Automatic tracking and video of surveillance on a farm could help to support farm management. In this project, an automated detection system is used to detect sows in surveillance videos. This system is based upon deep learning and computer vision methods. In order to minimize disk storage and to meet the network requirements necessary to achieve the real-performance, tracking in compressed video streams is essential.
The proposed system uses a Discriminative Correlation Filter (DCF) as a classifier to detect targets. The tracking model is updated by training the classifier with online learning methods. Compression technology encodes the video data, thus reducing both the bit rates at which video signals are transmitted and helping the video transmission better adapt to the limited network bandwidth. However, compression may reduce the image quality of the videos the precision of our tracking may decrease. Hence, we conducted a performance evaluation of existing visual tracking algorithms on video sequences with quality degradation due to various compression parameters (encoders, target bitrate, rate control model, and Group of Pictures (GOP) size). The ultimate goal of video compression is to realize a tracking system with equal performance, but requiring fewer network resources.
The proposed tracking algorithm successfully tracks each sow in consecutive frames in most cases. The performance of our tracker was benchmarked against two state-of-art tracking algorithms: Siamese Fully-Convolutional (FC) and Efficient Convolution Operators (ECO). The performance evaluation result shows our proposed tracker has similar performance to both Siamese FC and ECO.
In comparison with the original tracker, the proposed tracker achieved similar tracking performance, while requiring much less storage and generating a lower bitrate when the video was compressed with appropriate parameters. However, the system is far slower than needed for real-time tracking due to high computational complexity; therefore, more optimal methods to update the tracking model will be needed to achieve real-time tracking.