Change search
Refine search result
1234567 51 - 100 of 130287
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Zwalinsk, L.
    et al,
    Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at >=13 TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 12, article id 039Article in journal (Refereed)
    Abstract [en]

    A search for new phenomena in events with two same- charge leptons or three leptons and jets identi fi ed as originating from b - quarks in a data sample of 36.1 fb of pp collisions at ps = 13TeV recorded by the ATLAS detector at the Large Hadron Collider is reported. No signi fi cant excess is found and limits are set on vector- like quark, fourtop- quark, and same- sign top- quark pair production. The observed ( expected) 95% CL mass limits for a vector- like T - and B - quark singlet are mT > 0 : 98 ( 0 : 99) TeV and mB > 1 : 00 ( 1 : 01) TeV respectively. Limits on the production of the vector- like T5=3 - quark are also derived considering both pair and single production; in the former case the lower limit on the mass of the T5=3 - quark is ( expected to be) 1.19 ( 1.21) TeV. The Standard Model fourtop- quark production cross- section upper limit is ( expected to be) 69 ( 29) fb. Constraints are also set on exotic four- top- quark production models. Finally, limits are set on samesign top- quark pair production. The upper limit on uu ! tt production is ( expected to be) 89 ( 59) fb for a mediator mass of 1TeV, and a dark- matter interpretation is also derived, excluding a mediator of 3TeV with a dark- sector coupling of 1.0 and a coupling to ordinary matter above 0.31.

  • 52. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski,
    et al.,
    Measurement of colour flow using jet-pull observables in tt¯ events with the ATLAS experiment at √s=13TeV2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 10Article in journal (Refereed)
    Abstract [en]

    Previous studies have shown that weighted angular moments derived from jet constituents encode the colour connections between partons that seed the jets. This paper presents measurements of two such distributions, the jet-pull angle and jet-pull magnitude, both of which are derived from the jet-pull angular moment. The measurement is performed in tt¯ events with one leptonically decaying W boson and one hadronically decaying W boson, using 36.1fb-1 of pp collision data recorded by the ATLAS detector at s=13TeV delivered by the Large Hadron Collider. The observables are measured for two dijet systems, corresponding to the colour-connected daughters of the W boson and the two b-jets from the top-quark decays, which are not expected to be colour connected. To allow the comparison of the measured distributions to colour model predictions, the measured distributions are unfolded to particle level, after correcting for experimental effects introduced by the detector. While good agreement can be found for some combinations of predictions and observables, none of the predictions describes the data well across all observables

  • 53.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 2, article id 120Article in journal (Refereed)
    Abstract [en]

    This paper describes a strategy for a general search used by the ATLAS Collaboration to find potential indications of new physics. Events are classified according to their final state into many event classes. For each event class an automated search algorithm tests whether the data are compatible with the Monte Carlo simulated expectation in several distributions sensitive to the effects of new physics. The significance of a deviation is quantified using pseudo-experiments. A data selection with a significant deviation defines a signal region for a dedicated follow-up analysis with an improved background expectation. The analysis of the data-derived signal regions on a new dataset allows a statistical interpretation without the large look-elsewhere effect. The sensitivity of the approach is discussed using Standard Model processes and benchmark signals of new physics. As an example, results are shown for 3.2fb-1 of proton-proton collision data at a centre-of-mass energy of 13TeV collected with the ATLAS detector at the LHC in 2015, in which more than 700 event classes and more than 105 regions have been analysed. No significant deviations are found and consequently no data-derived signal regions for a follow-up analysis have been defined.

  • 54.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    In situ calibration of large-radius jet energy and mass in 13TeVproton-proton collisions with the ATLAS detector2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 2, article id 135Article in journal (Refereed)
    Abstract [en]

    The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb(-1) of root s = 13TeV proton-proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2-3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (p(T)). The precision of the relative jet energy scale is 1-2% for 200 GeV < p(T) < TeV, while that of the mass scale is 2-10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10-15% over the same p(T) range.

  • 55.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Measurements of W and Z boson production in pp collisions at root s = 5.02TeV with the ATLAS detector (vol 79, 128, 2019)2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 5, article id 374Article in journal (Refereed)
  • 56.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Phys Dept, Stockholm, Sweden..
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Measurements of W and Z boson production in pp collisions at root s=5.02 TeV with the ATLAS detector2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 2, article id 128Article in journal (Refereed)
    Abstract [en]

    Measurements of fiducial integrated and differential cross sections for inclusive W +, W -and Z boson production are reported. They are based on 25.0 +/- 0.5 pb -1 of pp collision data at v s = 5.02 TeV collected with the ATLAS detector at the CERN Large Hadron Collider. Electron and muon decay channels are analysed, and the combined W +, W -and Z integrated cross sections are found to be sW+ = 2266 +/- 9 (stat) +/- 29 (syst) +/- 43 (lumi) pb, sW-= 1401 +/- 7 (stat) +/- 18 (syst) +/- 27 (lumi) pb, and sZ = 374.5 +/- 3.4 (stat)+/- 3.6 (syst)+/- 7.0 (lumi) pb, in good agreement with next-to-next-to-leading-order QCD crosssection calculations. Thesemeasurements serve as references for Pb+ Pb interactions at the LHC at v sNN = 5.02 TeV.

  • 57.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Search for long-lived particles in final states with displaced dimuon vertices in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 1, article id 012001Article in journal (Refereed)
    Abstract [en]

    A search is performed for a long-lived particle decaying into a final state that includes a pair of muons of opposite-sign electric charge, using proton-proton collision data collected at root s = 13 TeV by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 32.9 fb(-1). No significant excess over the Standard Model expectation is observed. Limits at 95% confidence level on the lifetime of the long-lived particle are presented in models of new phenomena including gauge-mediated supersymmetry or decay of the Higgs boson, H, to a pair of dark photons, Z(D). Lifetimes in the range c tau = 1-2400 cm are excluded, depending on the parameters of the model. In the supersymmetric model, the lightest neutralino is the next-to-lightest supersymmetric particle, with a relatively long lifetime due to its weak coupling to the gravitino, the lightest supersymmetric particle. The lifetime limits are determined for very light gravitino mass and various assumptions for the neutralino mass in the range 300-1000 GeV. In the dark photon model, the lifetime limits are interpreted as exclusion contours in the plane of the coupling between the Z(D) and the Standard Model Z boson versus the Z(D) mass (in the range 20-60 GeV), for various assumptions for the H -> Z(D)Z(D) branching fraction.

  • 58.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Combined measurements of Higgs boson production and decay using up to 80 fb(-1) of proton-proton collision data at root S=13 TeV collected with the ATLAS experiment2020In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 101, no 1, article id 012002Article in journal (Refereed)
    Abstract [en]

    Combined measurements of Higgs boson production cross sections and branching fractions arc presented. The combination is based on the analyses of the Higgs boson decay modes H -> gamma gamma, ZZ*, WW*, tau tau, b (b) over bar, mu mu, searches for decays into invisible final states, and on measurements of off-shell Higgs boson production. Up to 79.8 fb(-1) of proton-proton collision data collected at root S = 13 TeV with the ATLAS detector are used. Results are presented for the gluon-gluon fusion and vector-boson fusion processes, and for associated production with vector bosons or top-quarks. The global signal strength is determined to be mu = 1.11(-0.08)(+0.09). The combined measurement yields an observed (expected) significance for the vector-boson fusion production process of 6.5 sigma (5.3 sigma). Measurements in kinematic regions defined within the simplified template cross section framework are also shown. The results are interpreted in terms of modifiers applied to the Standard Model couplings of the Higgs boson to other particles, and are used to set exclusion limits on parameters in two-Higgs-doublet models and in the simplified minimal supersynunetric Standard Model. No significant deviations from Standard Model predictions are observed.

  • 59. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Measurement of the nuclear modification factor for inclusive jets in Pb plus Pb collisions at root s(NN)=5.02 TeV with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 790Article in journal (Refereed)
    Abstract [en]

    Measurements of the yield and nuclear modification factor, R-AA, for inclusive jet production are performed using 0.49 nb(-1) of Pb+Pb data at root s(NN) = 5.02 TeV and 25 pb(-1) of Pb+Pb data at root s = 5.02 TeV with the ATLAS detector at the LHC. Jets are reconstructed with the anti-k(t) algorithm with radius parameter R = 0.4 and are measured over the transverse momentum range of 40-1000 GeV in six rapidity intervals covering vertical bar y vertical bar < 2.8. The magnitude of R-AA increases with increasing jet transverse momentum, reaching a value of approximately 0.6 at 1 TeV in the most central collisions. The magnitude of R-AA also increases towards peripheral collisions. The value of R-AA is independent of rapidity at low jet transverse momenta, but it is observed to decrease with increasing rapidity at high transverse momenta. 

  • 60.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Measurement of W-+/--boson and Z-boson production cross-sections in pp collisions at root s=2.76 TeV with the ATLAS detector2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 11, article id 901Article in journal (Refereed)
    Abstract [en]

    The production cross-sections for W +/- and Z bosons are measured using ATLAS data corresponding to an integrated luminosity of 4.0 pb-1 collected at a centre-ofmass energy v s = 2.76 TeV. The decay channels W and Z. are used, where can be an electron or a muon. The cross-sections are presented for a fiducial region defined by the detector acceptance and are also extrapolated to the full phase space for the total inclusive production cross-section. The combined (average) total inclusive cross-sections for the electron and muon channels are: s tot W+ = 2312 +/- 26 (stat.) +/- 27 (syst.) +/- 72 (lumi.) +/- 30 (extr.) pb, s tot W- = 1399 +/- 21 (stat.) +/- 17 (syst.) +/- 43 (lumi.) +/- 21 (extr.) pb, s tot Z. = 323.4 +/- 9.8 (stat.) +/- 5.0 (syst.) +/- 10.0 (lumi.) +/- 5.5(extr.) pb. Measured ratios and asymmetries constructed using these cross-sections are also presented. These observables benefit from full or partial cancellation of many systematic uncertainties that are correlated between the different measurements.

  • 61.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Measurements of differential cross sections of top quark pair production in association with jets in pp collisions at root s=13 TeV using the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 159Article in journal (Refereed)
    Abstract [en]

    Measurements of di ff erential cross sections of top quark pair production in association with jets by the ATLAS experiment at the LHC are presented. The measurements are performed as functions of the top quark transverse momentum, the transverse momentum of the top quark-antitop quark system and the out-of-plane transverse momentum using data from pp collisions at p s = 13TeV collected by the ATLAS detector at the LHC in 2015 and corresponding to an integrated luminosity of 3.2 fb. The top quark pair events are selected in the lepton (electron or muon) + jets channel. The measured cross sections, which are compared to several predictions, allow a detailed study of top quark production.

  • 62.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    et al.,
    Observation of Centrality-Dependent Acoplanarity for Muon Pairs Produced via Two-Photon Scattering in Pb plus Pb Collisions at root s(NN)=5.02 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 21, article id 212301Article in journal (Refereed)
    Abstract [en]

    This Letter presents a measurement of gamma gamma -> mu(+)mu(-)- production in Pb + Pb collisions recorded by the ATLAS detector at the Large Hadron Collider at root s(NN) = 5.02 TeV with an integrated luminosity of 0.49 nb(-1). The azimuthal angle and transverse momentum correlations between the muons are measured as a function of collision centrality. The muon pairs are produced from gamma gamma through the interaction of the large electromagnetic fields of the nuclei. The contribution from background sources of muon pairs is removed using a template fit method. In peripheral collisions, the muons exhibit a strong back-to-back correlation consistent with previous measurements of muon pair production in ultraperipheral collisions. The angular correlations are observed to broaden significantly in central collisions. The modifications arc qualitatively consistent with rescattering of the muons while passing through the hot matter produced in the collision.

  • 63.
    Aaboud, M.
    et al.
    Faculté des SciencesUniversité Mohamed Premier and LPTPMOujdaMorocco.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    et al.,
    Operation and performance of the ATLAS Tile Calorimeter in Run 12018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 12, article id 987Article in journal (Refereed)
    Abstract [en]

    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter's performance during the years 2008-2012 using cosmic-ray muon events and proton-proton collision data at centre-of-mass energies of 7 and 8 TeV with a total integrated luminosity of nearly 30 fb(-1). The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton-proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report.

  • 64.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 5, article id 375Article in journal (Refereed)
    Abstract [en]

    The performance of identification algorithms (taggers) for hadronically decaying top quarks and W bosons in pp collisions at = 13TeV recorded by the ATLAS experiment at the Large Hadron Collider is presented. A set of techniques based on jet shape observables are studied to determine a set of optimal cut-based taggers for use in physics analyses. The studies are extended to assess the utility of combinations of substructure observables as a multivariate tagger using boosted decision trees or deep neural networks in comparison with taggers based on two-variable combinations. In addition, for highly boosted top-quark tagging, a deep neural network based on jet constituent inputs as well as a re-optimisation of the shower deconstruction technique is presented. The performance of these taggers is studied in data collected during 2015 and 2016 corresponding to 36.1fb-1 for the tt and +jet and 36.7-1 for the dijet event topologies.

  • 65.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Properties of jet fragmentation using charged particles measured with the ATLAS detector in pp collisions at root s=13 TeV2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 100, no 5, article id 052011Article in journal (Refereed)
    Abstract [en]

    This paper presents a measurement of quantities related to the formation of jets from high-energy quarks and gluons (fragmentation). Jets with transverse momentum 100 GeV < p(T) < 2.5 TeV and pseudorapidity vertical bar eta vertical bar < 2.1 from an integrated luminosity of 33 fb(-1) of root s = 13 TeV proton-proton collisions are reconstructed with the ATLAS detector at the Large Hadron Collider. Charged-particle tracks with p(T) > 500 MeV and vertical bar eta vertical bar < 2.5 are used to probe the detailed structure of the jet. The fragmentation properties of the more forward and the more central of the two leading jets from each event are studied. The data are unfolded to correct for detector resolution and acceptance effects. Comparisons with parton shower Monte Carlo generators indicate that existing models provide a reasonable description of the data across a wide range of phase space, but there are also significant differences. Furthermore, the data are interpreted in the context of quark- and gluon-initiated jets by exploiting the rapidity dependence of the jet flavor fraction. A first measurement of the charged-particle multiplicity using model-independent jet labels (topic modeling) provides a promising alternative to traditional quark and gluon extractions using input from simulation. The simulations provide a reasonable description of the quark-like data across the jet p(T) range presented in-this measurement, but the gluon-like data have systematically fewer charged particles than the simulation.

  • 66.
    Aaboud, M.
    et al.
    Univ Mohamed Premier & LPTPM, Fac Sci, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Royal Inst Technol, Dept Phys, Stockholm, Sweden..
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    et al.,
    Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 180Article in journal (Refereed)
    Abstract [en]

    A search for dark matter (DM) particles produced in association with a hadronically decaying vector boson is performed using pp collision data at a centre-of-mass energy of TeV corresponding to an integrated luminosity of 36.1 fb(-1), recorded by the ATLAS detector at the Large Hadron Collider. This analysis improves on previous searches for processes with hadronic decays of W and Z bosons in association with large missing transverse momentum (mono-W/Z searches) due to the larger dataset and further optimization of the event selection and signal region definitions. In addition to the mono-W/Z search, the as yet unexplored hypothesis of a new vector boson Z produced in association with dark matter is considered (mono-Z search). No significant excess over the Standard Model prediction is observed. The results of the mono-W/Z search are interpreted in terms of limits on invisible Higgs boson decays into dark matter particles, constraints on the parameter space of the simplified vector-mediator model and generic upper limits on the visible cross sections for W/Z+DM production. The results of the mono-Z search are shown in the framework of several simplified-model scenarios involving DM production in association with the Z boson.

  • 67.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for doubly charged scalar bosons decaying into same-sign W boson pairs with the ATLAS detector2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 1, article id 58Article in journal (Refereed)
    Abstract [en]

    A search for doubly charged scalar bosons decaying into W boson pairs is presented. It uses a data sample from proton-proton collisions corresponding to an integrated luminosity of 36.1fb-1 collected by the ATLAS detector at the LHC at a centre-of-mass energy of 13TeV in 2015 and 2016. This search is guided by a model that includes an extension of the Higgs sector through a scalar triplet, leading to a rich phenomenology that includes doubly charged scalar bosons H +/-+/-. Those bosons are produced in pairs in proton-proton collisions and decay predominantly into electroweak gauge bosons H +/-+/- W +/- W +/-. Experimental signatures with several leptons, missing transverse energy and jets are explored. No significant deviations from the Standard Model predictions are found. The parameter space of the benchmark model is excluded at 95% confidence level for H +/-+/- bosons with masses between 200 and 220 GeV.

  • 68.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland.
    et al.,
    Search for Higgs boson pair production in the gamma gamma b(b)over-bar final state with 13TeV pp collision data collected by the ATLAS experiment2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 11, article id 040Article in journal (Refereed)
    Abstract [en]

    A search is performed for resonant and non-resonant Higgs boson pair production in the final state. The data set used corresponds to an integrated luminosity of 36.1 fb(-1) of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess relative to the Standard Model expectation is observed. The observed limit on the non-resonant Higgs boson pair cross-section is 0.73 pb at 95% confidence level. This observed limit is equivalent to 22 times the predicted Standard Model cross-section. The Higgs boson self-coupling (=(HHH)/SM) is constrained at 95% confidence level to -8.2 < < 13.2. For resonant Higgs boson pair production through , the limit is presented, using the narrow-width approximation, as a function of m(X) in the range 260 GeV < m(X) < 1000 GeV. The observed limits range from 1.1 pb to 0.12 pb over this mass range.

  • 69.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for lepton-flavor violation in different-flavor, high-mass final states in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 9, article id 092008Article in journal (Refereed)
    Abstract [en]

    A search is performed for a heavy particle decaying into different-flavor, dilepton pairs (e mu, e tau or mu tau), using 36.1 fb(-1) of proton-proton collision data at root s = 13 TeV collected in 2015-2016 by the ATLAS detector at the Large Hadron Collider. No excesses over the Standard Model predictions are observed. Bayesian lower limits at the 95% credibility level are placed on the mass of a Z' boson, the mass of a supersymmetric tau-sneutrino, and on the threshold mass for quantum black-hole production. For the Z' and sneutrino models, upper cross-section limits are converted to upper limits on couplings, which are compared with similar limits from low-energy experiments and which are more stringent for the e tau and mu tau modes.

  • 70.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for lepton-flavor-violating decays of the Z boson into a r lepton and a light lepton with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 9, article id 092010Article in journal (Refereed)
    Abstract [en]

    Direct searches for lepton flavor violation in decays of the Z boson with the ATLAS detector at the LHC are presented. Decays of the Z boson into an electron or muon and a hadronically decaying r lepton are considered. The searches are based on a data sample of proton-proton collisions collected by the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb(-1) at a center-of-mass energy of root s = 13 TeV. No statistically significant excess of events above the expected background is observed, and upper limits on the branching ratios of lepton-flavor-violating decays are set at the 95% confidence level: B(Z -> e tau) < 5.8 x 10(-5) and B(Z -> mu tau) < 2.4 x 10(-5). This is the first limit on B(Z -> e tau) with ATLAS data. The upper limit on 13(Z -> mu tau) is combined with a previous ATLAS result based on 20.3 fb(-1) of proton protoncollision data at a center-of-mass energy of root s = 8 TeV and the combined upper limit at 95% confidence level is B(Z -> mu tau) < 1.3 x 10(-5).

  • 71.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L
    CERN, Geneva, Switzerland.
    et al.,
    Search for pair and single production of vectorlike quarks in final states with at least one Z boson decaying into a pair of electrons or muons in pp collision data collected with the ATLAS detector at root s=13 TeV2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 11, article id 112010Article in journal (Refereed)
    Abstract [en]

    A search for vectorlike quarks is presented, which targets their decay into a Z boson and a third-generation Standard Model quark. In the case of a vectorlike quark T (B) with charge +2/3e (-1/3e), the decay searched for is T -> Zt (B -> Zb). Data for this analysis were taken during 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb(-1) of pp collisions at root s = 13 TeV. The final state used is characterized by the presence of b-tagged jets, as well as a Z boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. Pair and single production of vectorlike quarks are both taken into account and are each searched for using optimized dileptonic exclusive and trileptonic inclusive event selections. In these selections, the high scalar sum of jet transverse momenta, the presence of high-transverse-momentum large-radius jets, as well as-in the case of the single-production selections-the presence of forward jets are used. No significant excess over the background-only hypothesis is found and exclusion limits at 95% confidence level allow masses of vectorlike quarks of m(T) > 1030 GeV (m(T) > 1210 GeV) and m(B) > 1010 GeV (m(B) > 1140 GeV) in the singlet (doublet) model. In the case of 100% branching ratio for T -> Zt (B -> Zb), the limits are m(T) > 1340 GeV (m(B) > 1220 GeV). Limits at 95% confidence level are also set on the coupling to Standard Model quarks for given vectorlike quark masses.

  • 72.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for squarks and gluinos in final states with hadronically decaying tau-leptons, jets, and missing transverse momentum using pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 1, article id 012009Article in journal (Refereed)
    Abstract [en]

    A search for supersymmetry in events with large missing transverse momentum, jets, and at least one hadronically decaying tau-lepton is presented. Two exclusive final states with either exactly one or at least two tau-leptons are considered. The analysis is based on proton-proton collisions at root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1) delivered by the Large Hadron Collider and recorded by the ATLAS detector in 2015 and 2016. No significant excess is observed over the Standard Model expectation. At 95% confidence level, model-independent upper limits on the cross section are set and exclusion limits are provided for two signal scenarios: a simplified model of gluino pair production with tau-rich cascade decays, and a model with gauge-mediated supersymmetry breaking (GMSB). In the simplified model, gluino masses up to 2000 GeV are excluded for low values of the mass of the lightest supersymmetric particle (LSP), while LSP masses up to 1000 GeV are excluded for gluino masses around 1400 GeV. In the GMSB model, values of the supersymmetry-breaking scale are excluded below 110 TeV for all values of tan beta in the range 2 <= tan beta <= 60, and below 120 TeV for tan beta > 30.

  • 73.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of root s=13TeV with the ATLAS experiment2019In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 79, no 9, article id 733Article in journal (Refereed)
    Abstract [en]

    Searches for scalar leptoquarks pair-produced in proton-proton collisions at root s = 13 TeV at the Large Hadron Collider are performed by the ATLAS experiment. A data set corresponding to an integrated luminosity of 36.1 fb(-1) is used. Final states containing two electrons or two muons and two or more jets are studied, as are states with one electron or muon, missing transverse momentum and two or more jets. No statistically significant excess above the Standard Model expectation is observed. The observed and expected lower limits on the leptoquark mass at 95% confidence level extend up to 1.29 TeV and 1.23 TeV for first-and second-generation leptoquarks, respectively, as postulated in the minimal Buchmuller-Ruckl-Wyler model, assuming a branching ratio into a charged lepton and a quark of 50%. In addition, measurements of particle-level fiducial and differential cross sections are presented for the Z -> ee, Z -> mu mu and t (t) over bar processes in several regions related to the search control regions. Predictions from a range of generators are compared with the measurements, and good agreement is seen for many of the observables. However, the predictions for the Z -> ll measurements in observables sensitive to jet energies disagree with the data.

  • 74.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ristić, B
    KTH, School of Engineering Sciences (SCI), Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Search for pairs of highly collimated photon-jets in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 1, article id 012008Article in journal (Refereed)
    Abstract [en]

    Results of a search for the pair production of photon-jets-collimated groupings of photons-in the ATLAS detector at the Large Hadron Collider are reported. Highly collimated photon-jets can arise from the decay of new, highly boosted particles that can decay to multiple photons collimated enough to be identified in the electromagnetic calorimeter as a single, photonlike energy cluster. Data from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.7 fb(-1), were collected in 2015 and 2016. Candidate photon-jet pair production events are selected from those containing two reconstructed photons using a set of identification criteria much less stringent than that typically used for the selection of photons, with additional criteria applied to provide improved sensitivity to photon-jets. Narrow excesses in the reconstructed diphoton mass spectra are searched for. The observed mass spectra are consistent with the Standard Model background expectation. The results are interpreted in the context of a model containing a new, high-mass scalar particle with narrow width, X, that decays into pairs of photon-jets via new, light particles, a. Upper limits are placed on the cross section times the product of branching ratios sigma x B(X -> aa) x B(a -> gamma gamma)(2) for 200 GeV < m(X) < 2 TeV and for ranges of m(a) from a lower mass of 100 MeV up to between 2 and 10 GeV, depending upon m(X). Upper limits are also placed on sigma x B(X -> aa) x B(a -> 3 pi(0))(2) for the same range of m(X) and for ranges of m(a) from a lower mass of 500 MeV up to between 2 and 10 GeV.

  • 75.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, C. C.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Search for charged Higgs bosons decaying into top and bottom quarks at root s=13TeV with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 11, article id 085Article in journal (Refereed)
    Abstract [en]

    A search for charged Higgs bosons heavier than the top quark and decaying via H-+/- tb is presented. The data analysed corresponds to 36.1 fb(-1) of pp collisions at TeV and was recorded with the ATLAS detector at the LHC in 2015 and 2016. The production of a charged Higgs boson in association with a top quark and a bottom quark, pp tbH(+/-), is explored in the mass range from m(H)+/- = 200 to 2000 GeV using multi-jet final states with one or two electrons or muons. Events are categorised according to the multiplicity of jets and how likely these are to have originated from hadronisation of a bottom quark. Multivariate techniques are used to discriminate between signal and background events. No significant excess above the background-only hypothesis is observed and exclusion limits are derived for the production cross-section times branching ratio of a charged Higgs boson as a function of its mass, which range from 2.9 pb at m(H)+/- = 200 GeV to 0.070 pb at m(H)+/- = 2000 GeV. The results are interpreted in two benchmark scenarios of the Minimal Supersymmetric Standard Model. \

  • 76.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, C. C.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Search for W ' -> tb decays in the hadronic final state using pp collisions at root s=13 TeV with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 781, p. 327-348Article in journal (Refereed)
    Abstract [en]

    A search for W'-boson production in the W' -> t (b) over bar -> q (q) over bar 'b (b) over bar decay channel is presented using 36.1 fb(-1) of 13 TeV proton-proton collision data collected by the ATLAS detector at the Large Hadron Collider in 2015 and 2016. The search is interpreted in terms of both a left-handed and a right-handed chiral W' boson within the mass range 1-5 TeV. Identification of the hadronically decaying top quark is performed using jet substructure tagging techniques based on a shower deconstruction algorithm. No significant deviation from the Standard Model prediction is observed and the results are expressed as upper limits on the W' -> t (b) over bar production cross-section times branching ratio as a function of the W'-boson mass. These limits exclude W' bosons with right-handed couplings with masses below 3.0 TeV and W' bosons with left-handed couplings with masses below 2.9 TeV, at the 95% confidence level.

  • 77. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    et al.,
    Measurement of the azimuthal anisotropy of charged particles produced in root s NN=5.02 TeV Pb+ Pb collisions with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 12, article id 997Article in journal (Refereed)
    Abstract [en]

    Measurements of the azimuthal anisotropy in lead-lead collisions at v s NN = 5.02 TeV are presented using a data sample corresponding to 0.49 nb -1 integrated luminosity collected by the ATLAS experiment at the LHC in 2015. The recorded minimum-bias sample is enhanced by triggers for " ultra-central" collisions, providing an opportunity to perform detailed study of flow harmonics in the regime where the initial state is dominated by fluctuations. The anisotropy of the charged-particle azimuthal angle distributions is characterized by the Fourier coefficients, v2-v7, which are measured using the two-particle correlation, scalar-product and event-plane methods. The goal of the paper is to provide measurements of the differential as well as integrated flow harmonics vn over wide ranges of the transverse momentum, 0.5 < pT < 60 GeV, the pseudorapidity, |.| < 2.5, and the collision centrality 0-80%. Results from different methods are compared and discussed in the context of previous and recent measurements in Pb+ Pb collisions at v s NN = 2.76TeV and 5.02TeV. In particular, the shape of the pT dependence of elliptic or triangular flow harmonics is observed to be very similar at different centralities after scaling the vn and pT values by constant factors over the centrality interval 0-60% and the pT range 0.5 < pT < 5 GeV.

  • 78.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at E-beam=4 TeV2018In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13, article id P12006Article in journal (Refereed)
    Abstract [en]

    Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the FLUKA Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared quantitatively with data. Through these comparisons the origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates that a good understanding of the origin of BIB has been reached.

  • 79.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Measurement of dijet azimuthal decorrelations in pp collisions at root s=8 TeV with the ATLAS detector and determination of the strong coupling2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 9, article id 092004Article in journal (Refereed)
    Abstract [en]

    measurement of the rapidity and transverse momentum dependence of dijet azimuthal decorrelations is presented, using the quantity R-Delta phi. The quantity R-Delta phi specifies the fraction of the inclusive dijet events in which the azimuthal opening angle of the two jets with the highest transverse momenta is less than a given value of the parameter Delta phi(max). The quantity R-Delta phi is measured in proton-proton collisions at root s = 8 TeV as a function of the dijet rapidity interval, the event total scalar transverse momentum, and Delta phi(max). The measurement uses an event sample corresponding to an integrated luminosity of 20.2 fb(-1) collected with the ATLAS detector at the CERN Large Hadron Collider. Predictions of a perturbative QCD calculation at next-to-leading order in the strong coupling with corrections for nonperturbative effects are compared to the data. The theoretical predictions describe the data in the whole kinematic region. The data are used to determine the strong coupling alpha(S) and to study its running for momentum transfers from 260 GeV to above 1.6 TeV. Analysis that combines data at all momentum transfers results in alpha(S) (m(Z)) = 0.1127(- 0.0027) (+0.0063).

  • 80.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Measurement of the ratio of cross sections for inclusive isolated-photon production in pp collisions at root s=13 and 8 TeV with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 093Article in journal (Refereed)
    Abstract [en]

    The ratio of the cross sections for inclusive isolated-photon production in pp collisions at centre-of-mass energies of 13 and 8 TeV is measured using the ATLAS detector at the LHC. The integrated luminosities of the 13 TeV and 8 TeV datasets are 3.2 fb(-1) and 20.2 fb(-1), respectively. The ratio is measured as a function of the photon transverse energy in different regions of the photon pseudorapidity. The predictions from next-to-leading-order perturbative QCD calculations are compared with the measured ratio. The experimental systematic uncertainties as well as the uncertainties affecting the predictions are evaluated taking into account the correlations between the two centre-of-mass energies, resulting in a reduction of up to a factor of 2.5 (5) in the experimental (theoretical) systematic uncertainties. The predictions based on several parameterisations of the proton parton distribution functions agree with the data within the reduced experimental and theoretical uncertainties. In addition, this ratio to that of the fiducial cross sections for Z boson production at 13 and 8 TeV using the decay channels Z e(+)e(-) and Z (+-) is made and compared with the theoretical predictions. In this double ratio, a further reduction of the experimental uncertainty is obtained because the uncertainties arising from the luminosity measurement cancel out. The predictions describe the measurements of the double ratio within the theoretical and experimental uncertainties.

  • 81.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Measurement of the suppression and azimuthal anisotropy of muons from heavy-flavor decays in Pb plus Pb collisions at root s(NN)=2.76 TeV with the ATLAS detector2018In: Physical Review C: Covering Nuclear Physics, ISSN 2469-9985, E-ISSN 2469-9993, Vol. 98, no 4, article id 044905Article in journal (Refereed)
    Abstract [en]

    ATLAS measurements of the production of muons from heavy-flavor decays in root s(NN) = 2.76 TeV Pb+Pb collisions and root s = 2.76 TeV pp collisions at the LHC are presented. Integrated luminosities of 0.14 nb(-1) and 570 nb(-1) are used for the Pb+Pb and pp measurements, respectively, which are performed over the muon transverse momentum range 4 < pT < 14 GeV and for five Pb+Pb centrality intervals. Backgrounds arising from in-flight pion and kaon decays, hadronic showers, and misreconstructed muons are statistically removed using a template-fitting procedure. The heavy-flavor muon differential cross sections and per-event yields are measured in pp and Pb+Pb collisions, respectively. The nuclear modification factor R-AA obtained from these is observed to be independent of pT, within uncertainties, and to be less than unity, which indicates suppressed production of heavy-flavor muons in Pb+Pb collisions. For the 10% most central Pb+Pb events, the measured R-AA is approximately 0.35. The azimuthal modulation of the heavy-flavor muon yields is also measured and the associated Fourier coefficients v(n) for n = 2, 3, and 4 are given as a function of pT and centrality. They vary slowly with pT and show a systematic variation with centrality which is characteristic of other anisotropy measurements, such as that observed for inclusive hadrons. The measured R-AA and v(n) values are also compared with theoretical calculations.

  • 82.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Probing the Quantum Interference between Singly and Doubly Resonant Top-Quark Production in pp Collisions at root s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 15, article id 152002Article in journal (Refereed)
    Abstract [en]

    This Letter presents a normalized differential cross-section measurement in a fiducial phase-space region where interference effects between top-quark pair production and associated production of a single top quark with a W boson and a b-quark are significant. Events with exactly two leptons (ee, mu mu, or e mu) and two b-tagged jets that satisfy a multiparticle invariant mass requirement are selected from 36.1 fb(-1) of protonproton collision data taken at root s = 13 TeV with the ATLAS detector at the LHC in 2015 and 2016. The results are compared with predictions from simulations using various strategies for the interference. The standard prescriptions for interference modeling are significantly different from each other but are within 2 sigma of the data. State-of-the-art predictions that naturally incorporate interference effects provide the best description of the data in the measured region of phase space most sensitive to these effects. These results provide an important constraint on interference models and will guide future model development and tuning.

  • 83.
    Aaboud, M.
    et al.
    CNESTEN, Rabat, Morocco.;Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Search for chargino-neutralino production using recursive jigsaw reconstruction in final states with two or three charged leptons in proton-proton collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 9, article id 092012Article in journal (Refereed)
    Abstract [en]

    A search for electroweak production of supersymmetric particles is performed in two-lepton and three-lepton final states using recursive jigsaw reconstruction, a technique that assigns reconstructed objects to the most probable hemispheres of the decay trees, allowing one to construct tailored kinematic variables to separate the signal and background. The search uses data collected in 2015 and 2016 by the ATLAS experiment in root s = 13 TeV proton-proton collisions at the CERN Large Hadron Collider corresponding to an integrated luminosity of 36.1 fb(-1). Chargino-neutralino pair production, with decays via W/Z bosons, is studied in final states involving leptons and jets and missing transverse momentum for scenarios with large and intermediate mass splittings between the parent particle and lightest supersymmetric particle, as well as for the scenario where this mass splitting is close to the mass of the Z boson. The latter case is challenging since the vector bosons are produced with kinematic properties that are similar to those in Standard Model processes. Results are found to be compatible with the Standard Model expectations in the signal regions targeting large and intermediate mass splittings, and chargino-neutralino masses up to 600 GeV are excluded at 95% confidence level for a massless lightest supersymmetric particle. Excesses of data above the expected background are found in the signal regions targeting low mass splittings, and the largest local excess amounts to 3.0 standard deviations.

  • 84.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Search for pair production of heavy vectorlike quarks decaying into hadronic final states in pp collisions at root s=13 TeV with the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 9, article id 092005Article in journal (Refereed)
    Abstract [en]

    A search is presented for the pair production of heavy vectorlike quarks, T (T) over bar or B (B) over bar, that decay into final states with jets and no reconstructed leptons. Jets in the final state are classified using a deep neural network as arising from hadronically decaying W/Z bosons, Higgs bosons, top quarks, or background. The analysis uses data from the ATLAS experiment corresponding to 36.1 fb(-1) of proton-proton collisions with a center-of-mass energy of root s = 13 TeV delivered by the Large Hadron Collider in 2015 and 2016. No significant deviation from the Standard Model expectation is observed. Results are interpreted assuming the vectorlike quarks decay into a Standard Model boson and a third-generation-quark, T -> Wb, Ht, Zt or B -> Wt, Hb, Zb, for a variety of branching ratios. At 95% confidence level, the observed (expected) lower limit on the vectorlike B-quark mass for a weak-isospin doublet (B, Y) is 950 (890) GeV, and the lower limits on the masses for the pure decays B -> Hb and T -> Ht, where these results are strongest, arc 1010 (970) GeV and 1010 (1010) GeV, respectively.

  • 85.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Search for pair production of Higgsinos in final states with at least three b-tagged jets in root s=13 TeV pp collisions using the ATLAS detector2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 9, article id 092002Article in journal (Refereed)
    Abstract [en]

    A search for pair production of the supersymmetric partners of the Higgs boson (higgsinos (H) over tilde) in gaugemediated scenarios is reported. Each higgsino is assumed to decay to a Higgs boson and a gravitino. Two complementary analyses, targeting high- and low-mass signals, are performed to maximize sensitivity. The two analyses utilize LHC pp collision data at a center-of-mass energy root s = 13 TeV, the former with an integrated luminosity of 36.1 fb(-1) and the latter with 24.3 fb(-1), collected with the ATLAS detector in 2015 and 2016. The search is performed in events containing missing transverse momentum and several energetic jets, at least three of which must be identified as b-quark jets. No significant excess is found above the predicted background. Limits on the cross section are set as a function of the mass of the <(Hover tilde> in simplified models assuming production via mass-degenerate higgsinos decaying to a Higgs boson and a gravitino. Higgsinos with masses between 130 and 230 GeV and between 290 and 880 GeV are excluded at the 95% confidence level. Interpretations of the limits in terms of the branching ratio of the higgsino to a Z boson or a Higgs boson are also presented, and a 45% branching ratio to a Higgs boson is excluded for m(<(Hover tilde>) approximate to 400 GeV.

  • 86.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Search for Resonant and Nonresonant Higgs Boson Pair Production in the b(b)over-bar tau(+) tau(-) Decay Channel in pp Collisions at root s=13 TeV with the ATLAS Detector2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 19, article id 191801Article in journal (Refereed)
    Abstract [en]

    A search for resonant and nonresonant pair production of Higgs bosons in the b (b) over bar tau(+)tau(-) final state is presented. The search uses 36.1 fb(-1) of pp collision data with root s = 13 TeV recorded by the ATLAS experiment at the LHC in 2015 and 2016. Decays of the tau-lepton pairs with at least one tau lepton decaying to final states with hadrons and a neutrino are considered. No significant excess above the expected background is observed in the data. The cross-section times branching ratio for nonresonant Higgs boson pair production is constrained to be less than 30.9 fb, 12.7 times the standard model expectation, at 95% confidence level. The data are also analyzed to probe resonant Higgs boson pair production, constraining a model with an extended Higgs sector based on two doublets and a Randall-Sundrum bulk graviton model. Upper limits are placed on the resonant Higgs boson pair production cross-section times branching ratio, excluding resonances X in the mass range 305 GeV < m(X) < 402 GeV in the simplified hMSSM minimal supersymmetric model for tan beta = 2 and excluding bulk Randall-Sundrum gravitons G(KK) in the mass range 325 GeV < m(GKK) < 885 GeV for k/(M) over bar P-1 = 1.

  • 87.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al,
    Study of the rare decays of B0 and B-0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 098Article in journal (Refereed)
    Abstract [en]

    A study of the decays B0 s ! + and B0 ! + has been performed using 26 : 3 fb of 13TeV LHC proton-proton collision data collected with the ATLAS detector in 2015 and 2016. Since the detector resolution in + invariant mass is comparable to the B0 s -B0 mass di ff erence, a single fi t determines the signal yields for both decay modes. This results in a measurement of the branching fraction B (B0 s ! +) = 3 : 2 +1:1 10 and an upper limit B (B0 ! +) < 4 : 3 10 at 95% con fi dence level. The result is combined with the Run 1 ATLAS result, yielding B (B0 s ! +) = 2 : 8 +0:8 10 and B (B0 ! +) < 2 : 1 10 at 95% con fi dence level. The combined result is consistent with the Standard Model prediction within 2.4 standard deviations in the B (B0 ! +)B (B0 s ! +) plane.

  • 88. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Evidence for the H -> b(b)over-bar decay with the ATLAS detector2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 12, article id 024Article in journal (Refereed)
    Abstract [en]

    A search for the decay of the Standard Model Higgs boson into a b (b) over bar pair when produced in association with a W or Z boson is performed with the ATLAS detector. The analysed data, corresponding to an integrated luminosity of 36.1 fb(-1), were collected in proton-proton collisions in Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Final states containing zero, one and two charged leptons (electrons or muons) are considered, targeting the decays Z -> vv, W -> lv and Z -> ll. For a Higgs boson mass of 125 GeV, an excess of events over the expected background from other Standard Model processes is found with an observed significance of 3.5 standard deviations, compared to an expectation of 3.0 standard deviations. This excess provides evidence for the Higgs boson decay into b-quarks and for its production in association with a vector boson. The combination of this result with that of the Run 1 analysis yields a ratio of the measured signal events to the Standard Model expectation equal to 0.90 +/- 0.18(stat.)(-0.19)(+0.21)(syst.). Assuming the Standard Model production cross-section, the results are consistent with the value of the Yukawa coupling to b-quarks in the Standard Model.

  • 89. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics.
    L.Zwalinski,
    et. al.,
    Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at s=13 TeV with the ATLAS detector2018In: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, Vol. 776, p. 318-337Article in journal (Refereed)
    Abstract [en]

    A search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a leptonically decaying Z boson in proton–proton collisions at s=13 TeV is presented. This search uses 36.1 fb−1 of data collected by the ATLAS experiment at the Large Hadron Collider. No significant deviation from the expectation of the Standard Model backgrounds is observed. Assuming the Standard Model ZH production cross-section, an observed (expected) upper limit of 67% (39%) at the 95% confidence level is set on the branching ratio of invisible decays of the Higgs boson with mass mH=125 GeV. The corresponding limits on the production cross-section of the ZH process with the invisible Higgs boson decays are also presented. Furthermore, exclusion limits on the dark matter candidate and mediator masses are reported in the framework of simplified dark matter models. 

  • 90.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Veatch, J.
    KTH, School of Engineering Sciences (SCI), Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    et al.,
    Measurement of the top-quark mass in tt 1-jet events collected with the ATLAS detector in pp collisions at=8 TeV2019In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 11, article id 150Article in journal (Refereed)
    Abstract [en]

    A determination of the top-quark mass is presented using 20.2 fb-1 of 8 TeV proton-proton collision data produced by the Large Hadron Collider and collected by the ATLAS experiment. The normalised differential cross section of top-quark pair production in association with an energetic jet is measured in the lepton+jets final state and unfolded to parton and particle levels. The unfolded distribution at parton level can be described using next-to-leading-order QCD predictions in terms of either the top-quark pole mass or the running mass as defined in the (modified) minimal subtraction scheme. A comparison between the experimental distribution and the theoretical prediction allows the top-quark mass to be extracted in the two schemes. The value obtained for the pole-mass scheme is: rnirle 171.1 0.4 (stat) 0.9 (syst) 173 (theo) GeV. The extracted value in the running-mass scheme is: rnt(rnt) = 162.9 0.5 (stat) 1.0 (syst) 1:12 (theo) GeV. The results for the top -quark mass using the two schemes are consistent, when translated from one scheme to the other.

  • 91. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Woods, N.
    et al.,
    Combination of inclusive and differential t(t)over-bar charge asymmetry measurements using ATLAS and CMS data at root S =7 and 8 TeV2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 033Article in journal (Refereed)
    Abstract [en]

    This paper presents combinations of inclusive and differential measurements of the charge asymmetry (A(C)) in top quark pair (t(t)over-bar) events with a lepton+jets signature by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. The data correspond to integrated luminosities of about 5 and 20 fb(-1) for each experiment, respectively. The resulting combined LHC measurements of the inclusive charge asymmetry are A(C)(LHC7) = 0.005 +/- 0.007 (stat) +/- 0.006 (syst) at 7 TeV and A(C)(LHC8) = 0.0055 +/- 0.0023 (stat) +/- 0.0025 (syst) at 8 TeV. These values, as well as the combination of A(C )measurements as a function of the invariant mass of the t(t)over-bar system at 8 TeV, are consistent with the respective standard model predictions.

  • 92. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    zur Nedden, M.
    Search for exclusive Higgs and Z boson decays to phi gamma and rho gamma with the ATLAS detector2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 7, article id 127Article in journal (Refereed)
    Abstract [en]

    A search for the exclusive decays of the Higgs and Z bosons to a phi or rho meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of up to 35.6 fb(-1) collected at root s = 13 TeV with the ATLAS detector at the CERN Large Hadron Collider. These decays have been suggested as a probe of the Higgs boson couplings to light quarks. No significant excess of events is observed above the background, as expected from the Standard Model. Upper limits at 95% confidence level were obtained on the branching fractions of the Higgs boson decays to phi gamma and rho gamma of 4.8 x 10(-4) and 8.8 x 10(-4), respectively. The corresponding 95% confidence level upper limits for the Z boson decays are 0.9 x 10(-6) and 25 x 10(-6) for phi gamma and rho gamma, respectively.

  • 93. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zur Nedden, M.
    et al.,
    Prompt and non-prompt J/psi and psi(2S) suppression at high transverse momentum in 5.02 TeV Pb+Pb collisions with the ATLAS experiment2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 9, article id 762Article in journal (Refereed)
    Abstract [en]

    A measurement of J/psi and psi(2S) production is presented. It is based on a data sample from Pb+Pb collisions at root s(NN) = 5.02 TeV and pp collisions at root s = 5.02 TeV recorded by the ATLAS detector at the LHC in 2015, corresponding to an integrated luminosity of 0.42 nb(-1) and 25 pb(-1) in Pb+Pb and pp, respectively. The measurements of per-event yields, nuclear modification factors, and non-prompt fractions are performed in the dimuon decay channel for 9 < p(T)(mu mu) < 40 GeV in dimuon transverse momentum, and -2 < y(mu mu) < 2 in rapidity. Strong suppression is found in Pb+Pb collisions for both prompt and non-prompt J/psi, increasing with event centrality. The suppression of prompt psi(2S) is observed to be stronger than that of J/psi, while the suppression of non-prompt psi(2S) is equal to that of the non-prompt J/psi within uncertainties, consistent with the expectation that both arise from b-quarks propagating through the medium. Despite prompt and non-prompt J/psi arising from different mechanisms, the dependence of their nuclear modification factors on centrality is found to be quite similar.

  • 94. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ⁎ → 4ℓ decay channels at s=13 TeV with the ATLAS detector2018In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 786, p. 114-133Article in journal (Refereed)
    Abstract [en]

    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ⁎→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions.

  • 95.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Performance of missing transverse momentum reconstruction with the ATLAS detector using proton proton collisions at root s=13 TeV2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 11, article id 903Article in journal (Refereed)
    Abstract [en]

    The performance of the missing transverse (E-T(miss) momentum) reconstruction with the ATLAS detector is evaluated using data collected in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct E-T(miss), fully calibrated electrons, muons, photons, hadronically decaying tau-leptons, and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various E-T(miss) contributions. The individual terms as well as the overall reconstructed E-T(miss) are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the E-T(miss) scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2 fb(-1).

  • 96.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Search for heavy particles decaying into a top-quark pair in the fully hadronic final state in pp collisions at root s=13 TeV with the ATLAS detector2019In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 99, no 9, article id 092004Article in journal (Refereed)
    Abstract [en]

    A search for new particles decaying into a pair of top quarks is performed using proton-proton collision data recorded with the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of root s = 13 TeV corresponding to an integrated luminosity of 36.1 fb(-1). Events consistent with top-quark pair production and the fully hadronic decay mode of the top quarks are selected by requiring multiple high transverse momentum jets including those containing b-hadrons. Two analysis techniques, exploiting dedicated top-quark pair reconstruction in different kinematic regimes, are used to optimize the search sensitivity to new hypothetical particles over a wide mass range. The invariant mass distribution of the two reconstructed top-quark candidates is examined for resonant production of new particles with various spins and decay widths. No significant deviation from the Standard Model prediction is observed and limits are set on the production cross-section times branching fraction for new hypothetical Z' bosons, dark-matter mediators, Kaluza-Klein gravitons and Kaluza-Klein gluons. By comparing with the predicted production cross sections, the Z' boson in the topcolor-assisted-technicolor model is excluded for masses up to 3.1-3.6 TeV, the dark-matter mediators in a simplified framework are excluded in the mass ranges from 0.8 to 0.9 TeV and from 2.0 to 2.2 TeV, and the Kaluza-Klein gluon is excluded for masses up to 3.4 TeV, depending on the decay widths of the particles.

  • 97. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at root s=13 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 7, article id 565Article in journal (Refereed)
    Abstract [en]

    A search for new heavy particles that decay into top-quark pairs is performed using data collected from proton-proton collisions at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The integrated luminosity of the data sample is 36.1 fb(-1). Events consistent with top-quark pair production are selected by requiring a single isolated charged lepton, missing transverse momentum and jet activity compatible with a hadronic top-quark decay. Jets identified as likely to contain b-hadrons are required to reduce the background from other Standard Model processes. The invariant mass spectrum of the candidate top-quark pairs is examined for local excesses above the background expectation. No significant deviations from the Standard Model predictions are found. Exclusion limits are set on the production cross-section times branching ratio for hypothetical Z' bosons, Kaluza-Kein gluons and Kaluza-Klein gravitons that decay into top-quark pairs.

  • 98. Aaboud, M.
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for Higgs boson pair production in the..WW * channel using pp collision data recorded at v s=13 TeV with the ATLAS detector2018In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 12, article id 1007Article in journal (Refereed)
    Abstract [en]

    Searches for non- resonant and resonant Higgs boson pair production are performed in the..WW * channel with the final state of.. .j j using 36.1 fb - 1 of protonpv roton collision data recorded at a centre- of- mass energy of s = 13 TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence- level observed upper limit of 7.7 pb is set on the cross section for nonresonant production, while the expected limit is 5.4 pb. A search for a narrow- width resonance X decaying to a pair of Standard Model Higgs bosons HH is performed with the same set of data, and the observed upper limits on s( pp. X) x B( X. HH) range between 40.0 and 6.1 pb for masses of the resonance between 260 and 500GeV, while the expected limits range between 17.6 and 4.4 pb. When deriving the limits above, the StandardModel branching ratios of the H... and H. WW * are assumed.Searches for non- resonant and resonant Higgs boson pair production are performed in the..WW * channel with the final state of.. .j j using 36.1 fb - 1 of protonpv roton collision data recorded at a centre- of- mass energy of s = 13 TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence- level observed upper limit of 7.7 pb is set on the cross section for nonresonant production, while the expected limit is 5.4 pb. A search for a narrow- width resonance X decaying to a pair of Standard Model Higgs bosons HH is performed with the same set of data, and the observed upper limits on s( pp. X) x B( X. HH) range between 40.0 and 6.1 pb for masses of the resonance between 260 and 500GeV, while the expected limits range between 17.6 and 4.4 pb. When deriving the limits above, the StandardModel branching ratios of the H... and H. WW * are assumed.

  • 99.
    Aaboud, M.
    et al.
    Univ Mohamed Premier, Fac Sci, Oujda, Morocco.;LPTPM, Oujda, Morocco..
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    CERN, Geneva, Switzerland..
    Search for invisible Higgs boson decays in vector boson fusion at root s=13 TeV with the ATLAS detector2019In: Physics Letters B, ISSN 0370-2693, E-ISSN 1873-2445, Vol. 793, p. 499-519Article in journal (Refereed)
    Abstract [en]

    We report a search for Higgs bosons that are produced via vector boson fusion and subsequently decay into invisible particles. The experimental signature is an energetic jet pair with invariant mass of O(1) TeVand O(100) GeVmissing transverse momentum. The analysis uses 36.1 fb(-1) of pp collision data at root s = 13 TeV recorded by the ATLAS detector at the LHC. In the signal region the 2252 observed events are consistent with the background estimation. Assuming a 125 GeV scalar particle with Standard Model cross sections, the upper limit on the branching fraction of the Higgs boson decay into invisible particles is 0.37 at 95% confidence level where 0.28 was expected. This limit is interpreted in Higgs portal models to set bounds on the wimp-nucleon scattering cross section. We also consider invisible decays of additional scalar bosons with masses up to 3 TeV for which the upper limits on the cross section times branching fraction are in the range of 0.3-1.7 pb.

  • 100. Aaboud, M
    et al.
    Kastanas, Konstatinos A.
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Lund-Jensen, Bengt
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ohm, Christian
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ripellino, Giulia
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Sidebo, P. Edvin
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Strandberg, Jonas
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Zwalinski, L.
    Search for supersymmetry in events with four or more leptons in root s=13 TeV pp collisions with ATLAS2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 98, no 3, article id 032009Article in journal (Refereed)
    Abstract [en]

    Results from a search for supersymmetry in events with four or more charged leptons (electrons, muons and taus) are presented. The analysis uses a data sample corresponding to 36.1 fb(-1) of proton-proton collisions delivered by the Large Hadron Collider at root s = 13 TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying taus are designed to target a range of supersymmetric scenarios that can be either enriched in or depleted of events involving the production and decay of a Z boson. Data yields are consistent with Standard Model expectations and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge mediated supersymmetry, where Higgsino masses are excluded up to 295 GeV. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of 1.46, 1.06, and 2.25 TeV are placed on wino, slepton and gluino masses, respectively.

1234567 51 - 100 of 130287
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf