Change search
Refine search result
3456 251 - 263 of 263
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 251. Vuorinen, V.
    et al.
    Larmi, M.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Fuchs, Laszlo
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Boersma, B. J.
    A low-dissipative, scale-selective discretization scheme for the Navier-Stokes equations2012In: Computers & Fluids, ISSN 0045-7930, E-ISSN 1879-0747, Vol. 70, p. 195-205Article in journal (Refereed)
    Abstract [en]

    A new Scale-Selective Discretization (SSD) procedure for the Navier-Stokes equations is proposed. The aim is to reduce the numerical dissipation of already existing numerical schemes to make the SSD scheme easily implementable to the existing CFD codes. In particular, the new procedure is designed to decrease the dissipation errors arising from the discretization of the convection term using upwind-biased convection schemes. Such dissipative errors reduce the quality of high-fidelity simulation approaches in fluid dynamics such as Large-Eddy Simulations (LES). The new discretization procedure is based on separating small and large scales of the flow using a high-pass filter. As a first pre-processing step the convecting velocity field u i is decomposed into a rapidly fluctuating part ui' using the high-pass filter and a smooth part ui-ui'. After this the derivatives involving ui-ui' may be discretized with a centered scheme whereas the derivatives involving ui' can be discretized using an upwind method. The new procedure is tested in Navier-Stokes simulations by implementing the method into a second order accurate incompressible finite volume code based on the fractional step method. The numerical tests on the 2D lid-driven cavity at laminar conditions Re=2500 imply that the new method clearly improves the quality of the simulations. At Re=10,000 the SSD scheme captures the post-critical state of the cavity flow. The advantages of the new method are quantitatively assessed by studying a 2D temporally evolving shear layer. The results imply that the SSD scheme significantly reduces the numerical diffusion in contrast to the conventional upwind-biased schemes. Results from marginally resolved turbulent channel flow at Re τ=590 imply that the new scheme can be used for 3D simulations.

  • 252. Walsh, Edmond J.
    et al.
    Mc Eligot, Donald M.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Schlatter, Phillip
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Entropy Generation in a Boundary Layer Transitioning Under the Influence of Freestream Turbulence2011In: Journal of Fluids Engineering - Trancactions of The ASME, ISSN 0098-2202, E-ISSN 1528-901X, Vol. 133, no 6, p. 061203-Article in journal (Refereed)
    Abstract [en]

    The objective of the present research is to develop new fundamental knowledge of the entropy generation process in laminar flow with significant fluctuations (called pre-transition) and during transition prematurely induced by strong freestream turbulence (bypass transition). Results of direct numerical simulations are employed. In the pre-transitional boundary layer, the perturbations by the streaky structures modify the mean velocity profile and induce a "quasi-turbulent" contribution to indirect dissipation. Application of classical laminar theory leads to underprediction of the entropy generated. In the transition region the pointwise entropy generation rate (S''')(+) initially increases near the wall and then decreases to correspond to the distribution predicted for a fully-turbulent boundary layer as the flow progresses downstream. In contrast to a developed turbulent flow, the term for turbulent convection in the turbulence kinetic energy balance is significant and can play an important role in some regions of the transitioning boundary layer. More turbulent energy is produced than dissipated and the excess is convected downstream as the boundary layer grows. Since it is difficult to measure and predict true turbulent dissipation rates (and hence, entropy generation rates) exactly other than by expensive direct numerical simulations, a motivation for this research is to evaluate approximate methods for possible use in experiments and design. These new results demonstrate that an approximate technique, used by many investigators, overestimates the dissipation coefficient C-d by up to seventeen per cent. For better predictions and measurements, an integral approach accounting for the important turbulent energy flux is proposed and validated for the case studied.

  • 253. Wang, Z.
    et al.
    Örlü, Ramis
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics.
    Chung, Y. M.
    Direct numerical simulation of a turbulent 90° bend pipe flow2018In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 73, p. 199-208Article in journal (Refereed)
    Abstract [en]

    Direct numerical simulation (DNS) has been performed for a spatially developing 90° bend pipe flow to investigate the unsteady flow motions downstream of the bend. A recycling method is implemented to generate a fully-developed turbulent inflow condition. The Reynolds number of the pipe flow is ReD=5300 and the bend curvature is γ=0.4. A long straight pipe section (40D) is attached in the downstream of the bend to allow the flow to develop. Flow oscillations downstream of the bend are measured using several methods, and the corresponding oscillation frequencies are estimated. It is found that different characteristic frequencies are obtained from various flow measurements. The stagnation point movement and single-point velocity measurements may not be good measures to determine the swirl-switching frequency. The oscillations of the lateral pressure force on the pipe wall and half-sided mass flow rate are proposed to be a more unambiguous measure of the unsteady flow motions downstream of the bend. 

  • 254.
    Wei, Liang
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Brethouwer, Gert
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Elsinga, G. E.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.
    Johansson, Arne V.
    KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Scaling of small-scale motions in wall-bounded turbulent flows2013In: International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2013, TSFP-8 , 2013Conference paper (Refereed)
    Abstract [en]

    The objective is to investigate flow topology and related Reynolds-number scaling in the eigenframe of the strain-rate tensor for wall-bounded turbulent flows. The databases used in the current study are from direct numerical simulations (DNS) of fully developed channel flow up to friction Reynolds number Ret ≈ 1500, and a spatially developing, zero-pressure-gradient turbulent boundary layer up to Reθ ≈ 4300 (Ret ≈ 1400)., and a spatially developing, zero-pressure-gradient turbulent boundary layer up to Reθ ≈ 4300 (Ret ≈ 1400).. It is found that for all cases considered, the averaged flow patterns in the local strainrate eigenframe appear universal: large scale motions are separated by a shear layer with a pair of vortices. Based on Kolmogorov (η,uη), Taylor (lt) and integral length scales, Reynolds-number scalings of the averaged flow patterns, including the thickness and strength of the shear layer, the distance between the two vortical regions, and the velocity distribution along the most compressing and stretching directions are considered. It is found that the Taylor scaling of the profiles for the thickness of the shear layer seems more suitable than the Kolmogorov scaling, and the integral scaling collapses well away from the shear layer, which confirms that those patterns represent large scales. Generally speaking, the scaling profiles based on the Kolmogorov length and velocity collapse well near the origin, but the Taylor scaling seems best suited in a broader region.

  • 255.
    Wei, Liang
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Elsinga, Gerrit E.
    Brethouwer, Geert
    KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Johansson, Arne V.
    KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Universality and scaling phenomenology of small-scale turbulence in wall-bounded flows2014In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 26, no 3, p. 035107-Article in journal (Refereed)
    Abstract [en]

    The Reynolds number scaling of flow topology in the eigenframe of the strain-rate tensor is investigated for wall-bounded flows, which is motivated by earlier works showing that such topologies appear to be qualitatively universal across turbulent flows. The databases used in the current study are from direct numerical simulations (DNS) of fully developed turbulent channel flow (TCF) up to friction Reynolds number Re-tau approximate to 1500, and a spatially developing, zero-pressure-gradient turbulent boundary layer (TBL) up to Re-theta approximate to 4300 (Re-tau approximate to 1400). It is found that for TCF and TBL at different Reynolds numbers, the averaged flow patterns in the local strain-rate eigenframe appear the same consisting of a pair of co-rotating vortices embedded in a finite-size shear layer. It is found that the core of the shear layer associated with the intense vorticity region scales on the Kolmogorov length scale, while the overall height of the shear layer and the distance between the vortices scale well with the Taylor micro scale. Moreover, the Taylor micro scale collapses the height of the shear layer in the direction of the vorticity stretching. The outer region of the averaged flow patterns approximately scales with the macro scale, which indicates that the flow patterns outside of the shear layer mainly are determined by large scales. The strength of the shear layer in terms of the peak tangential velocity appears to scale with a mixture of the Kolmogorov velocity and root-mean-square of the streamwise velocity scaling. A quantitative universality in the reported shear layers is observed across both wall-bounded flows for locations above the buffer region.

  • 256.
    Åkervik, Espen
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Hoepffner, Jérôme
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Marxen, Olaf
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Steady solutions of the Navier-Stokes equations by selective frequency damping2006In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 18, no 6, p. 068102-Article in journal (Refereed)
    Abstract [en]

    A new method, enabling the computation of steady solutions of the Navier-Stokes equations in globally unstable configurations, is presented. We show that it is possible to reach a steady state by damping the unstable (temporal) frequencies. This is achieved by adding a dissipative relaxation term proportional to the high-frequency content of the velocity fluctuations. Results are presented for cavity-driven boundary-layer separation and a separation bubble induced by an external pressure gradient.

  • 257. Åström, J.A.
    et al.
    Carter, A.
    Hetherington, J.
    Ioakimidis, K.
    Lindahl, Erik
    KTH, School of Engineering Sciences (SCI), Theoretical Physics, Theoretical & Computational Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mozdzynski, G.
    Nash, R. W.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Signell, A.
    Westerholm, J.
    Preparing scientific application software for exascale computing2013In: Applied Parallel and Scientific Computing: 11th International Conference, PARA 2012, Helsinki, Finland, June 10-13, 2012, Revised Selected Papers / [ed] Pekka Manninen, Per Öster, Springer, 2013, p. 27-42Conference paper (Refereed)
    Abstract [en]

    Many of the most widely used scientifc application software of today were developed largely during a time when the typical amount of compute cores was calculated in tens or hundreds. Within a not too distant future the number of cores will be calculated in at least hundreds of thousands or even millions. A European collaboration group CRESTA has recently been working on a set of renowned scientific software to investigate and develop these codes towards the realm of exascale computing. The codes are ELMFIRE, GROMACS, IFS, HemeLB, NEK5000, and OpenFOAM. This paper contains a summary of the strategies for their development towards exascale and results achieved during the first year of the collaboration project.

  • 258.
    Örlü, Ramis
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Malizia, Fabio
    Cimarelli, Andrea
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Talamelli, Alessandro
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Univ Bologna, Italy.
    The influence of temperature fluctuations on hot-wire measurements in wall-bounded turbulence2014In: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, Vol. 55, no 7, p. 1781-Article in journal (Refereed)
    Abstract [en]

    There are no measurement techniques for turbulent flows capable of reaching the versatility of hot-wire probes and their frequency response. Nevertheless, the issue of their spatial resolution is still a matter of debate when it comes to high Reynolds number near-wall turbulence. Another, so far unattended, issue is the effect of temperature fluctuations-as they are, e. g. encountered in non-isothermal flows-on the low and higher-order moments in wall-bounded turbulent flows obtained through hot-wire anemometry. The present investigation is dedicated to document, understand, and ultimately correct these effects. For this purpose, the response of a hot-wire is simulated through the use of velocity and temperature data from a turbulent channel flow generated by means of direct numerical simulations. Results show that ignoring the effect of temperature fluctuations, caused by temperature gradients along the wall-normal direction, introduces-despite a local mean temperature compensation of the velocity reading-significant errors. The results serve as a note of caution for hot-wire measurements in wall-bounded turbulence, and also where temperature gradients are more prevalent, such as heat transfer measurements or high Mach number flows. A simple correction scheme involving only mean temperature quantities (besides the streamwise velocity information) is finally proposed that leads to a substantial bias error reduction.

  • 259.
    Örlü, Ramis
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Comparison of experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers2013In: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, Vol. 54, no 6, p. 1547-Article in journal (Refereed)
    Abstract [en]

    A detailed comparison between recent direct numerical simulation (DNS) and experiments of a turbulent boundary layer under zero pressure gradient at Re-theta = 2,500 and 4,000 (based on the free-stream velocity and momentum-loss thickness) is presented. The well-resolved DNS is computed in a long spatial domain (Schlatter and Orlu in J Fluid Mech 659: 116, 2010a), including the disturbance strip, while the experiments consist of single hot-wire probe and oil-film interferometry measurements. Remarkably, good agreement is obtained for integral quantities such as skin friction and shape factor, as well as mean and fluctuating streamwise velocity profiles, higher-order moments and probability density distributions. The agreement also extends to spectral/structural quantities such as the amplitude modulation of the small scales by the large-scale motion and temporal spectral maps throughout the boundary layer. Differences within the inner layer observed for statistical and spectral quantities could entirely be removed by spatially averaging the DNS to match the viscous-scaled length of the hot-wire sensor, thereby explaining observed differences solely by insufficient spatial resolution of the hot-wire sensor. For the highest Reynolds number, Re-theta = 4,000, the experimental data exhibit a more pronounced secondary spectral peak in the outer region (y/delta(99) = 0.1) related to structures with length on the order of 5-7 boundary layer thicknesses, which is weaker and slightly moved towards lower temporal periods in the DNS. The cause is thought to be related to the limited spanwise box size which constrains the growth of the very large structures. In the light of the difficulty to obtain "canonical" flow conditions, both in DNS and the wind tunnel where effects such as boundary treatment, pressure gradient and turbulence tripping need to be considered, the present cross-validation of the data sets, at least for the present Re-theta-range, provides important reference data for future studies and highlights the importance of taking spatial resolution effects into account when comparing experiment and DNS. For the considered flow, the present data also provide quantitative guidelines on what level of accuracy can be expected for the agreement between DNS and experiments.

  • 260.
    Örlü, Ramis
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Inflow length and tripping effects in turbulent boundary layers2011In: 13TH European Turbulence Conference (ETC13): Wall-Bounded Flows And Control Of Turbulence, Institute of Physics Publishing (IOPP), 2011, p. 022018-Conference paper (Refereed)
    Abstract [en]

    A recent assessment of available direct numerical simulation (DNS) data from turbulent boundary layer flows [Schlatter & Orlu, J. Fluid Mech. 659, 116 (2010)] showed surprisingly large differences not only in the skin friction coefficient or shape factor, but also in their predictions of mean and fluctuation profiles far into the sublayer. For the present paper the DNS of a zero pressure-gradient turbulent boundary layer flow by Schlatter et al. [Phys. Fluids 21, 051702 (2009)] serving as the baseline simulation, was re-simulated, however with physically different inflow conditions and tripping effects. The downstream evolution of integral and global quantities as well as mean and fluctuation profiles are presented and results indicate that different inflow conditions and tripping effects explain most of the differences observed when comparing available DNS. It is also found, that if transition is initiated at a low enough Reynolds number (based on the momentum-loss thickness) Re-theta < 300, all data agree well for both inner and outer layer for Re-theta > 2000; a result that gives a lower limit for meaningful comparisons between numerical and/or wind tunnel experiments.

  • 261.
    Örlü, Ramis
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows2011In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 23, no 2, p. 021704-Article in journal (Refereed)
    Abstract [en]

    Recent direct numerical simulation (DNS) results relating to the behavior of the fluctuating wall-shear stress tau(+)(w,rms) in turbulent boundary layer flows are discussed. This new compilation is motivated by a recent article [Wu and Moin, "Transitional and turbulent boundary layer with heat transfer," Phys. Fluids 22, 085105 (2010)], which indicates a need for clarification of the value of tau(+)(w,rms). It is, however, shown here, based on other recent DNS data, that most results, both in boundary layer and channel geometry, yield tau(+)(w,rms)approximate to 0.4 plus a small increase with Reynolds number coming from the growing influence of the outer spectral peak. The observed discrepancy in experimental data is mainly attributed to spatial resolution effects, as originally described by Alfredsson et al. [" The fluctuating wall-shear stress and the velocity field in the viscous sublayer, "Phys. Fluids 31, 1026 (1988)].

  • 262.
    Örlü, Ramis
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Royal Inst Technol, Linn FLOWCtr, KTHMech, SE-10044 Stockholm, Sweden..
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Royal Inst Technol, Linn FLOWCtr, KTHMech, SE-10044 Stockholm, Sweden..
    Turbulent Boundary-Layer Flow: Comparing Experiments with DNS2012In: PROGRESS IN TURBULENCE AND WIND ENERGY IV / [ed] Oberlack, M Peinke, J Talamelli, A Castillo, L Holling, M, SPRINGER-VERLAG BERLIN , 2012, p. 213-216Conference paper (Refereed)
  • 263.
    Örlü, Ramis
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Vinuesa, Ricardo
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Vila, C. S.
    DIscetti, S.
    Ianiro, A.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Towards canonical adverse-pressure-gradient turbulent boundary layers2017In: 10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017, International Symposium on Turbulence and Shear Flow Phenomena, TSFP10 , 2017, Vol. 3Conference paper (Refereed)
    Abstract [en]

    The present investigation focuses on the concerted investigation of pressure gradient and streamwise curvature effects on turbulent boundary layers. In particular, a number of direct and large-eddy simulations covering a wide range of pressure gradient parameters and streamwise histories on flat and curved surfaces is performed and will be compared with wind-tunnel experiments utilising hot-wire anemometry and particle image velocimetry that overlap and extend the Reynolds number range. Results are aimed at isolating the effects of pressure gradients, streamwise curvature and streamwise (pressure gradient) histories as well as Reynolds number, which have traditionally inhibited to draw firm conclusions from the available data.

3456 251 - 263 of 263
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf