LES) are explored. With these methods it is possible to capture both the complex flow, with sound generating mechanisms, and acoustic - flow interactions. It is also possible to get a detailed insight into some phenomena by access to variables and/or areas where it is difficult to perform measurements. In order to develop these methods the linear scattering of low frequency waves by an orifice plate have been studied, using an acoustic two-port model. This simple geometry was chosen since the flow has several of the characteristics seen in a compressor, like unsteady separation, vortex generation and shock waves at high Mach numbers. Furthermore the orifice plate is in itself interesting in engine applications, where constrictions are present in the ducts. The results have been compared to measurements with good agreement and the sensitivity to different parameters has been studied, showing an expected dependence on inlet Mach number and difficulties to simultaneously keep the amplitude low enough for linearity and high enough to suppress flow noise with the short times series available in LES. 

    During the development of new engines the industry uses 1D engine CFD tools. These tools are developed to give performance data, but sometimes also the acoustic pulsations are studied. The duct components are modelled and the turbocharger is often modelled with a map, representing its fluid mechanical properties measured under steady state conditions. An aim in this work has been to study the limitations of the models available in the commercial software GT-Power. The scattering of incoming waves was simulated and the results were compared to measurements, showing a large discrepancy for the compressor and a significant discrepancy for the orifice plate.

  • 276.
    Alenius, Emma
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics.
    Flow Duct Acoustics: An LES Approach2012Doctoral thesis, monograph (Other academic)
    Abstract [en]

    The search for quieter internal combustion engines drives the quest for a better understanding of the acoustic properties of engine duct components. Simulations are an important tool for enhanced understanding; they give insight into the flow-acoustic interaction in components where it is difficult to perform measurements. In this work the acoustics is obtained directly from a compressible Large Eddy Simulation (LES). With this method complex flow phenomena can be captured, as well as sound generation and acoustic scattering.

    The aim of the research is enhanced understanding of the acoustics of engine gas exchange components, such as the turbocharger compressor.In order to investigate methods appropriate for such studies, a simple constriction, in the form of an orifice plate, is considered. The flow through this geometry is expected to have several of the important characteristics that generate and scatter sound in more complex components, such as an unsteady shear layer, vortex generation, strong recirculation zones, pressure fluctuations at the plate, and at higher flow speeds shock waves.

    The sensitivity of the scattering to numerical parameters, and flow noise suppression methods, is investigated. The most efficient method for reducing noise in the result is averaging, both in time and space. Additionally, non-linear effects were found to appear when the amplitude of the acoustic velocity fluctuations became larger than around 1~\% of the mean velocity, in the orifice.

    The main goal of the thesis has been to enhance the understanding of the flow and acoustics of a thick orifice plate, with a jet Mach number of 0.4 to 1.2. Additionally, we evaluate different methods for analysis of the data, whereby better insight into the problem is gained. The scattering of incoming waves is compared to measurements with in general good agreement. Dynamic Mode Decomposition (DMD) is used in order to find significant frequencies in the flow and their corresponding flow structures, showing strong axisymmetric flow structures at frequencies where a tonal sound is generated and incoming waves are amplified.The main mechanisms for generating plane wave sound are identified as a fluctuating mass flow at the orifice openings and a fluctuating force at the plate sides, for subsonic jets. This study is to the author's knowledge the first numerical investigation concerning both sound generation and scattering, as well as coupling sound to a detailed study of the flow.With decomposition techniques a deeper insight into the flow is reached. It is shown that a feedback mechanism inside the orifice leads to the generation of strong coherent axisymmetric fluctuations, which in turn generate a tonal sound.

  • 277.
    Alenius, Emma
    Department of Energy Sciences, Lund University, Sweden.
    Mode switching in a thick orifice jet, an LES and dynamic mode decomposition approach2014In: Computers & Fluids, ISSN 0045-7930, E-ISSN 1879-0747, Vol. 90, p. 101-112Article in journal (Refereed)
    Abstract [en]

    The dynamics of a confined thick orifice plate jet, at Mach 0.4, are studied with dynamic mode decomposition (DMD), of the velocity from a large eddy simulation (LES). The jet exhibits strong periodic structures, due to an initially laminar shear layer, and a non-deterministic switching is observed between an axisymmetric and an azimuthal jet mode. The DMD captures the shape of these structures as different dynamic modes, but (by definition) not their true time-evolution. In order to study the time-evolution of semi-periodic structures in the flow, such as the jet modes that come and go in time, it is suggested to use DMD for identifying the shape of the structures and then calculate time-coefficients for them, by expressing the velocity field as a linear combination of the most important dynamic modes. These time-coefficients are then shown to capture the physics of the flow; they oscillate at the frequency of the corresponding mode, within an envelope with a non-deterministically varying period, representing the mode switching. Additionally, a time variation of the strength of the jet, represented by mode zero, is found to be related to this switching.

  • 278.
    Alenius, Emma
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Sound Generating Flow Structures in a Thick Orifice Plate Jet2014In: Progress in Turbulence V: Proceedings of the iTi Conference in Turbulence 2012, Cham, Switzerland: Springer, 2014, p. 201-204Conference paper (Refereed)
    Abstract [en]

    The aim of thiswork is to study sound generating flowstructures in a thickcircular orifice plate jet, placed in a circular duct. Large eddy simulations (LES)are performed for two jet Mach numbers, 0.4 and 0.9. Characteristic frequenciesin the flow, and their corresponding flow structures, are identified with dynamicmode decomposition (DMD). The results show that a tonal noise is generated atfrequencies where the jet displays strong ring vortices, in the plane wave range.The main sound generating mechanisms seems to be a fluctuating mass flow at theorifice opening and a fluctuating surface force at the plate sides, caused by the ringvortices. The frequencies are believed to be chosen, and strengthened, by a feedbackmechanism between the orifice in- and outlet.

  • 279.
    Alenius, Emma
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Åbom, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Fuchs, Laszlo
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Large eddy simulations of acoustic-flow interaction at an orifice plate2015In: Journal of Sound and Vibration, ISSN 0022-460X, E-ISSN 1095-8568, Vol. 345, p. 162-177Article in journal (Refereed)
    Abstract [en]

    The scattering of plane waves by an orifice plate with a strong bias flow, placed in a circular or square duct, is studied through large eddy simulations and dynamic mode decomposition. The acoustic-flow interaction is illustrated, showing that incoming sound waves at a Strouhal number of 0.43 trigger a strong axisymmetric flow structure in the orifice in the square duct, and interact with a self-sustained axisymmetric oscillation in the circular duct orifice. These structures then generate a strong sound, increasing the acoustic energy at the frequency of the incoming wave. The structure triggered in the square duct is weaker than that present in the circular duct, but stronger than structures triggered by waves at other frequencies. Comparing the scattering matrix with measurements, there is a good agreement. However, the results are found to be sensitive to the inflow, where the self-sustained oscillation in the circular duct simulation is an artefact of an axisymmetric, undisturbed inflow. This illustrates a problem with using an undisturbed inflow for studying vortex-sound effects, and can be of interest when considering musical instruments, where the aim is to get maximum amplification of specific tones. Further, it illustrates that at the frequency where an amplification of acoustic energy is found for the orifice plate, the flow has a natural instability, which is suppressed by non-axisymmetry and incoming disturbances.

  • 280.
    Alenius, Emma
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Åbom, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics.
    Fuchs, Laszlo
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    LES of Acoustic-Flow Interaction at an Orifice Plate2012In: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012Conference paper (Other academic)
    Abstract [en]

    The scattering of plane waves by a thick orifice plate, placed in a circular or square duct with flow, is studied through Large Eddy Simulation. The scattering matrix is computed and compared to measurements, showing reasonably good agreement except around one frequency ($St \approx 0.4$). Here a stronger amplification of acoustic energy is observed in the circular duct simulations than in the measurements and the square duct simulations. In order to improve the understanding of the interaction between an incoming wave, the flow, and the plate, a few frequencies are studied in more detail. A Dynamic Mode Decomposition is performed to identify flow structures at significant frequencies. This shows that the amplification of acoustic energy occurs at the frequency where the jet in the circular duct has an axisymmetric instability. Furthermore, the incoming wave slightly amplifies this instability, and suppresses background flow fluctuations.

  • 281.
    Alenius, Emma
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Åbom, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, MWL Flow acoustics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Fuchs, Laszlo
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx).
    Scattering of Plane Waves by a Constriction2011In: Proceedings of ASME Turbo Expo 2011, Vol 7, Parts A-C, American Society Of Mechanical Engineers , 2011, p. 1043-1052Conference paper (Refereed)
    Abstract [en]

    Liner scattering of low frequency waves by an orifice plate has been studied using Large Eddy Simulation and an acoustic two-port model. The results have been compared to measurements with good agreement for waves coming from the downstream side. For waves coming from the upstream side the reflection is over-predicted, indicating that not enough of the acoustic energy is converted to vorticity at the upstream edge of the plate. Furthermore, the sensitivity to the amplitude of the acoustic waves has been studied, showing difficulties to simultaneously keep the amplitude low enough for linearity and high enough to suppress flow noise with the relatively short times series available in LES.

  • 282.
    Alevanau, Aliaksandr
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Study of pyrolysis and gasification of biomass from the self-organization perspective2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis focuses on the analysis of kinetics of i) low-temperature pyrolysis of gaseous hydrocarbons, ii) high-temperature steam gasification of char of wood pellets (>700oC), iii) high temperature pyrolysis of straw pellets in an atmosphere of argon and steam, and iv) high temperature pyrolysis of slices of transversally cut wooden sticks. The results of the kinetic measurements in the high-temperature cases are approximated using a least-square based optimization software, which was specially developed to analyse kinetics prone for deviation from the Arrhenius law.In the thesis a general analysis of the researched materials and kinetics of their pyrolysis and gasification is presented from the self-organization perspective. The energy transfer phenomena in both the pyrolysis and gasification processes of biomass are discussed with an emphasis on an analysis of basic phenomena involving the self-organized dynamics on fractal structures in the chosen biomass samples.

  • 283.
    Alevanau, Aliaksandr
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Study of the Apparent Kinetics of Biomass Gasification Using High-Temperature Steam2010Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Among the latest achievements in gasification technology, one may list the development of a method to preheat gasification agents using switched ceramic honey combs. The best output from this technology is achieved with use of water steam as a gasification agent, which is heated up to 1600 °C. The application of these temperatures with steam as a gasification agent provides a cleaner syngas (no nitrogen from air, cracked tars) and the ash melts into easily utilised glass-like sludge. High hydrogen content in output gas is also favourable for end-user applications.Among the other advantages of this technology is the presumable application of fixed-bed-type reactors fed by separately produced and preheated steam. This construction assumes relatively high steam flow rates to deliver the heat needed for endothermic reactions involving biomass. The biomass is to be heated uniformly and evenly in the volume of the whole reactor, providing easier and simpler control and operation in comparison to other types of reactors. To provide potential constructors and exploiters of these reactors with the kinetic data needed for the calculations of vital parameters for both reactor construction and exploitation, basic experimental research of high-temperature steam gasification of four types of industrially produced biomass has been conducted.Kinetic data have been obtained for straw and wood pellets, wood-chip charcoal and compressed charcoal of mixed origin. Experiments were conducted using two experimental facilities at the Energy and Furnace Division of the Department of Material Science and Engineering (MSE) at the School of Industrial Engineering and Management (ITM) of the Royal Institute of Technology (KTH) and at the Combustion Laboratory of the Mechanical Engineering Department of the University of Maryland (UMD), USA.

    The experimental facility at the Energy and Furnace Division has been improved with the addition of several constructive elements, providing better possibilities for thermo-gravimetric measurements.The obtained thermo-gravimetric data were analysed and approximated using several models described in the literature. In addition, appropriate software based on the Scilab package was developed. The implementation of the isothermal method based on optimisation algorithms has been developed and tested on the data obtained under the conditions of a slow decrease of temperature in experiments with the char gasification in small-scale experimental facilities in the Energy and Furnace Division.The composition of the gases generated during the gasification of straw and wood pellets by high-temperature steam has been recorded and analysed for different experimental conditions.

     

  • 284.
    Alevanau, Aliaksandr
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Ahmed, Islam
    Gupta, Ashwani K.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Parameters of high temperature steam gasification of original and pulverised wood pellets2011In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 92, no 10, p. 2068-2074Article in journal (Refereed)
    Abstract [en]

    Experiments on gasification of chars obtained from original and pulverised wood pellets were conducted in atmosphere of water steam and nitrogen under temperatures of 800, 900 and 950 degrees C. Molar flow rates of carbon containing product gases were measured and approximated using different models with respect to extents of carbon conversion in char of the pellets. Comparison of the random pore, grain and volumetric models revealed the best applicability for approximations of the random pore model. Apparent activation energies obtained as a result of application of the models to the data from experiments with char of original pellets were higher in comparison to those of pulverised pellets, except for a grain model. Approximations under 800 degrees C showed relatively big deviations from experimental data on the beginning of char gasification. This is attributed to catalytic effects from alkali metals in the pellets.

  • 285.
    Alevanau, Aliaksandr
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Donaj, Pawel
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Applicability of Scaling Approach for Analysis of Pyrolysis and Gasification of Porous Structures Composed of Solid Fuel Particles2012In: ISRN Mechanical Engineering, ISSN 2090-5122, E-ISSN 2090-5130, article id 207464Article in journal (Refereed)
    Abstract [en]

    Experimental research on the pyrolysis and gasification of randomly packed straw pellets was conducted with an emphasis on the reactive properties of the shrinking porous structure of the pellets. The apparent kinetics of such pyrolysis was approximated by the random pore, grain, and volumetric models. The best approximation results were obtained with the grain and random pore models. The self-organized oscillations of the pellet conversion rate during pyrolysis were observed. Two complementary explanations of the phenomenon are proposed.

  • 286.
    Alevanau, Aliaksandr
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Donaj, Pawel
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    High temperature steam gasification of straw pelletsManuscript (preprint) (Other academic)
  • 287.
    Alevanau, Aliaksandr
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Ersson, Mikael
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Kantarelis, Efthymios
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Kuznechik, Olgerd
    Belarussian State University.
    Vyhoniailo, Oleksandr
    Mechanically assisted low temperature pyrolysis of hydrocarbons2014In: Proceedings of the XVII International Conference Foundations & Advances in Nonlinear Science, September 29 - October 3, Minsk 2014, 2014Conference paper (Refereed)
    Abstract [en]

    We report experimental setups and conditions leading to pyrolysis (cracking) of such gaseous hydrocarbons as methane, mixed propane and butane, at the temper-atures of the heater below 200oC. The process was mechanically assisted by putting the substances being decomposed into a dynamic interaction with the tin and bismuth alloy. The alloy had periodically changing phase state thus creating fractal interfaces between its surface and the gases. Interaction of the gases with mechanically produced fractal surfaces of the alloy made possible gas decomposition even at lower temperatures of the heater (150oC). At this temperature the heater couldn't melt the alloy in the heated volume with the gas.

  • 288.
    Alevanau, Aliaksandr
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Kantarelis, Efthymios
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Study of the effects of gaseous micro-expansion on the efficiency of convective heat transfer during pyrolysis2013In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 106, p. 253-261Article in journal (Refereed)
    Abstract [en]

    Measurements of temperature in the proximity of wood pellets (8 mm diameter) and thin wooden stick slices (5 cm diameter and 5 mm thickness) were conducted to estimate the effects of mixing between the evolving volatiles and hot steam (T > 700°C) flowing around the particles. Measurements of mass loss of the slices were conducted to estimate the apparent kinetic parameters of their pyrolysis. A simple kinetic model of the process (type II by Pyle and Zaror (1984) [20]) was investigated. The experiments showed a plateau-like part in the graphs of temperature measured in the proximity to the samples. The existence of this plateau-like part agrees with the general data of calorimetric measurements of pyrolysis, which show extensive energy consumption in the beginning of an active production of volatiles. A hypothesis regarding feedback on the process due to the micro-expansion and mixing of volatiles in the convective boundary layer is discussed.

  • 289.
    Alevanau, Aliaksandr
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Kuznechik, O.
    Vyhoniailo, O.
    Prospective side effects of the heat and mass transfers in micro-porous structure of char during intermediate and final stages of the high-temperature pyrolysis2013In: Nonlinear Phenomena in Complex Systems, ISSN 1561-4085, E-ISSN 1817-2458, Vol. 16, no 3, p. 287-301Article in journal (Refereed)
    Abstract [en]

    The general problem of a decrease of activation energy for reactions of thermal decomposition in ligno-cellulosic materials in the end of the high-temperature pyrolysis has been discussed. Experiments emphasizing the differences between the starting, intermediate and final stages of the process were conducted. A hypothesis to solve the problem from the point of view of a fundamental fractal theory was formulated. The conclusions of the discussions related to the hypothesis gave a description of new experiments to prove the fundamental theory on diffusion processes with naturally or artificially created conditions for self-organization.

  • 290.
    ALEXANDRAKIS, VASSILIS
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    A participatory approach to the development of specifications for a 3D puzzle for visually impaired and sighted users2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    There are a limited number of puzzles accessible to visually impaired people (including the blind population) and also limited 3D map-puzzles available in the market. In order to explore the interest of potential users in 3D map-puzzles and identify their preferences, needs and demands, a participatory design approach was adopted. The project took place in Crete and all participants came from the local population. Because of the non-standard population included in this research project (visually impaired people) accessible methods and means of communication had to be selected. Therefore an extensive background research was performed, including interviews with experts and a thorough study of existing knowledge and previous research in related fields.  Aiming to facilitate understanding of the concept and to provide a common point of reference for all participants, functional prototypes of a 3D map-puzzle of the island of Crete were developed and manufactured. Prototypes were made of wood, either Pine or MDF. Subsequently, focus group and interview sessions were organized. Visually impaired and sighted, adults and children, participated in these sessions which included usability testing of the prototypes, scenario creation and a questionnaire (for the sighted participants).

    Data collected in the conducted sessions were analyzed using qualitative and quantitative methods. The results revealed usability problems of the prototypes and provided signs of potential problems, most of them related to the use of similar products by visually impaired individuals. Additionally, preferences and needs of the participants about the theme, the size, the material, the type of connection and other elements of the puzzle, were identified. According to the findings, the most severe problem, occurring when visually impaired participants tried to assemble the puzzle, was the uncertainty or “lack of confirmation” whether pieces were assembled in the right way or not. The most popular connection types among visually impaired participants were “fit in a frame” and “magnet”. Additionally, the majority of visually impaired participants were in favor of adding colors on the puzzle and marks for the different cities. Regarding buying interest, six out of eight visually impaired participants stated that they would buy a puzzle like the one they tested. Out of the twenty-two sighted participants, nine answered that it is “possible” and eleven answered that it is “highly possible” to buy a 3D map-puzzle. More than half of the sighted participants selected colors as an additional element on the puzzle while the two most popular connection types were “loose contact” and “fit in a frame”. Regarding the material of the puzzle,

    wood was well accepted by both sighted and visually impaired participants. However, only prototypes made from wood were available to the participants.  Additionally, participants made various suggestions regarding the theme, the size and additional elements of a 3D puzzle. As a result, many ideas were produced during the sessions. Eventually, outcomes, problems and limitations related to the methods used during the study were discussed and recommendations for future work were made.

  • 291.
    ALEXANDRAKIS, VASSILIS
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    A participatory approach to the development of specifications for a 3D puzzle for visually impaired and sighted users2016Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    There are a limited number of puzzles accessible to visually impaired people (including the blind population) and also limited 3D map-puzzles available in the market. In order to explore the interest of potential users in 3D map-puzzles and identify their preferences, needs and demands, a participatory design approach was adopted. The project took place in Crete and all participants came from the local population. Because of the non-standard population included in this research project (visually impaired people) accessible methods and means of communication had to be selected. Therefore an extensive background research was performed, including interviews with experts and a thorough study of existing knowledge and previous research in related fields.  Aiming to facilitate understanding of the concept and to provide a common point of reference for all participants, functional prototypes of a 3D map-puzzle of the island of Crete were developed and manufactured. Prototypes were made of wood, either Pine or MDF. Subsequently, focus group and interview sessions were organized. Visually impaired and sighted, adults and children, participated in these sessions which included usability testing of the prototypes, scenario creation and a questionnaire (for the sighted participants). Data collected in the conducted sessions were analyzed using qualitative and quantitative methods. The results revealed usability problems of the prototypes and provided signs of potential problems, most of them related to the use of similar products by visually impaired individuals. Additionally, preferences and needs of the participants about the theme, the size, the material, the type of connection and other elements of the puzzle, were identified. According to the findings, the most severe problem, occurring when visually impaired participants tried to assemble the puzzle, was the uncertainty or “lack of confirmation” whether pieces were assembled in the right way or not. The most popular connection types among visually impaired participants were “fit in a frame” and “magnet”. Additionally, the majority of visually impaired participants were in favor of adding colors on the puzzle and marks for the different cities. Regarding buying interest, six out of eight visually impaired participants stated that they would buy a puzzle like the one they tested. Out of the twenty-two sighted participants, nine answered that it is “possible” and eleven answered that it is “highly possible” to buy a 3D map-puzzle. More than half of the sighted participants selected colors as an additional element on the puzzle while the two most popular connection types were “loose contact” and “fit in a frame”. Regarding the material of the puzzle, wood was well accepted by both sighted and visually impaired participants. However, only prototypes made from wood were available to the participants.  Additionally, participants made various suggestions regarding the theme, the size and additional elements of a 3D puzzle. As a result, many ideas were produced during the sessions. Eventually, outcomes, problems and limitations related to the methods used during the study were discussed and recommendations for future work were made.

  • 292.
    Alfredsson, Bo
    University of Waterloo, Department of Management Sciences.
    2-Machine and 3-Machine Flow-Shop Scheduling Problemns with Equal Sized Transfer Batches1992In: International Journal of Production Research, ISSN 0020-7543, E-ISSN 1366-588X, Vol. 30, no 7, p. 1551-1574Article in journal (Refereed)
  • 293.
    Alfredsson, Bo
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Arregui, I. Linares
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Lai, J.
    Low temperature creep in a high strength roller bearing steel2016In: Mechanics of materials (Print), ISSN 0167-6636, E-ISSN 1872-7743, Vol. 100, p. 109-125Article in journal (Refereed)
    Abstract [en]

    Noticeable low temperature creep was established for a bainitic and a martensitic microstructure of the 100CrMnMo8 high strength roller bearing steel. The response revealed primary creep that differed between the microstructures, following a power law for martensite and the logarithmic description for bainite. The detected creep was pressure sensitive, higher in tension than in compression for the same stress level, following the strength differential effect (SDE) at material yielding. Two models were proposed where the stress variable for the pressure effect was based on the Drucker-Prager yield function and deviatoric creep strains were derived from a non-associated von Mises potential. Model parameters were determined from experimental series on the respective microstructure. When the models were evaluated against the experiments the accuracy was of the same order as the effects of different heat treatment batches and different load application rates. The importance of different material parameters in the descriptions was discussed.

  • 294.
    Alfredsson, Bo
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Everitt, Carl-Magnus
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Investigation of the asperity point load mechanism for thermal elastohydrodynamic conditions2019Conference paper (Refereed)
  • 295.
    Alfredsson, Bo
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Nordin, E.
    An Elastic-Plastic Model for Single Shot-Peening Impacts2013In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 52, no 2, p. 231-251Article in journal (Refereed)
    Abstract [en]

    A model was developed for impacts of elastic perfectly plastic spherical particles with impact velocities up to 250 m/s. The model is based on the two master curves, for normalized pressure and projected contact area c (2), which both are functions of the representative strain I > at maximum impact. The model and its parameters were fitted to finite element results for elastic perfectly plastic and strain rate-independent materials. It was applied to a wide range of materials with different ratio between yield stress and elastic properties, different ball sizes and impact velocities. The impact model predicted the results from finite element method for contact radius, maximum impact depth in both target and ball as well as remaining impact depth in target and ball. The remaining impact depth was determined from elastic spring back with Hertzian and quadratic pressure at maximum impact. The rebound velocity was also estimated by following the load-deformation path during spring back. If the strain rate-compensated yield stress was used for the master curve parameters, then the model predicted the impact results also for the investigated strain rate-dependent materials.

  • 296.
    Alfredsson, Bo
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Nordin, Erland
    Ekström, Karin
    Experimental investigation of the strain rate dependence of the SS 2506 gear steel2014Conference paper (Refereed)
  • 297.
    Alfredsson, Bo
    et al.
    KTH, Superseded Departments, Solid Mechanics.
    Olsson, Mårten
    KTH, Superseded Departments, Solid Mechanics.
    Standing Contact Fatigue Testing of a Ductile Material: Surface and Sub-Surface Cracks2000In: Fatigue & Fracture of Engineering Materials & Structures, ISSN 8756-758X, E-ISSN 1460-2695, Vol. 23, no 3, p. 229-240Article in journal (Refereed)
    Abstract [en]

    During standing contact fatigue testing of case hardened steel plates, four different fatigue crack types are found: ring/cone; lateral; radial; and median cracks. Fatigue results are presented as load versus cycle number, with endurance limits and initiation laws for the ring/cone and lateral cracks. The behaviour of the radial surface strain outside the contact is altered by the presence of cracks. In particular this makes in situ crack detection possible for the lateral crack.

    The ductility of the tested material is found to be important for fatigue crack initiation. Numerical elastoplastic computations are used to derive the stress cycles responsible for each crack type. Stress cycles at different locations and in different directions are compared in order to explain why a particular crack type initiates. It is noted that cracks are produced normal to principal stresses of sufficient range, which are tensile sometime during the load cycle. Implications for spalling are discussed.

  • 298.
    Alfredsson, Bo
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Öberg, Martin
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Lai, J.
    Propagation of physically short cracks in a bainitic high strength bearing steel due to fatigue load2016In: International Journal of Fatigue, ISSN 0142-1123, E-ISSN 1879-3452, Vol. 90, p. 166-180Article in journal (Refereed)
    Abstract [en]

    Physically short cracks in a bainitic high strength bearing steel were fatigue loaded. The rapid propagation rate of early open short cracks agreed with that of long closure free cracks. After some rapid growth, the short cracks entered a transition period to the rate of growth limited long cracks. Potential drop showed that the short cracks were open to the tip throughout the growth sequence, which excluded crack face closure in the wake as the growth limiting mechanism in this material. Instead the short crack effect was related to residual stresses and other mechanisms at the crack tip. Crack manufacturing procedures were determined for straight long and short start cracks in the present material. LEFM with effective material parameters and limit compensation predicted the short crack lives.

  • 299. Alfredsson, Ludvig
    et al.
    Fazl, Asade
    Lund, Katarina
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Integrated Product Development.
    Söderberg, Björn
    Product Development Management2011In: Entering the tigers cave – Perspectives on Japanese and Swedish Product Development / [ed] Bergsjö, Dag, Göteborg: Department of Product and Production Development, Chalmers University of Technology , 2011Chapter in book (Other (popular science, discussion, etc.))
  • 300.
    Alfredsson, P. Henrik
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Lingwood, Rebecca J.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. University of Cambridge, United Kingdom .
    Rotation Effects on Wall-Bounded Flows: Some Laboratory Experiments2014In: Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations, Wiley-Blackwell, 2014, p. 83-100Chapter in book (Other academic)
    Abstract [en]

    This chapter focuses on three different categories: (1) system rotation vector parallel to mean-flow vorticity; (2) flows set up by the rotation of one or more boundaries; and (3) system rotation aligned with the mean-flow direction. The flows in the different categories above differ with respect to their geometry but, more importantly, in how rotation affects them. The chapter focuses on three different flows that are relatively amenable to laboratory investigation, one from each category described above: One is plane Couette flow undergoing system rotation about an axis normal to the mean flow, another is the von Kármán boundary layer flow, and the third is axially rotating pipe flow. It defines important nondimensional parameters that govern them and discuss some of their interesting flow features in various parameter ranges. Various experimental realizations of the three different flow systems are described and considerations and limitations regarding the laboratory systems are discussed.

3456789 251 - 300 of 11713
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf