Endre søk
Begrens søket
4567 301 - 309 of 309
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 301.
    Yang, Xuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH Royal institute of technology.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg.
    Recycling without Fiber Degradation: Strong Paper Structures for 3D Forming Based on Nanostructurally Tailored Wood Holocellulose FibersManuskript (preprint) (Annet vitenskapelig)
  • 302.
    Yang, Xuan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Water-Based Approach to High-Strength All-Cellulose Material with Optical Transparency2018Inngår i: ACS SUSTAINABLE CHEMISTRY & ENGINEERING, ISSN 2168-0485, Vol. 6, nr 1, s. 501-510Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    All-cellulose composites are usually prepared by a partial cellulose dissolution approach, using of ionic liquids or organic solvents. Here, an all-cellulose film based on moist ramie fibers was prepared by hot-pressing. The original ramie fiber was degummed, alkali treated, aligned, and mounted into a specially designed mold. The wet ramie fiber "cake" was pressed into a transparent film. The structure, mechanical properties, moisture sorption, and optical properties of the films were investigated using scanning electron microscopy (SEM), X-ray diffraction, tensile tests, gravimetric method, and integrating sphere devices. The all-cellulose films showed an ultimate strength of 620 MPa and a Young's modulus of 39.7 GPa with low moisture sorption and optical transmittance of 85%. These eco-friendly all-cellulose films are of interest for laminated composites, as coatings and in photonics applications.

  • 303.
    Yang, Xuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berthold, Fredrik
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose2019Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, nr 10, s. 10310-10319Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Ecofriendly materials based on well-preserved and nanostructured wood cellulose fibers are investigated for the purpose of load-bearing applications, where optical transmittance may be advantageous. Wood fibers are subjected to mild delignification, flow orientation, and hot-pressing to form an oriented material of low porosity. The biopolymer composition of the fibers is determined. Their morphology is studied by scanning electron microscopy, cellulose orientation is quantified by X-ray diffraction, and the effect of beating is investigated. Hot-pressed networks are impregnated by a methyl methacrylate monomer and polymerized to form thermoplastic wood fiber/poly(methyl methacrylate) biocomposites. Tensile tests are performed, as well as optical transmittance measurements. Structure-property relationships are discussed. High-density molded fibers from holocellulose have mechanical properties comparable with nanocellulose materials and are recyclable. The thermoplastic matrix biocomposites showed superior mechanical properties (Young's modulus of 20 GPa and ultimate strength of 310 MPa) at a fiber volume fraction of 52%, with high optical transmittance of 90%. The study presents a scalable approach for strong, stiff, and transparent molded fibers/biocomposites.Ecofriendly materials based on well-preserved and nanostructured wood cellulose fibers are investigated for the purpose of load-bearing applications, where optical transmittance may be advantageous. Wood fibers are subjected to mild delignification, flow orientation, and hot-pressing to form an oriented material of low porosity. The biopolymer composition of the fibers is determined. Their morphology is studied by scanning electron microscopy, cellulose orientation is quantified by X-ray diffraction, and the effect of beating is investigated. Hot-pressed networks are impregnated by a methyl methacrylate monomer and polymerized to form thermoplastic wood fiber/poly(methyl methacrylate) biocomposites. Tensile tests are performed, as well as optical transmittance measurements. Structure-property relationships are discussed. High-density molded fibers from holocellulose have mechanical properties comparable with nanocellulose materials and are recyclable. The thermoplastic matrix biocomposites showed superior mechanical properties (Young's modulus of 20 GPa and ultimate strength of 310 MPa) at a fiber volume fraction of 52%, with high optical transmittance of 90%. The study presents a scalable approach for strong, stiff, and transparent molded fibers/biocomposites.

  • 304.
    Yang, Xuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berthold, Fredrik
    RISE Res Inst Sweden, Master Samuelsgatan 60, SE-11121 Stockholm, Sweden..
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency2018Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, nr 7, s. 3020-3029Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To expand the use of renewable materials, paper products with superior mechanical and optical properties are needed. Although beating, bleaching, and additives are known to improve industrially produced Kraft pulp papers, properties are limited by the quality of the fibers. While the use of nanocellulose has been shown to significantly increase paper properties, the current cost associated with their production has limited their industrial relevance. Here, using a simple mild peracetic acid (PAA) delignification process on spruce, we produce hemicellulose-rich holocellulose fibers (28.8 wt %) with high intrinsic strength (1200 MPa for fibers with microfibrillar angle smaller than 10 degrees). We show that PAA treatment causes less cellulose/hemicellulose degradation and better preserves cellulose nanostructure in comparison to conventional Kraft pulping. High-density holocellulose papers with superior mechanical properties (Young's modulus of 18 GPa and ultimate strength of 195 MPa) are manufactured using a water-based hot-pressing process, without the use of beating or additives. We propose that the preserved hemicelluloses act as "glue" in the interfiber region, improving both mechanical and optical properties of papers. Holocellulose fibers may be affordable and applicable candidates for making special paper/composites where high mechanical performance and/or optical transmittance are of interest.

  • 305.
    Yang, Xuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Olsén, Peter
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native StateManuskript (preprint) (Annet vitenskapelig)
  • 306.
    Yin, Yafang
    et al.
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Salmen, Lennart
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Effect of Steam Treatment on the Properties of Wood Cell Walls2011Inngår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 12, nr 1, s. 194-202Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Steam treatment is a hygrothermal method of potential industrial significance for improving the dimensional stability and durability of wood materials. The steaming results in different chemical and micromechanical changes in the nanostructured biocomposite that comprise a wood cell wall. In this study, spruce wood (Picea abies Karst.) that had been subjected to high-temperature steaming up to 180 degrees C was examined, using imaging Fourier Transform Infrared (FT-IR) microscopy and nanoindentation to track changes in the chemical structure and the micromechanical properties of the secondary cell wall. Similar changes in the chemical components, due to the steam treatment, were found in earlywood and latewood. A progressive degradation of the carbonyl groups in the glucuronic acid unit of xylan and a loss of mannose units in the glucomannan backbone, that is, a degradation of glucomannan, together with a loss of the C=O group linked to the aromatic skeleton in lignin, was found. The development of the hygroscopic and micromechanical properties that occurred with an elevation in the steam temperature correlated well with this pattern of degradation in the constituents in the biocomposite matrix in the cell wall (hemicellulose and lignin).

  • 307.
    Zhou, Qi
    et al.
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    CHAPTER 9 PLA-nanocellulose Biocomposites2015Inngår i: Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications, The Royal Society of Chemistry , 2015Kapittel i bok, del av antologi (Fagfellevurdert)
  • 308.
    Zhou, Qi
    et al.
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Malm, Erik
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Nilsson, Helena
    Larsson, Per Tomas
    Iversen, Tommy
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Biokompositer.
    Bulone, Vincent
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Biomimetic design of cellulose-based nanostructured composites using bacterial cultures2009Inngår i: Polymer Preprints, ISSN 0032-3934, Vol. 50, nr 2, s. 7-8Artikkel i tidsskrift (Fagfellevurdert)
  • 309.
    Zhou, Qi
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Malm, Erik
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Nilsson, Helena
    Larsson, Per Tomas
    Iversen, Tommy
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Bulone, Vincent
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating2009Inngår i: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 5, nr 21, s. 4124-4130Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Biomimetic approaches involving environmentally-friendly synthetic pathways provide an opportunity to elaborate novel high-performance biocomposites. Here we have developed a low-energy biosynthetic system for the production of a high-strength composite material consisting of self-assembled and nanostructured cellulosic nanofibers. This biocomposite is analogous to natural composite materials with high strength and hierarchical organization such as wood or tendon. It was generated by growing the bacterium Acetobacter, which naturally produces cellulosic nanofibers, in the presence of hydroxyethylcellulose (HEC). Individual cellulose fibrils were coated by HEC and exhibited a smaller lateral dimension than pure bacterial cellulose (BC) fibrils. They self-assembled to form compartmentalized nanofibers and larger cellulose fibril aggregates compared to pure BC. The tensile strength of nanocomposite films prepared from the compartmentalized cellulosic nanofibers was 20% higher than that of pure BC sheets and wood cellulose nanopapers, and 60% higher than that of conventional BC/HEC blends, while no strain-to-failure decrease was observed. The thin nanoscale coating consisting of hydrated HEC significantly increased the mechanical performance of the nanocomposite films by provoking compartmentalization of individual fibrils.

4567 301 - 309 of 309
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf