Change search
Refine search result
567891011 351 - 400 of 55907
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 351.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Effektivare Utnyttjande av Energibrunnar för Värmepumpar Undersöks på KTH2010In: KYLA Värmepumpar, Vol. 6Article in journal (Other (popular science, discussion, etc.))
  • 352.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Forskningsprojekt Ska Ge Effektivare Bergvärme2009In: VVS Forum, ISSN 0346-4644, no 1Article in journal (Other (popular science, discussion, etc.))
  • 353.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Framtidens värmesystem med borrhålsvärmeväxlare2011In: Energi&Miljö, ISSN 1101-0568, no 2Article in journal (Other (popular science, discussion, etc.))
  • 354.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Improvements of U-pipe Borehole Heat Exchangers2010Licentiate thesis, monograph (Other academic)
    Abstract [en]

    The sales of Ground Source Heat Pumps in Sweden and many other countries are having a rapid growth in the last decade. Today, there are approximately 360 000 systems installed in Sweden, with a growing rate of about 30 000 installations per year. The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a Borehole Heat Exchanger (BHE), a closed loop in a vertical borehole. The fluid transports the heat from the ground to a certain heating and/or cooling application. A fluid with one degree higher or lower temperature coming out from the borehole may represent a 2-3% change in the COP of a heat pump system. It is therefore of great relevance to design cost effective and easy to install borehole heat exchangers. U-pipe BHEs consisting of two equal cylindrical pipes connected together at the borehole bottom have dominated the market for several years in spite of their relatively poor thermal performance and, still, there exist many uncertainties about how to optimize them. Although more efficient BHEs have been discussed for many years, the introduction of new designs has been practically lacking. However, the interest for innovation within this field is increasing nowadays and more effective methods for injecting or extracting heat into/from the ground (better BHEs) with smaller temperature differences between the heat secondary fluid and the surrounding bedrock must be suggested for introduction into the market.

    This report presents the analysis of several groundwater filled borehole heat exchangers, including standard and alternative U-pipe configurations (e.g. with spacers, grooves), as well as two coaxial designs. The study embraces measurements of borehole deviation, ground water flow, undisturbed ground temperature profile, secondary fluid and groundwater temperature variations in time, theoretical analyses with a FEM software, Distributed Thermal Response Test (DTRT), and pressure drop. Significant attention is devoted to distributed temperature measurements using optic fiber cables along the BHEs during heat extraction and heat injection from and to the ground.

  • 355.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Optimera med Rätt Kollektorval2010In: Borrsvängen, ISSN 1103-7938, no 2Article in journal (Other (popular science, discussion, etc.))
  • 356.
    Acuña, José
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Slang intill bergväggen ger effektivare värmeväxling2009In: HUSBYGGAREN, ISSN 0018-7968, no 6Article in journal (Other (popular science, discussion, etc.))
  • 357.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mogensen, Palne
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Distributed Thermal Response Tests on a Multi-pipe Coaxial Borehole Heat Exchanger2011In: HVAC & R RESEARCH, ISSN 1078-9669, E-ISSN 1938-5587, Vol. 17, no 6, p. 1012-1029Article in journal (Refereed)
    Abstract [en]

    In a distributed thermal response test, distributed temperature measurements are taken along a borehole heat exchanger during thermal response tests, allowing the determination of local ground thermal conductivities and borehole thermal resistances. In this article, the first results from six heat injection distributed thermal response tests carried out on a new, thermally insulated leg type, multi-pipe coaxial borehole heat exchanger are presented. The borehole heat exchanger consists of 1 insulated central and 12 peripheral pipes. Temperature measurements are carried out using fiber-optic cables placed inside the borehole heat exchanger pipes. Unique temperature and thermal power profiles along the borehole depth as a function of the flow rate and the total thermal power injected into the borehole are presented. A line source model is used for simulating the borehole heat exchanger thermal response and determining local variations of the ground thermal conductivity and borehole thermal resistance. The flow regime in the peripheral pipes is laminar during all distributed thermal response tests and average thermal resistances remain relatively constant, independently of the volumetric flow rate, being lower than those corresponding to U-pipe borehole heat exchangers. The thermal insulation of the central pipe significantly reduces the thermal shunt to the peripheral pipes even at low volumetric flow rates.

  • 358.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mogensen, Palne
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Evaluation of a coaxial borehole heat exchanger prototype2010In: Proceedings of the 14th ASME International Heat Transfer Conference, ASME Press, 2010Conference paper (Refereed)
    Abstract [en]

    Different borehole heat exchanger designs have been discussed for many years. However, the U-pipe design has dominated the market, and the introduction of new designs has been practically lacking. The interest for innovation within this field is rapidly increasing and other designs are being introduced on the market. This paper presents a general state of the art summary of the borehole heat exchanger research in the last years. A first study of a prototype coaxial borehole heat exchanger consisting of one central pipe and five external channels is also presented. The particular geometry of the heat exchanger is analyzed thermally in 2-D with a FEM software. An experimental evaluation consisting of two in situ thermal response tests and measurements of the pressure drop at different flow rates is also presented. The latter tests are carried out at two different flow directions with an extra temperature measurement point at the borehole bottom that shows the different heat flow distribution along the heat exchanger for the two flow cases. The borehole thermal resistance of the coaxial design is calculated both based on experimental data and theoretically.

  • 359.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Mogensen, Preben
    Palne Mogensen AB.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Distributed Thermal Response Test on a U-Pipe Borehole Heat Exchanger2009In: Proc. Effstock 2009, 11th International Conference on Thermal Energy Storage, Stockholm, Sweden: Academic Conferences Publishing, 2009Conference paper (Refereed)
    Abstract [en]

    In a Distributed Thermal Response Test (DTRT) the ground thermal conductivity and boreholethermal resistance are determined at many instances along the borehole. Here, such a testis carried out at a 260 m deep water filled energy well, equipped with a U-pipe borehole heatexchanger, containing an aqueous solution of ethanol as working fluid. Distributed temperaturemeasurements are carried out using fiber optic cables placed inside the U-pipe, duringfour test phases: undisturbed ground conditions, fluid pre-circulation, constant heat injection,and borehole recovery. A line source model is used for simulating the borehole thermal response.Fluid temperature profiles during the test are presented. The results show local variationsof the ground thermal conductivity and borehole thermal resistance along the boreholedepth, as well as a deviation of the latter as compared to the one resulting from a standardthermal response test.

  • 360.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    A novel coaxial BHE: Description and first Distributed Thermal Response Test Measurements2010In: Proceedings World Geothermal Congress 2010, 2010, p. paper 2953-Conference paper (Refereed)
    Abstract [en]

    The thermal performance of a Borehole Heat Exchanger plays a significant role when defining the quality of heat exchange with the ground in Ground Source Heat Pumps. Different designs have been discussed and increased interest on innovation within this field has taken place during the last years. This paper presents the first measurement results from a 189 meters deep novel coaxial Borehole Heat Exchanger, consisting of an inner central pipe and an annular channel in direct contact with the surrounding bedrock. The measurements were taken during a distributed thermal response test using fiber optic cables installed in the energy well. Fluid temperature every ten meters along the borehole depth are presented and compared with similar measurements from a common U-pipe heat exchanger. A unique measurement of the borehole wall temperature in the coaxial collector illustrates how effective the heat transfer performance is through the annular channel.

  • 361.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Comprehensive Summary of Borehole Heat Exchanger Research at KTH2010In: IIR/Eurotherm Sustainable Refrigeration and Heat Pump Technology Conference, Stockholm: KTH Royal Institute of Technology, 2010, p. 69-Conference paper (Refereed)
    Abstract [en]

    A research project that aims at presenting recommendations for improving the COP of ground source heat pump systems by 10-20% through better design of Borehole Heat Exchangers (BHE) is described in this paper. Experiments are carried out with temperature measurements taken in different BHE types during heat pump operation conditions as well as during the thermal response tests. It is also expected to point out methods for having natural fluid circulation in the BHE, i.e. demonstrating that the heat carrier fluid can naturally circulate thanks to temperature induced density differences along the borehole depth, and thereby avoiding the use of electricity consuming pumps. A brief background presenting the most relevant work regarding BHE research around the world is first presented, followed by a comprehensive description of the current research at KTH. Some new measurements and obtained results are presented as an estimation of to what extent the project results have been achieved is discussed. An analysis on how the project results could allow reducing the borehole depth keeping today’s Coefficient of Performance is presented.

  • 362.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Distributed Temperature Measurements on a Multi-pipe Coaxial Borehole Heat Exchanger2011In: IEA Heat Pump Conference, International Energy Agency , 2011, p. 4.19-Conference paper (Refereed)
    Abstract [en]

    The first experiences with a multi-pipe borehole heat exchanger prototype consisting of an insulated central pipe and twelve parallel peripheral pipes are described. Secondary fluid distributed temperature measurements along the borehole depth, being the only ones of its kind in this type of heat exchanger, are presented and discussed. The measurements are carried out with fiber optic cables during heat injection into the ground, giving a detailed visualization of what happens both along the central and peripheral flow channels. The heat exchange with the ground mainly occurs along the peripheral channels and an indication of almost no thermal short circuiting, even while having large temperature differences between the down and upwards channels, is observed.

  • 363.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Distributed thermal response tests on pipe-in-pipe borehole heat exchangers2013In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 109, no SI, p. 312-320Article in journal (Refereed)
    Abstract [en]

    Borehole Thermal Energy Storage systems typically use U-pipe Borehole Heat Exchangers (BHE) having borehole thermal resistances of at least 0.06 K m/W. Obviously, there is room for improvement in the U-pipe design to decrease these values. Additionally, there is a need for methods of getting more detailed knowledge about the performance of BHEs. Performing Distributed Thermal Response Tests (DTRT) on new proposed designs helps to fill this gap, as the ground thermal conductivity and thermal resistances in a BHE can be determined at many instances in the borehole thanks to distributed temperature measurements along the depth. In this paper, results from three heat injection DTRTs carried out on two coaxial pipe-in-pipe BHEs at different flow rates are presented for the first time. The tested pipe-in-pipe geometry consists of a central tube inserted into a larger external flexible pipe, forming an annular space between them. The external pipe is pressed to the borehole wall by applying a slight overpressure at the inside, resulting in good thermal contact and at the same time opening up for a novel method for measuring the borehole wall temperature in situ, by squeezing a fiber optic cable between the external pipe and the borehole wall. A reflection about how to calculate borehole thermal resistance in pipe-in-pipe BHEs is presented. Detailed fluid and borehole wall temperatures along the depth during the whole duration of the DTRTs allowed to calculate local and effective borehole thermal resistances and ground thermal conductivities. Local thermal resistances were found to be almost negligible as compared to U-pipe BHEs, and the effective borehole resistance equal to about 0.03 K m/W. The injected power was found to be almost evenly distributed along the depth.

  • 364.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Experimental Comparison of Four Borehole Heat Exchangers2008In: Refrigeration Science and Technology Proceedings, Copenhagen: International Institute of Refrigeration, 2008, p. SEC09-W1-09Conference paper (Refereed)
    Abstract [en]

    The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a closed U-pipe loop in a vertical borehole. This fluid transports the heat from the rock to the ground source heat pump evaporator. The quality of the heat exchange with the ground and the necessary pumping power to generate the fluid circulation are dependent on the type of fluid and its flow conditions along the pipe. Four different borehole heat exchangers are tested using ethyl alcohol with 20% volume concentration. The fluid temperatures are logged at the borehole inlet, bottom, and outlet. The collectors are compared based on their borehole thermal resistance and pressure drop at different flow rates. The results indicate that the pipe dimensions play an important roll, spacers might not contribute to better heat transfer, and inner micro fins in the pipes improve the performance of the collectors.

  • 365.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    First Experiences with Coaxial Borehole Heat Exchangers2011In: Proceedings of the IIR Conference on Sources/Sinks alternative to the outside Air for HPs and AC techniques, International Institute of Refrigeration, 2011Conference paper (Refereed)
    Abstract [en]

    Some experiences with coaxial borehole heat exchanger prototypes are discussed here. Four different designs are described as they have been part of a research project at KTH: two pipe-inpipe annular designs, one multi-pipe and one multi-chamber design. A special focus is given to two of the prototypes, a pipe-in-pipe design with the external flow channel consisting of an annular cross section and partly insulated central pipe, and a multi-pipe design with twelve parallel peripheral pipes and an insulated central channel. The secondary fluid temperature profiles at low volumetric flow rates are presented for these two prototypes, measured with fiber optic cables during thermal response tests and allowing a detailed visualization of what happens along the heat exchanger depth. It is the first time this is carried out in these types of borehole heat exchangers. The measurements indicate good thermal performance and point at potential uses for these heat exchangers in different ground coupled applications.

  • 366.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Hill, Peter
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Characterization of Boreholes: Results from a U-pipe Borehole Heat Exchanger Installation2008In: Proceedings 9th IEA Heat Pump Conference 2008: Conference Proceedings, Zurich, Switzerland: International Energy Agency , 2008, p. 4-19Conference paper (Refereed)
    Abstract [en]

    Heat exchange with the bedrock for ground source heat pumps is commonly done with the help of U-pipe energy collectors in vertical boreholes. At the moment, there exist many uncertainties about how efficient the heat transfer between the rock and the collector is. For a complete performance analysis of these systems, a 260 m deep water filled borehole is characterized, by measuring the borehole deviation, the ground water flow and the undisturbed ground temperature. Significant attention is devoted to detailed temperature measurements along the borehole depth during operation providing a complete description of the temperature variations in time both for the secondary working fluid and for the ground water. The results show a deviated borehole from the vertical direction without any relevant ground water flow. The undisturbed ground temperature gradient varies from negative to positive at approximately half of the borehole depth. The transient response of the borehole during the heat pump start up is illustrated and it is observed that there does not exist any thermal short circuiting between the down and up-going pipes when the system is in operation.

  • 367.
    Acuña, José
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Palm, Björn
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Khodabandeh, Rahmat
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Weber, Kenneth
    Distributed Temperature Measurements on a U-pipe Thermosyphon Borehole Heat Exchanger With CO22010In: Refrigeration Science and Technology Proceedings, Sydney, Australia: International Institute of Refrigeration, 2010Conference paper (Refereed)
    Abstract [en]

    In thermosyphon Borehole Heat Exchangers, a heat carrier fluid circulates while exchanging heat with the ground without the need of a circulation pump, representing an attractive alternative when compared to other more conventional systems. Normally, the fluid is at liquid-vapor saturation conditions and circulation is maintained by density differences between the two phases as the fluid absorbs energy from the ground. This paper presents some experimental experiences from a 65 meter deep thermosyphon borehole heat exchanger loop using Carbon Dioxide as heat carrier fluid, instrumented with a fiber optic cable for distributed temperature measurements along the borehole depth. The heat exchanger consists of an insulated copper tube through which the liquid CO2 flows downwards, and a copper tube acting as a riser. The results show temperatures every two meters along the riser, illustrating the heat transfer process in the loop during several heat pump cycles.

  • 368.
    Adaldo, Antonio
    KTH, School of Electrical Engineering and Computer Science (EECS), Automatic Control.
    Event-triggered and cloud-support control of multi-robot systems2018Doctoral thesis, monograph (Other academic)
    Abstract [en]

    In control of multi-robot systems, the aim is to obtain a coordinated behavior through local interactions among the robots. A multi-agent system is an abstract model of a multi-robot system. In this thesis, we investigate multi-agent systems where inter-agent communication is modeled by discrete events triggered by conditions on the internal state of the agents. We consider two models of communication. In the first model, two agents exchange information directly with each other. In the second model, all information is exchanged asynchronously over a shared repository. Four contributions on control algorithms for multi-agent systems are offered in the thesis. The first contribution is an event-triggered pinning control algorithm for a network of agents with nonlinear dynamics and time-varying topology. Pinning control is a strategy to steer the behavior of the system in a desired manner by controlling only a small fraction of the agents. We express the controllability of the network in terms of an average value of the network connectivity over time, and we show that all the agents can be driven to a desired reference trajectory. The second contribution is a control algorithm for multi-agent systems where inter-agent communication is substituted with a shared remote repository hosted on a cloud. The communication between each agent and the cloud is modeled as a sequence of events scheduled recursively by the agent. We quantify the connectivity of the network and we show that it is possible to synchronize the multi-agent system to the same state trajectory, while guaranteeing that two consecutive cloud accesses by the same agent are separated by a lower-bounded time interval. The third contribution is a family of distributed controllers for coverage and surveillance tasks with a network of mobile agents with anisotropic sensing patterns. We develop an abstract model of the environment under inspection and define a measure of the coverage attained by the sensor network. We show that the network attains nondecreasing coverage, and we characterize the equilibrium configurations of the network. The fourth contribution is a distributed, cloud-supported control algorithm for inspection of 3D structures with a network of mobile sensing agents, similar to those considered in the third contribution. We develop an abstract model of the structure to inspect and quantify the degree of completion of the inspection. We demonstrate that, under the proposed algorithm, the network is guaranteed to complete the inspection in finite time. All results presented in the thesis are corroborated by numerical simulations and sometimes by experiments with aerial robotic platforms. The experiments show that the theory and methods developed in the thesis are of practical relevance.

  • 369.
    Adaldo, Antonio
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Event-triggered control of multi-agent systems: pinning control, cloud coordination, and sensor coverage2016Licentiate thesis, monograph (Other academic)
    Abstract [en]

    A multi-agent system is composed of interconnected subsystems, or agents. In control of multi-agent systems, the aim is to obtain a coordinated behavior of the overall system through local interactions among the agents. Communication among the agents often occurs over a wireless medium with finite capacity. In this thesis, we investigate multiagent control systems where inter-agent communication is modelled by discrete events triggered by state conditions.

    In the first part, we consider event-triggered pinning control for a network of agents with nonlinear dynamics and time-varying topologies. Pinning control is a strategy to steer the behavior of a multi-agent system in a desired manner by controlling only a small fraction of the agents. We express the controllability of the network in terms of an average value of the network connectivity over time, and we show that all the agents can be driven to a desired reference trajectory.

    In the second part, we propose a control algorithm for multi-agent systems where inter-agent communication is substituted with a shared remote repository hosted on a cloud. Communication between each agent and the cloud is modelled as a sequence of events scheduled recursively by the agent. We quantify the connectivity of the network and we show that it is possible to synchronize the multi-agent system to the same state trajectory, while guaranteeing that two consecutive cloud accesses by the same agent are separated by a finite time interval.

    In the third part, we propose a family of distributed algorithms for coverage and inspection tasks for a network of mobile sensors with asymmetric footprints. We develop an abstract model of the environment under inspection and define a measure of the coverage attained by the sensor network. We show that the sensor network attains nondecreasing coverage, and we characterize the equilibrium configurations. The results presented in the thesis are corroborated by simulations or experiments.

  • 370.
    Adaldo, Antonio
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Pinning Control of Networks: Choosing the Pinned Sites2013Student paper other, 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In this master thesis we address the problem of optimal pin selection in four elementary topologies. The augmented connectivity of a graph is defined as an extension of the algebraic connectivity in a pinning control scenario, and its key role in the pinning control problem is illustrated. For each of the considered topologies several pinning configurations are examined and they are compared in terms of the control strength they require to yield a desired value for the augmented connectivity. For each of the examined configurations a direct expression is provided for the control strength as a function of the augmented connectivity.

  • 371.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Alderisio, Francesco
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Liuzza, Davide
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Shi, Guodong
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    di Bernardo, Mario
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Event-triggered pinning control of complex networks with switching topologies2014In: Proceedings of the 53rd annual IEEE Conference on Decision and Control, 2014, p. 2783-2788Conference paper (Refereed)
    Abstract [en]

    This paper investigates the problem of eventtriggered pinning control for the synchronization of networks of nonlinear dynamical agents onto a desired reference trajectory. The pinned agents are those that have access to the reference trajectory. We consider both static and switching topologies. We prove that the system is well posed and identify conditions under which the network achieves exponential convergence. A lower bound for the rate of convergence is also derived. Numerical examples demonstrating the effectiveness of the results are provided.

  • 372.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Alderisio, Francesco
    Liuzza, Davide
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Shi, Guodong
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    di Bernardo, Mario
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. University of Naples Federico II, Italy.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Event-Triggered Pinning Control of Switching Networks2015In: IEEE Transactions on Control of Network Systems, ISSN 2325-5870, Vol. 2, no 2, p. 204-213, article id 7098382Article in journal (Refereed)
    Abstract [en]

    This paper investigates event-triggered pinning control for the synchronization of complex networks of nonlinear dynamical systems. We consider networks described by time-varying weighted graphs and featuring generic linear interaction protocols. Sufficient conditions for the absence of Zeno behavior are derived and exponential convergence of a global normed error function is proven. Static networks are considered as a special case, wherein the existence of a lower bound for interevent times is also proven. Numerical examples demonstrate the effectiveness of the proposed control strategy.

  • 373.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Hybrid coverage and inspection control for anisotropic mobile sensor teams2017In: IFAC-PapersOnLine, ISSN 2405-8963, Vol. 50, no 1, p. 613-618Article in journal (Refereed)
    Abstract [en]

    In this paper, we present an algorithm for pose control of a team of mobile sensors for coverage and inspection applications. The region to cover is abstracted into a finite set of landmarks, and each sensor is responsible to cover some of the landmarks. The sensors progressively improve their coverage by adjusting their poses and by transferring the ownership of some landmarks to each other. Inter-sensor communication is pairwise and intermittent. The sensor team is formally modeled as a multi-agent hybrid system, and an invariance argument formally shows that the team reaches an equilibrium configuration, while a global coverage measure is improving monotonically. A numerical simulation corroborates the theoretical results.

  • 374.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Liuzza, D.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Coordination of multi-agent systems with intermittent access to a cloud repository2017In: Workshop on Sensing and Control for Autonomous Vehicles: Applications to Land, Water and Air Vehicles, 2017, Springer, 2017, Vol. 474, p. 453-471Conference paper (Refereed)
    Abstract [en]

    A cloud-supported multi-agent system is composed of autonomous agents required to achieve a common coordination objective by exchanging data over a shared cloud repository. The repository is accessed asychronously by different agents, and direct inter-agent commuication is not possible. This model is motivated by the problem of coordinating a fleet of autonomous underwater vehicles, with the aim to avoid the use of expensive and power-hungry modems for underwater communication. For the case of agents with integrator dynamics, a control law and a rule for scheduling the cloud access are formally defined and proven to achieve the desired coordination. A numerical simulation corroborate the theoretical results.

  • 375.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Liuzza, Davide
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Johansson, Karl H.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Multi-Agent Trajectory Tracking with Self-Triggered Cloud Access2016In: 2016 IEEE 55th Conference on Decision and Control, CDC 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, p. 2207-2214, article id 7798591Conference paper (Refereed)
    Abstract [en]

    This paper presents a cloud-supported control algorithm for coordinated trajectory tracking of networked autonomous agents. The motivating application is the coordinated control of Autonomous Underwater Vehicles. The control objective is to have the vehicles track a reference trajectory while keeping an assigned formation. Rather than relying on inter-agent communication, which is interdicted underwater, coordination is achieved by letting the agents intermittently access a shared information repository hosted on a cloud. An event-based law is proposed to schedule the accesses of each agent to the cloud. We show that, with the proposed scheduling of the cloud accesses, the agents achieve the required coordination objective. Numerical simulations corroborate the theoretical results.

  • 376.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Liuzza, Davide
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Control of Multi-Agent Systems with Event-Triggered Cloud Access2015In: Proceedings of the 14th annual European Control Conference, 2015Conference paper (Refereed)
  • 377.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Mansouri, S. S.
    Kanellakis, C.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Johansson, Karl H.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Nikolakopoulos, G.
    Cooperative coverage for surveillance of 3D structures2017In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 1838-1845Conference paper (Refereed)
    Abstract [en]

    In this article, we propose a planning algorithm for coverage of complex structures with a network of robotic sensing agents, with multi-robot surveillance missions as our main motivating application. The sensors are deployed to monitor the external surface of a 3D structure. The algorithm controls the motion of each sensor so that a measure of the collective coverage attained by the network is nondecreasing, while the sensors converge to an equilibrium configuration. A modified version of the algorithm is also provided to introduce collision avoidance properties. The effectiveness of the algorithm is demonstrated in a simulation and validated experimentally by executing the planned paths on an aerial robot.

  • 378.
    Adaldo, Antonio
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Mansouri, Sina Sharif
    Lulea Univ Technol, Dept Comp Elect & Space Engn, Control Engn Div, Robot Grp, SE-97187 Lulea, Sweden..
    Kanellakis, Christoforos
    Lulea Univ Technol, Dept Comp Elect & Space Engn, Control Engn Div, Robot Grp, SE-97187 Lulea, Sweden..
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Johansson, Karl H.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Nikolakopoulos, George
    Lulea Univ Technol, Dept Comp Elect & Space Engn, Control Engn Div, Robot Grp, SE-97187 Lulea, Sweden..
    Cooperative coverage for surveillance of 3D structures2017In: 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) / [ed] Bicchi, A Okamura, A, IEEE , 2017, p. 1838-1845Conference paper (Refereed)
    Abstract [en]

    In this article, we propose a planning algorithm for coverage of complex structures with a network of robotic sensing agents, with multi-robot surveillance missions as our main motivating application. The sensors are deployed to monitor the external surface of a 3D structure. The algorithm controls the motion of each sensor so that a measure of the collective coverage attained by the network is nondecreasing, while the sensors converge to an equilibrium configuration. A modified version of the algorithm is also provided to introduce collision avoidance properties. The effectiveness of the algorithm is demonstrated in a simulation and validated experimentally by executing the planned paths on an aerial robot.

  • 379.
    Adalmundsson, Magnus
    KTH, School of Architecture and the Built Environment (ABE), Architecture.
    Opera i Stockholm, Galärvarvet2011Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
  • 380.
    Adam, Achamyeleh Gashu
    KTH, School of Architecture and the Built Environment (ABE), Real Estate and Construction Management. Bahir Dar University, Bahir Dar, Ethiopia .
    Land readjustment as an alternative land development tool for peri-urban areas of Ethiopia2015In: Property Management, ISSN 0263-7472, E-ISSN 1758-731X, Vol. 33, no 1, p. 36-58Article in journal (Refereed)
    Abstract [en]

    Purpose – The rapid urban population growth in Ethiopia is causing an increasing demand for urban land, which primarily tends to be supplied by expropriation of peri-urban land. The process of urban development in Ethiopia is largely criticized for forced displacement and disruption of the peri-urban local community. Thus, the purpose of this paper is to introduce how Ethiopia’s urban development system could be built on the participatory and inclusive approaches of land acquisition. Design/methodology/approach – The study has employed questionnaire survey results, focus group discussion with panel of experts and previous research reports to examine the peri-urban situations and then to show why an alternative land development approach is needed to be introduced in the urban land development system of Ethiopia. Desk review on land readjustment was also made to explore best lessons from other countries applicable to the peri-urban contexts of Ethiopia. Findings – This study has explored that land readjustment is potentially an appropriate land development tool to alleviate peri-urban land development limitations in Ethiopia. Practical implications – Researchers, policy makers and government bodies that are interested in peri-urban land would appreciate and consider implementing the adapted land readjustment model as an alternative land development tool. Consequently, the local peri-urban landholders’ rights would be protected and maintained in the process of urbanization. Originality/value – Although land readjustment has the potential to achieve participatory peri-urban land development, awareness of the method in the Ethiopian urban land development system is inadequate. This study contributes to fill this gap and create an insight into the basic conditions for the adaption of the tool.

  • 381.
    Adam, Constantin
    KTH, School of Electrical Engineering (EES).
    A Middleware for Self-Managing Large-Scale Systems2006Doctoral thesis, monograph (Other scientific)
    Abstract [en]

    This thesis investigates designs that enable individual components of a distributed system to work together and coordinate their actions towards a common goal. While the basic motivation for our research is to develop engineering principles for large-scale autonomous systems, we address the problem in the context of resource management in server clusters that provide web services.

    To this end, we have developed, implemented and evaluated a decentralized design for resource management that follows four principles. First, in order to facilitate scalability, each node has only partial knowledge of the system. Second, each node can adapt and change its role at runtime. Third, each node runs a number of local control mechanisms independently and asynchronously from its peers. Fourth, each node dynamically adapts its local configuration in order to optimize a global utility function.

    The design includes three fundamental building blocks: overlay construction, request routing and application placement. Overlay construction organizes the cluster nodes into a single dynamic overlay. Request routing directs service requests towards nodes with available resources. Application placement partitions the cluster resources between applications, and dynamically adjusts the allocation in response to changes in external load, node failures, etc.

    We have evaluated the design using complexity analysis, simulation and prototype implementation. Using complexity analysis and simulation, we have shown that the system is scalable, operates efficiently in steady state, quickly adapts to external events and allows for effective service differentiation by a system administrator. A prototype has been built using accepted technologies (Java, Tomcat) and evaluated using standard benchmarks (TPC-W and RUBiS). The evaluation results show that the behavior of the prototype matches closely that of the simulated design for key metrics related to adaptability and robustness, therefore validating our design and proving its feasibility.

  • 382.
    Adam, Constantin
    KTH, School of Electrical Engineering (EES).
    Scalable Self-Organizing Server Clusters with Quality of Service Objectives2005Licentiate thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Advanced architectures for cluster-based services that have been recently proposed allow for service differentiation, server overload control and high utilization of resources. These systems, however, rely on centralized functions, which limit their ability to scale and to tolerate faults. In addition, they do not have built-in architectural support for automatic reconfiguration in case of failures or addition/removal of system components.

    Recent research in peer-to-peer systems and distributed management has demonstrated the potential benefits of decentralized over centralized designs: a decentralized design can reduce the configuration complexity of a system and increase its scalability and fault tolerance.

    This research focuses on introducing self-management capabilities into the design of cluster-based services. Its intended benefits are to make service platforms dynamically adapt to the needs of customers and to environment changes, while giving the service providers the capability to adjust operational policies at run-time.

    We have developed a decentralized design that efficiently allocates resources among multiple services inside a server cluster. The design combines the advantages of both centralized and decentralized architectures. It allows associating a set of QoS objectives with each service. In case of overload or failures, the quality of service degrades in a controllable manner. We have evaluated the performance of our design through extensive simulations. The results have been compared with performance characteristics of ideal systems.

  • 383.
    Adam, Constantin
    et al.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
    Stadler, Rolf
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
    A Middleware Design for Large-scale Clusters offering Multiple Services2006In: IEEE Transactions on Network and Service Management, ISSN 1932-4537, E-ISSN 1932-4537, Vol. 3, no 1, p. 1-12Article in journal (Refereed)
    Abstract [en]

    We present a decentralized design that dynamically allocates resources to multiple services inside a global server cluster. The design supports QoS objectives (maximum response time and maximum loss rate) for each service. A system administrator can modify policies that assign relative importance to services and, in this way, control the resource allocation process. Distinctive features of our design are the use of an epidemic protocol to disseminate state and control information, as well as the decentralized evaluation of utility functions to control resource partitioning among services. Simulation results show that the system operates both effectively and efficiently; it meets the QoS objectives and dynamically adapts to load changes and to failures. In case of overload, the service quality degrades gracefully, controlled by the cluster policies.

  • 384.
    Adam, Constantin
    et al.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
    Stadler, Rolf
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
    Adaptable Server Clusters with QoS Objectives2005In: Integrated Network Management IX - MANAGING NEW NETWORKED WORLDS / [ed] Clemm A, Festor O, Pras A, New York: IEEE , 2005, p. 149-163Conference paper (Refereed)
    Abstract [en]

    We present a decentralized design for a server cluster that supports a single service with response time guarantees. Three distributed mechanisms represent the key elements of our design. Topology construction maintains a dynamic overlay of cluster nodes. Request routing directs service requests towards available servers. Membership control allocates/releases servers to/from the cluster, in response to changes in the external load. We advocate a decentralized approach, because it is scalable, fault-tolerant, and has a lower configuration complexity than a centralized solution. We demonstrate through simulations that our system operates efficiently by comparing it to an ideal centralized system. In addition, we show that our system rapidly adapts to changing load. We found that the interaction of the various mechanisms in the system leads to desirable global properties. More precisely, for a fixed connectivity c (i.e., the number of neighbors of a node in the overlay), the average experienced delay in the cluster is independent of the external load. In addition, increasing c increases the average delay but decreases the system size for a given load. Consequently, the cluster administrator can use c as a management parameter that permits control of the tradeoff between a small system size and a small experienced delay for the service.

  • 385.
    Adam, Constantin
    et al.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
    Stadler, Rolf
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
    Externally Controllable, Self-Oganizing Server Clusters2005In: Designing a Scalable, Self-organizing Middleware for Server Clusters (NGNM05): in the scope of Networking 2005, 2005, p. 1-12Chapter in book (Other academic)
  • 386.
    Adam, Constantin
    et al.
    KTH, School of Electrical Engineering (EES), Communication Networks.
    Stadler, Rolf
    KTH, School of Electrical Engineering (EES), Communication Networks.
    Implementation and evaluation of a middleware for self-organizing decentralized web services2006In: Integrated Network Management IX: MANAGING NEW NETWORKED WORLDS, 2006, Vol. 3996, p. 1-14Conference paper (Refereed)
    Abstract [en]

    We present the implementation of Chameleon, a peer-to-peer middleware for self-organizing web services, and we provide evaluation results from a test bed. The novel aspect of Chameleon is that key functions, including resource allocation, are decentralized, which facilitates scalability and robustness of the overall system. Chameleon is implemented in Java on the Tomcat web server environment. The implementation is non-intrusive in the sense that it does not require code modifications in Tomcat or in the underlying operating system. We evaluate the system by running the TPC-W benchmark. We show that the middleware dynamically and effectively reconfigures in response to changes in load patterns and server failures, while enforcing operating policies, namely, QoS objectives and service differentiation under overload.

  • 387.
    Adam, Constantin
    et al.
    KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
    Stadler, Rolf
    KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
    Patterns for Routing and Self-Stabilization2004In: NOMS 2004: IEEE/IFIP NETWORK OPERATIONS AND MANAGMENT SYMPOSIUM - MANAGING NEXT GENERATION CONVERGENCE NETWORKS AND SERVICES, New York: IEEE , 2004, p. 61-74Conference paper (Refereed)
    Abstract [en]

    This paper contributes towards engineering self-stabilizing networks and Services. We propose the use of navigation patterns, which define how information for state updates is disseminated in the system, as fundamental building blocks for self-stabilizing systems. We present two navigation patterns for self-stabilization: the progaressive wave pattern and the stationary wave pattern. The progressive wave pattern defines the update dissemination in Internet routing systems running the DUAL and OSPF protocols. Similarly, the stationary wave pattern defines the interactions of peer nodes in structured-peer-to-peer systems, including Chord, Pastry, Tapestry, and CAN. It turns out that both patterns are related. They both disseminate information in form of waves, i.e, sets of messages that originate from single events. Patterns can be instrumented to obtain wave statistics, which enables monitoring the process of self-stabilization in a system. We focus on Internet routing and peer-to-peer systems in this work, since we believe that studying these (existing) systems can lead to engineering principles for self-stabilizing system in various application areas.

  • 388.
    Adam, Constantin
    et al.
    KTH, School of Electrical Engineering (EES), Communication Networks.
    Stadler, Rolf
    KTH, School of Electrical Engineering (EES), Communication Networks.
    Service middleware for self-managing large-scale systems2007In: IEEE Transactions on Network and Service Management, ISSN 1932-4537, E-ISSN 1932-4537, Vol. 4, no 3, p. 50-64Article in journal (Refereed)
    Abstract [en]

    Resource management poses particular challenges in large-scale systems, such as server clusters that simultaneously process requests from a large number of clients. A resource management scheme for such systems must scale both in the in the number of cluster nodes and the number of applications the cluster supports. Current solutions do not exhibit both of these properties at the same time. Many are centralized, which limits their scalability in terms of the number of nodes, or they are decentralized but rely on replicated directories, which also reduces their ability to scale. In this paper, we propose novel solutions to request routing and application placementtwo key mechanisms in a scalable resource management scheme. Our solution to request routing is based on selective update propagation, which ensures that the control load on a cluster node is independent of the system size. Application placement is approached in a decentralized manner, by using a distributed algorithm that maximizes resource utilization and allows for service differentiation under overload. The paper demonstrates how the above solutions can be integrated into an overall design for a peer-to-peer management middleware that exhibits properties of self-organization. Through complexity analysis and simulation, we show to which extent the system design is scalable. We have built a prototype using accepted technologies and have evaluated it using a standard benchmark. The testbed measurements show that the implementation, within the parameter range tested, operates efficiently, quickly adapts to a changing environment and allows for effective service differentiation by a system administrator.

  • 389.
    Adam, Constantin
    et al.
    KTH, School of Electrical Engineering (EES), Communication Networks.
    Stadler, Rolf
    KTH, School of Electrical Engineering (EES), Communication Networks.
    Tang, Chunqiang
    Steinder, Malgorzata
    Spreitzer, Michael
    A service middleware that scales in system size and applications2007In: 2007 10TH IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2009): VOLS 1 AND 2, NEW YORK: IEEE , 2007, p. 70-79Conference paper (Refereed)
    Abstract [en]

    We present a peer-to-peer service management middleware that dynamically allocates system resources to a large set of applications. The system achieves scalability in number of nodes (1000s or more) through three decentralized mechanisms that run on different time scales. First, overlay construction interconnects all nodes in the system for exchanging control and state information. Second, request routing directs requests to nodes that offer the corresponding applications. Third, application placement controls the set of offered applications on each node, in order to achieve efficient operation and service differentiation. The design supports a large number of applications (100s or more) through selective propagation of configuration information needed for request routing. The control load on a node increases linearly with the number of applications in the system. Service differentiation is achieved through assigning a utility to each application which influences the application placement process. Simulation studies show that the system operates efficiently for different sizes, adapts fast to load changes and failures and effectively differentiates between different applications under overload.

  • 390.
    Adam, Fadi
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Applied Mechanical Engineering (KTH Södertälje).
    Alsabti, Rami
    KTH, School of Industrial Engineering and Management (ITM), Applied Mechanical Engineering (KTH Södertälje).
    Postvagn för internutdelning2018Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
  • 391.
    Adams, David C.
    et al.
    MIT.
    Du, Jinfeng
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Electrical Engineering (EES), Communication Theory. Massachusetts Institute of Technology, USA.
    Médard, Muriel
    Department of Electrical Engineering and Computer Science, MIT.
    Yu, Christopher C.
    Draper Laboratory.
    Delay constrained throughput-reliability tradeoff in network-coded wireless systems2014Conference paper (Refereed)
    Abstract [en]

    We investigate the performance of delay constrained data transmission over wireless networks without end-to-end feedback. Forward error-correction coding (FEC) is performed at the bit level to combat channel distortions and random linear network coding (RLNC) is performed at the packet level to recover from packet erasures. We focus on the scenario where RLNC re-encoding is performed at intermediate nodes and we assume that any packet that contains bit errors after FEC decoding can be detected and erased. To facilitate explicit characterization of data transmission over network-coded wireless systems, we propose a generic two-layer abstraction of a network that models both bit/symbol-level operations at the lower layer (termed PHY-layer) over several heterogeneous links and packet-level operations at the upper layer (termed NET-layer). Based on this model, we propose a network reduction method to characterize the throughput-reliability function of the end-to-end transmission. Our approach not only reveals an explicit tradeoff between data delivery rate and reliability, but also provides an intuitive visualization of the bottlenecks within the underlying network. We illustrate our approach via a point-to-point link and a relay network and highlight the advantages of this method over capacity-based approaches.

  • 392. Adamson, G.
    et al.
    Wang, Lihui
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Holm, M.
    The state of the art of cloud manufacturing and future trends2013In: ASME 2013 International Manufacturing Science and Engineering Conference Collocated with the 41st North American Manufacturing Research Conference, MSEC 2013, 2013Conference paper (Refereed)
    Abstract [en]

    Cloud manufacturing has emerged as a new manufacturing paradigm, which combines technologies (such as Internet of Things, Cloud computing, semantic Web, virtualisation and service-oriented technologies) with advanced manufacturing models, information and communication technologies. It aims to be networked, intelligent, service-oriented, knowledge-based and energy efficient, and promises a variety of benefits and advantages by providing fast, reliable and secure on-demand services for users. It is envisioned that companies in all sectors of manufacturing will be able to package their resources and know-hows in the Cloud, making them conveniently available for others through pay-as-you-go, which is also timely and economically attractive. Resources, e.g. manufacturing software tools, applications, knowledge and fabrication capabilities, will then be made accessible to presumptive consumers on a worldwide basis. After surveying a vast array of available publications, this paper presents an up-to-date literature review together with future trends and research directions in Cloud manufacturing.

  • 393. Adamson, G.
    et al.
    Wang, Lihui
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Holm, M.
    Moore, P.
    Adaptive robotic control in cloud environments2014In: FAIM 2014 - Proceedings of the 24th International Conference on Flexible Automation and Intelligent Manufacturing: Capturing Competitive Advantage via Advanced Manufacturing and Enterprise Transformation, DEStech Publications Inc , 2014, p. 37-44Conference paper (Refereed)
    Abstract [en]

    The increasing globalization is a trend which forces manufacturing industry of today to focus on more cost-effective manufacturing systems and collaboration within global supply chains and manufacturing networks. Cloud Manufacturing (CM) is evolving as a new manufacturing paradigm to match this trend, enabling the mutually advantageous sharing of resources, knowledge and information between distributed companies and manufacturing units. Providing a framework for collaboration within complex and critical tasks, such as manufacturing and design, it increases the companies' ability to successfully compete on a global marketplace. One of the major, crucial objectives for CM is the coordinated planning, control and execution of discrete manufacturing operations in a collaborative and networked environment. This paper describes the overall concept of adaptive Function Block control of manufacturing equipment in Cloud environments, with the specific focus on robotic assembly operations, and presents Cloud Robotics as "Robot Control-as-a-Service" within CM. © Copyright 2014 by DEStech Publications, Inc. All rights reserved.

  • 394. Adamson, G.
    et al.
    Wang, Lihui
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Holm, Magnus
    Moore, Philip
    Cloud Manufacturing – A Critical Review of Recent Development and Future Trends2017In: International journal of computer integrated manufacturing (Print), ISSN 0951-192X, E-ISSN 1362-3052, Vol. 30, no 4-5, p. 347-380Article in journal (Refereed)
    Abstract [en]

    There is an ongoing paradigm shift in manufacturing, in which the modern manufacturing industry is changing towards global manufacturing networks and supply chains. This will lead to the flexible usage of different globally distributed, scalable and sustainable, service-oriented manufacturing systems and resources. Combining recently emerged technologies, such as Internet of Things, Cloud Computing, Semantic Web, service-oriented technologies, virtualisation and advanced high-performance computing technologies, with advanced manufacturing models and information technologies, Cloud Manufacturing is a new manufacturing paradigm built on resource sharing, supporting and driving this change. It is envisioned that companies in all sectors of manufacturing will be able to package their resources and know-hows in the Cloud, making them conveniently available for others through pay-as-you-go, which is also timely and economically attractive. Resources, e.g. manufacturing software tools, applications, knowledge and fabrication capabilities and equipment, will then be made accessible to presumptive consumers on a worldwide basis. Cloud Manufacturing has been in focus for a great deal of research interest and suggested applications during recent years, by both industrial and academic communities. After surveying a vast array of available publications, this paper presents an up-to-date literature review together with identified outstanding research issues, and future trends and directions within Cloud Manufacturing.

  • 395. Adamson, Goran
    et al.
    Wang, Lihui
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering. University of Skövde, Sweden.
    Holm, Magnus
    Moore, Philip
    ADAPTIVE ROBOT CONTROL AS A SERVICE IN CLOUD MANUFACTURING2015In: PROCEEDINGS OF THE ASME 10TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2015, VOL 2, ASME Press, 2015, Vol. 2Conference paper (Refereed)
    Abstract [en]

    The interest for implementing the concept of Manufacturing-as-a-Service is increasing as concepts for letting the manufacturing shop-floor domain take advantage of the cloud appear. Combining technologies such as Internet of Things, Cloud Computing, Semantic Web, virtualisation and service-oriented technologies with advanced manufacturing models, information and communication technologies, Cloud Manufacturing is emerging as a new manufacturing paradigm. The ideas of on-demand, scalable and pay-for-usage resource-sharing in this concept will move manufacturing towards distributed and collaborative missions in volatile partnerships. This will require a control approach for distributed planning and execution of cooperating manufacturing activities. Without control based on both global and local environmental conditions, the advantages of Cloud Manufacturing will not be fulfilled. By utilising smart and distributable decision modules such as event-driven Function Blocks, run-time manufacturing operations in a. distributed environment may be adjusted to prevailing manufacturing conditions. Packaged in a cloud service for manufacturing equipment control, they will satisfy the control needs. By combining different resource types, such as hard, soft and capability resources, the cloud service Robot Control-as-a-Service can be realised. This paper describes the functional perspective and enabling technologies for a distributed control approach for robotic assembly tasks in Cloud Manufacturing.

  • 396. Adamson, Goran
    et al.
    Wang, Lihui
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Holm, Magnus
    Moore, Philip
    FEATURE-BASED ADAPTIVE MANUFACTURING EQUIPMENT CONTROL FOR CLOUD ENVIRONMENTS2016In: PROCEEDINGS OF THE ASME 11TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2016, VOL 2, AMER SOC MECHANICAL ENGINEERS , 2016Conference paper (Refereed)
    Abstract [en]

    The ideas of on-demand, scalable and pay-for-usage resource-sharing in Cloud Manufacturing are steadily attracting more interest. For implementing the concept of Manufacturing as-a-Service in a cloud environment, description models and implementation language for resources and their capabilities are required. A standardized approach for systemived virtualization, servisilisation, retrieval, selection and composition into higher levels of functionality is necessary. For the collaborative sharing and use of networked manufacturing resources there is also a need for a control approach for distributed manufacturing equipment. In this paper, the technological perspective for an adaptive cloud service-based control approach is described, and a supporting information model for its implementation. The control is realized through the use of a network of intelligent and distributable Function Block decision modules, enabling run-time manufacturing activities to be performed according to actual manufacturing conditions. The control system's integration to the cloud service management functionality is described, as well as a feature-level capability model and the use of ontologies and the Semantic Web.

  • 397. Adamson, Göran
    et al.
    Holm, Magnus
    Moore, Philip
    Wang, Lihui
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering. Univ Skövde, Sweden.
    A cloud service control approach for distributed and adaptive equipment control in cloud environments2016In: RESEARCH AND INNOVATION IN MANUFACTURING: KEY ENABLING TECHNOLOGIES FOR THE FACTORIES OF THE FUTURE - PROCEEDINGS OF THE 48TH CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2016, p. 644-649Conference paper (Refereed)
    Abstract [en]

    A developing trend within the manufacturing shop-floor domain is the move of manufacturing activities into cloud environments, as scalable, on-demand and pay-per-usage cloud services. This will radically change traditional manufacturing, as borderless, distributed and collaborative manufacturing missions between volatile, best suited groups of partners will impose a multitude of advantages. The evolving Cloud Manufacturing (CM) paradigm will enable this new manufacturing concept, and on-going research has described many of its anticipated core virtues and enabling technologies. However, a major key enabling technology within CM which has not yet been fully addressed is the dynamic and distributed planning, control and execution of scattered and cooperating shop-floor equipment, completing joint manufacturing tasks. In this paper, the technological perspective for a cloud service-based control approach is described, and how it could be implemented. Existing manufacturing resources, such as soft, hard and capability resources, can be packaged as cloud services, and combined to create different levels of equipment or manufacturing control, ranging from low-level control of single machines or devices (e.g. Robot Control-as-a-Service), up to the execution of high level multi-process manufacturing tasks (e.g. Manufacturing-as-a-Service). A multi-layer control approach, featuring adaptive decision-making for both global and local environmental conditions, is proposed. This is realized through the use of a network of intelligent and distributable decision modules such as event-driven Function Blocks, enabling run-time manufacturing activities to be performed according to actual manufacturing conditions. The control system's integration to the CM cloud service management functionality is also described.

  • 398. Adamson, Göran
    et al.
    Holm, Magnus
    Wang, Lihui
    Moore, Philip
    Adaptive Assembly Feature Based Function Block Control of Robotic Assembly Operations2012Conference paper (Refereed)
    Abstract [en]

    Many manufacturing systems are exposed to a variety of unforeseen changes, negatively restricting their performances. External variations depending on market demand (e.g. changes in design, quantity and product mix) and internal variations in production capability and flexibility (e.g. equipment breakdowns, missing/worn/broken tools, delays and express orders) all contribute to an environment of uncertainty. In these dynamically changing environments, adaptability is a key feature for manufacturing systems to be able to perform at a maximum level, while keeping unscheduled downtime to a minimum. Targeting manufacturing equipment adaptability, this paper reports an assembly feature (AF) based approach for robotic assembly, using IEC 61499 compliant Function Blocks (FBs). Through the use of a network of event-driven FBs, an adaptive controller system for an industrial gantry robot’s assembly operations has been designed, implemented and tested. Basic assembly operations have been mapped as AFs into Assembly Feature Function Blocks (AF-FBs). Through their combination in FB networks, they can be aggregated to perform higher level assembly tasks. The AF-FBs dynamic execution and behavior can be adaptively controlled through embedded eventdriven algorithms, enabling the ability of adaptive decisions to handle unforeseen changes in the runtime environment.

  • 399. Adamson, Göran
    et al.
    Wang, Lihui
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Holm, Magnus
    Moore, Philip
    Function Block Approach for Adaptive Robotic Control in Virtual and Real Environments2014Conference paper (Refereed)
    Abstract [en]

    Many manufacturing companies are facing an increasing amount of changes and uncertainty, caused by both internal and external factors. Frequently changing customer and market demands lead to variations in manufacturing quantities, product design and shorter product life-cycles, and variations in manufacturing capability and functionality contribute to a high level of uncertainty. The result is unpredictable manufacturing system performance, with an increased number of unforeseen events occurring in these systems. Such events are difficult for traditional planning and control systems to satisfactorily manage. For scenarios like these, with a dynamically changing manufacturing environment, adaptive decision making is crucial for successfully performing manufacturing operations. Relying on real-time information of manufacturing processes and operations, and their enabling resources, adaptive decision making can be realized with a control approach combining IEC 61499 event-driven Function Blocks (FBs) with manufacturing features. These FBs are small decision-making modules with embedded algorithms designed to generate the desired equipment control code. When dynamically triggered by event inputs, parameter values in their data inputs are forwarded to the appropriate algorithms, which generate new events and data output as control instructions. The data inputs also include monitored real-time information which allows the dynamic creation of equipment control code adapted to the actual run-time conditions on the shop-floor. Manufacturing features build on the concept that a manufacturing task can be broken down into a sequence of minor basic operations, in this research assembly features (AFs). These features define atomic assembly operations, and by combining and implementing these in the event-driven FB embedded algorithms, automatic code generation is possible. A test case with a virtual robot assembly cell is presented, demonstrating the functionality of the proposed control approach.

  • 400. Adamson, Göran
    et al.
    Wang, Lihui
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering. University of Skövde, Sweden.
    Moore, Philip
    Feature-based control and information framework for adaptive and distributed manufacturing in cyber physical systems2017In: Journal of manufacturing systems, ISSN 0278-6125, E-ISSN 1878-6642, Vol. 143, p. 305-315Article in journal (Refereed)
    Abstract [en]

    Modern distributed manufacturing within Industry 4.0, supported by Cyber Physical Systems (CPSs), offers many promising capabilities regarding effective and flexible manufacturing, but there remain many challenges which may hinder its exploitation fully. One major issue is how to automatically control manufacturing equipment, e.g. industrial robots and CNC-machines, in an adaptive and effective manner. For collaborative sharing and use of distributed and networked manufacturing resources, a coherent, standardised approach for systemised planning and control at different manufacturing system levels and locations is a paramount prerequisite. In this paper, the concept of feature-based manufacturing for adaptive equipment control and resource task matching in distributed and collaborative CPS manufacturing environments is presented. The concept has a product perspective and builds on the combination of product manufacturing features and event-driven Function Blocks (FB) of the IEC 61499 standard. Distributed control is realised through the use of networked and smart FB decision modules, enabling the performance of collaborative runtime manufacturing activities according to actual manufacturing conditions. A feature-based information framework supporting the matching of manufacturing resources and tasks, as well as the feature-FB control concept, and a demonstration with a cyber-physical robot application, are presented.

567891011 351 - 400 of 55907
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf