Change search
Refine search result
1234567 51 - 100 of 2463
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Albertsson, Ann-Christine
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Frontiers in Biomacromolecules: Functional Materials from Nature2012In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 13, no 12, p. 3901-3901Article in journal (Other academic)
  • 52.
    Albertsson, Ann-Christine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Micro- and macromolecular design of aliphatic polyesters2015In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 249Article in journal (Other academic)
  • 53.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Edlund, Ulrica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Barrier layers for packaging laminates and packaging laminates comprising such barrier layers2009Patent (Other (popular science, discussion, etc.))
  • 54.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Erlandsson, Bengt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Karlsson, Sigbritt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Molecular weight changes and polymeric matrix changes correlated with the formation of degradation products in biodegraded polyethylene1999In: Journal of environmental polymer degradation, ISSN 1064-7546, E-ISSN 1572-8900, Vol. 64, p. 91-99Article in journal (Refereed)
    Abstract [en]

    The molecular weight changes in abiotically and biotically degraded LDPE and LDPE modified with starch and/or prooxidant were compared with the formation of degradation products, The samples were thermooxidized for 6 days at 100 degrees C to initiate degradation and then either inoculated with Arthobacter paraffineus or kept sterile. After 3.5 years homologous series of mono- and dicarboxylic acids and ketoacids were identified by GC-MS in abiotic samples, while complete disappearance of these acids was observed in biotic environments. The molecular weights of the biotically aged samples were slightly higher than the molecular weights of the corresponding abiotically aged samples, which is exemplified by the increase in (M) over bar(n) from 5200 g/mol for a sterile sample with the highest amount of prooxidant to 6000 g/mol for the corresponding biodegraded sample. The higher molecular weight in the biotic environment is explained by the assimilation of carboxylic acids and low molecular weight polyethylene chains by microorganisms. Assimilation of the low molecular weight products is further confirmed by the absence of carboxylic acids in the biotic samples. Fewer carbonyls and more double bonds were seen by FTIR in the biodegraded samples, which is in agreement with the biodegradation mechanism of polyethylene.

  • 55.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Groning, M.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Emission of volatiles from polymers - A new approach for understanding polymer degradation2006In: Journal of polymers and the environment, ISSN 1064-7546, E-ISSN 1572-8900, Vol. 14, no 1, p. 8-13Article in journal (Refereed)
    Abstract [en]

    Emission of low molar mass compounds from different polymeric materials was determined and the results from the volatile analysis were applied to predict the degree of degradation and long-term properties, to determine degradation rates and mechanisms, to differentiate between biotic and abiotic degradation and for quality control work. Solid-phase microextraction and solid-phase extraction together with GC-MS were applied to identify and quantify the low molar mass compounds. Volatiles were released and monitored at early stages of degradation before any matrix changes were observed by e.g. SEC, DSC and tensile testing. The analysis of volatiles can thus also be applied to detect small differences between polymeric materials and their susceptibility to degradation. The formation of certain degradation products correlated with the changes taking place in the polymer matrix, these indicator products could, thus, be analysed to rapidly predict the degree of degradation in the polymer matrix and further to predict the long-term properties and remaining lifetime of the product.

  • 56.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Gröning, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Chromatographic analysis as a tool for predicting material performance2005In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, p. 247-248Article in journal (Other academic)
  • 57.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Degradable polymers and their interaction with the environment2007In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 223, p. 566-567Article in journal (Other academic)
  • 58.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Designed to degrade Suitably designed degradable polymers can play a role in reducing plastic waste2017In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 358, no 6365, p. 872-873Article in journal (Refereed)
  • 59.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Karlsson, Sigbritt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    The three stages in the degradation of polymers- polyethylene as a model substance1988In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 35, p. 1289-1302Article in journal (Refereed)
  • 60. Albertsson, Ann-Christine
    et al.
    Renstad, Rasmus
    Erlandsson, Bengt
    Eldsäter, Carina
    Karlsson, Sigbritt
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Effect of processing additives on (bio)degradability of film-blown poly(ε-caprolactone)1998In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 70, no 1, p. 61-74Article in journal (Refereed)
  • 61.
    Aldabbagh, Zina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    En undersökning av Rönningesjöns miljötillstånd, särskilt när det gäller metaller2018Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Lake Rönningesjön lies in a geological fault (a crack) and it is affected by the clay in the surrounding fields. The pH-values lie within the interval 7.1–7.7. The lake is also impacted by the roads around the lake. The incoming water contains large amounts of road salt. From the cars also large amounts of metal ions are transported by the incoming storm water. In this project copper, chromium and lead are measured. Most of the metals in the lake pass through the wetland at Löttingelund in one end of the lake and flows through the lake to the outlet, which delivers the metal ions into Hägernäsviken, which is a part of the Baltic Sea. However, a part of the metal ions are precipitated in the lake. The concentrations of metal ions in the lake water are too high. Metal ions are also stored in the sediments. Special dams should be constructed to remove particle bound metals from the storm water, by sedimentation.

  • 62.
    Alemrajabi, M.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Transport Phenomena.
    Forsberg, Kerstin
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Korkmaz, Kivanc
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Rasmuson, Åke Christoffer
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Isolation of rare earth element phosphate precipitate in the nitrophosphate process for manufacturing of fertilizer2016Conference paper (Refereed)
  • 63.
    Alemrajabi, Mahmood
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Transport Phenomena.
    Recovery of Rare Earth Elements from an Apatite Concentrate2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Rare earth elements (REE) are a group of 17 elements including lanthanides, yttrium and scandium; which are found in a variety of classes of minerals worldwide. The criticality of the application, lack of high grade and economically feasible REE resources and a monopolistic supply situation has raised significant attention in recovery of these metals from low grade ores and waste materials. In this thesis, the recovery of REE from an apatite concentrate, containing 0.5 mass% of REE, within the nitrophosphate route of fertilizer production has been investigated. Most of the REE (≥ 95%) content can be recovered into a phosphate precipitate with almost 30 mass% REE. Different processes have been developed to convert the REE phosphate precipitate into a more soluble form to obtain a solution suitable for further REE purification and individual separation. It has been shown that after reprecipitation of the REE phosphate concentrate as REE sodium double sulphate and then transformation into a REE hydroxide concentrate, a solution containing 45g/L REE free of Ca, Fe and P can be obtained. The results suggest that the apatite waste after processing of iron ore have the potential to be a very important source for REE in Europe and that the economy is strongly supported by the simultaneous extraction of phosphorous.

    The potential of using hollow fiber supported liquid membrane (HFSLM) extraction in individual and group separation of REE has been investigated. A hollow fiber supported liquid membrane plant in pilot scale has been operated according to the three main configurations: standard hollow fiber supported liquid membrane technology (HFSLM); hollow fiber renewal liquid membrane technology (HFRSLM) and emulsion pertraction technology (EPT). The standard HFSLM operation is more selective than HFRSLM and EPT, while higher metal transport rate is observed in EPT followed by HFRSLM and HFSLM. The HFRLM configuration helps to maintain the performance of the liquid membrane.

  • 64.
    Alemrajabi, Mahmood
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Korkmaz, Kivanc
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Rasmuson, Åke
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Dephosphorization and impurity removal from a rare earth phosphate concentrate2017Conference paper (Refereed)
  • 65.
    Alemrajabi, Mahmood
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Rasmuson, Åke
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Recovery of phosphorous and rare earth elements from an apatite concentrate2018Conference paper (Refereed)
  • 66.
    Alemrajabi, Mahmood
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Rasmuson, Åke C.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Korkmaz, Kivanc
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Processing of a rare earth phosphate concentrate obtained in the nitrophosphate process of fertilizer production2019In: Hydrometallurgy, ISSN 0304-386X, E-ISSN 1879-1158, Vol. 189, article id 105144Article in journal (Refereed)
    Abstract [en]

    In this study, different processes have been developed and applied to treat a rare earth phosphate concentrate obtained within the nitrophosphate process of fertilizer production. Methods to remove impurities such as Fe and Ca have been investigated as well as to separate the phosphorous and thereby facilitate dissolution of the rare earth elements (REE). These methods include thermal treatment with sodium hydroxide and sodium double sulphate precipitation with and without alkaline conversion, followed by selective dissolution in different acids. The proposed processes were compared and analyzed from the perspective of introducing an appropriate intermediate product for further individual REE separation. The results have shown that after thermal treatment with NaOH at 400 °C, the phosphorous can be removed from the rare earth phosphate concentrate by water leaching. Investigation of different REE phosphate concentrates demonstrated that mixed Ca and REE phases, e.g. REEmCan(PO4)3m+2n/3 and CaHPO4 are less likely to dephosphorize than REE(PO4).nH2O and FePO4.H2O under these conditions. The recovery of REE to a mild acidic solution is limited by the presence of remaining phosphate ions and by the formation of REE oxide phases during the thermal treatment. The results also show that a solution containing 40 g/L REE; free of phosphorous, calcium and iron can be obtained after reprecipitation of the rare earth phosphate concentrate as sodium rare earth double sulphates followed by alkaline conversion with sodium hydroxide and dissolution in nitric acid.

  • 67.
    Alemrajabi, Mahmood
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Rasmuson, Åke
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Korkmaz, Kivanc
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Upgrading of a rare earth phosphate concentrate within the nitrophosphate process2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 198, p. 551-563Article in journal (Refereed)
    Abstract [en]

    In the nitrophosphate process of fertilizer production, rare earth elements (REE) can be recovered as a REE phosphate concentrate. In this process, after digestion of apatite in concentrated nitric acid, Ca(NO3)2.4H2O is first separated by cooling crystallization and then the REE are precipitated in phosphate form by a partial neutralization step using ammonia. The obtained REE phosphate concentrate is contaminated by mainly calcium and iron, and the main solid phases are CaHPO4.2H2O, FePO4.2H2O and REEPO4.nH2O.

    In this study, a process to obtain a concentrate more enriched with REE with low concentration of calcium and iron and free of phosphorous is developed. In the developed process, enrichment and dephosphorization of the rare earth phosphate concentrate has been achieved by selective dissolution and re-precipitation of the REE as a sodium REE double sulfate salt. It is shown that by selective dissolution of the REE concentrate in nitric acid at a pH of 2.4, most of the calcium and phosphorus are dissolved, and a solid phase more enriched in REE is obtained. Thereafter, the REE phosphate concentrate is first dissolved in a mixture of sulfuric-phosphoric acid and then the REE are reprecipitated as NaREE(SO4)2.H2O by addition of a sodium salt. More than 95% of the Ca, Fe and P are removed and a REE concentrate containing almost 30 mass% total REE is obtained.

  • 68.
    Alemrajabi, Mahmoud
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Rasmuson, Åke
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Recovery of REE from an apatite concentrate in the nitrophosphate process of fertilizer production.2015Conference paper (Refereed)
  • 69.
    Alevanau, Aliaksandr
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Study of pyrolysis and gasification of biomass from the self-organization perspective2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis focuses on the analysis of kinetics of i) low-temperature pyrolysis of gaseous hydrocarbons, ii) high-temperature steam gasification of char of wood pellets (>700oC), iii) high temperature pyrolysis of straw pellets in an atmosphere of argon and steam, and iv) high temperature pyrolysis of slices of transversally cut wooden sticks. The results of the kinetic measurements in the high-temperature cases are approximated using a least-square based optimization software, which was specially developed to analyse kinetics prone for deviation from the Arrhenius law.In the thesis a general analysis of the researched materials and kinetics of their pyrolysis and gasification is presented from the self-organization perspective. The energy transfer phenomena in both the pyrolysis and gasification processes of biomass are discussed with an emphasis on an analysis of basic phenomena involving the self-organized dynamics on fractal structures in the chosen biomass samples.

  • 70.
    Alexiadis, Alessio
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Cornell, Ann
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Dudukovic, M. P.
    Comparison between CFD calculations of the flow in a rotating disk cell and the Cochran/Levich equations2012In: Journal of Electroanalytical Chemistry, ISSN 1572-6657, Vol. 669, p. 55-66Article in journal (Refereed)
    Abstract [en]

    Three CFD (Computational Fluid Dynamics) models (single-phase. VOF and Euler-Euler) are employed to simulate the flow in a finite, rotating electrode cell under different operative conditions. The main dimensionless groups are derived and their effect on the flow is investigated. Except very close to the rotating electrode (i.e. in the hydrodynamic layer), the results show a flow pattern considerably different from Cochran's approximate analytical solution often used in electrochemistry. Historically, the Cochran equation was used to derive the Levich equation, which permits the calculation of the limiting current density on a rotating electrode. Despite the general inadequacy of Cochran's analytical solution, however, we show that the Levich equation often retains its validity because, in many practical situations, the concentration boundary layer is considerably smaller than the hydrodynamic boundary layer. When bubbles are generated on the electrode and a certain critical void fraction is exceeded, however, the Levich equation also becomes inaccurate. We propose, therefore, an amended version of this equation, which provides results closer to the CFD calculations.

  • 71.
    Alexiadis, Alessio
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Dudukovic, M. P.
    Ramachandran, P.
    Cornell, Ann
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    On the stability of the flow in multi-channel electrochemical systems2012In: Journal of Applied Electrochemistry, ISSN 0021-891X, E-ISSN 1572-8838, Vol. 42, no 9, p. 679-687Article in journal (Refereed)
    Abstract [en]

    The importance of the fluid dynamics in the modelling of electrochemical systems is often underestimated. The knowledge of the flow velocity pattern in an electrochemical cell, in fact, can allow us to associate certain electrochemical reactions with specific fluid patterns to maximize the yield of some reaction and, conversely, to minimize unwanted or side reactions. The correct evaluation of the convective term in the Nernst-Planck equation, however, requires the solution of the so-called Navier-Stokes equations, and computational fluid dynamics (CFD) is today the established method to numerically solve these equations. In this work, a CFD model is employed to show that the gas-liquid flow pattern can be remarkably different in a single channel or in a multi-channel gas-evolving electrochemical system. In the single channel, in fact, under certain conditions, vortices and recirculation regions can appear in the flow, which does not appear in the multi-channel case. The reason of this difference is found in the uneven distribution of the small bubbles in the two cases. Additionally, a second, simplified, model of the flow is discussed to show how a higher concentration of small bubbles in the single channel system can destabilize the flow.

  • 72.
    Alexiadis, Alessio
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Dudukovic, M. P.
    Ramachandran, P.
    Cornell, Ann
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Wanngård, J.
    Bokkers, A.
    The flow pattern in single and multiple submerged channels with gas evolution at the electrodes2012In: International Journal of Chemical Engineering, ISSN 1687-806X, E-ISSN 1687-8078, Vol. 2012, p. 392613-Article in journal (Refereed)
    Abstract [en]

    We show that the gas-liquid flow pattern in a single gas-evolving electrochemical channel can be remarkably different from the flow pattern in multiple submerged gas-evolving electrochemical channels. This is due to the fact that in a single channel there is a higher accumulation of small bubbles and these can considerably affect the liquid velocity pattern which in turn may affect the performance of a cell. Since experimental work is often carried out in single channels, while industrial applications almost always involve multiple channels, this study provides insight into the factors that affect the flow pattern in each situation and establishes the basis for relating the behavior of single-and multiple-channel devices.

  • 73.
    Alexiadis, Alessio
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Dudukovic, M. P.
    Ramachandran, P.
    Cornell, Ann
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
    Wanngård, J.
    Bokkers, A.
    Transition to pseudo-turbulence in a narrow gas-evolving channel2012In: Theoretical and Computational Fluid Dynamics, ISSN 0935-4964, E-ISSN 1432-2250, Vol. 26, no 6, p. 551-564Article in journal (Refereed)
    Abstract [en]

    Different flow regimes have been observed, both experimentally and in CFD simulations, in narrow channels with gas evolution. In this manuscript, we examine, using the Euler-Euler model, the flow in a narrow channel, where gas is evolved from a vertical wall. We find some pseudo-turbulent features at conditions described in this manuscript. The transition to this pseudo-turbulent regime is associated with the value of a specific dimensionless group.

  • 74.
    Alfthan, Johan
    KTH, Superseded Departments, Solid Mechanics.
    A simplified network model for mechano-sorptive creep in paper2003In: Journal of Pulp and Paper Science (JPPS), ISSN 0826-6220, Vol. 29, no 7, p. 228-234Article in journal (Refereed)
    Abstract [en]

    A simplified network model for mechanosorptive creep is presented. The model resembles Cox's model for fibrous materials, but creep and the influence of bonds are included in addition to the elastic behaviour of the fibres. Three different creep laws describing the creep of individual fibres are applied in the simulations of creep of the network. Results from simulations using the model are presented. The influence of the amplitude of moisture content changes is discussed. It is shown that the model may produce macroscopic strains that are linear in stress, even though the creep of the fibres is nonlinear This may explain why both regular creep and mechanosorptive creep at small loads appear to be linear in stress.

  • 75.
    Alfthan, Johan
    KTH, Superseded Departments, Solid Mechanics.
    The effect of humidity cycle amplitude on accelerated tensile creep of paper2004In: Mechanics of time-dependant materials, ISSN 1385-2000, E-ISSN 1573-2738, Vol. 8, no 4, p. 289-302Article in journal (Refereed)
    Abstract [en]

    The creep of paper is accelerated by moisture cycling, an effect known as mechanosorptive creep. In this paper, the effect of different amplitudes of the moisture content is investigated experimentally and numerically. Tensile creep tests were made in a climate chamber. Low basis weight isotropic sheets were used in the tests. The moisture content history was measured during each creep test using a balance placed in the climate chamber. The experimental results are compared to predictions using a theoretical network model. A brief description of the model is given. In the model it is assumed that the anisotropic hygroexpansion of the fibres produces large stresses at the fibre-fibre bonds when moisture changes. The resulting stress state will accelerate creep if the material obeys creep laws that are nonlinear in stress. A quite good fit between the theoretical model and the experimental creep curves is obtained.

  • 76.
    Ali, Fuade
    KTH, School of Chemical Science and Engineering (CHE).
    Förändringar av Vallentunasjöns kemi under olika årstider2011Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
  • 77.
    Alin, Jonas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Analytical tools for identification and quantification of migrants from food packaging2011Conference paper (Other academic)
    Abstract [en]

    Polymers are frequently used as packaging material for food and therefore it is of concern that migrating substances such as additives or degradation products could contaminate the food. Sometimes also processing or microwave heating of food is performed directly inside the food package, which could lead to increased migration. Chromatographic and mass spectrometric analysis techniques can be used to detect, identify and quantify compounds that are released from polymers during such scenarios and, with suitable extraction and analysis techniques for example solid phase micro extraction coupled to gas chromatography – mass spectrometry (SPME-GC-MS), the migrating substances can be identified and quantified. We have previously detected the emission of low molecular weight substances from polymers using SPME-GC-MS [1,2]. With these analysis techniques we have shown that significant antioxidant degradation takes place during microwave heating of the polypropylene (PP) packages in the fatty food simulants, which further led to increased migration of potentially toxic degradation products into the food [3]. No antioxidant degradation was observed in aqueous food simulants or during conventional heating at the same temperature. Electrospray ionization-mass spectrometry (ESI-MS) was shown to be a valuable tool for studying the less volatile migrants. Antioxidant migration rates from three PP materials to fatty food simulants differed largely with respect to the PP type and increased with decreasing degree of crystallinity in the materials, as determined by high performance liquid chromatography (HPLC) [4]. The extraction efficiency of a headspace - solid phase microextraction (HS-SPME) method could be predicted from the analyte properties using a partial least squares (PLS) regression model [5].

     

    References

    [1] M Gröning, M Hakkarainen, Journal of Chromatography, (2001) 932, 1-11

    [2] M Hakkarainen, Journal of Chromatography, (2003)  1010, 9-16

    [3] J. Alin and M. Hakkarainen, Journal of Agricultural and Food Chemistry, (2011) DOI: 10.1021/jf1048639

    [4] J. Alin and M. Hakkarainen, Journal of Applied Polymer Science, (2010) 118, 1084-1093

    [5] J. Alin and M. Hakkarainen, manuscript

  • 78.
    Alin, Jonas
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Quality control of polymeric packaging and recycled materials by chromatographic and mass spectrometric techniques2011Conference paper (Other academic)
    Abstract [en]

    During the lifetime polymers can emit degradation products and additives to the surrounding environment. The development of analytical techniques to identify and quantify migrated compounds is essential to assess the safety of the plastic products. This is especially important when plastic materials are used in demanding or otherwise sensitive applications such as toys, medical products, food packaging or water pipes as well as when new types of polymeric materials such as nanocomposites, degradable materials, functional materials or recycled materials are developed. We have in several studies applied chromatographic and mass spectrometric techniques for analysis of emissions from different polymeric materials. As an example we have shown that microwave heating can lead to accelerated degradation of additives incorporated in the polypropylene (PP)packages, which further led to increased migration of potentially toxic degradation products into the food [1]. Significant antioxidant degradation was shown to take place during microwave heating of the packages in the fatty food simulants, while no degradation of antioxidants was detected during conventional heating of the packages in the fatty food simulants. No antioxidant degradation was observed in aqueous food simulants. Antioxidant migration rates from three PPmaterials to fatty food simulants differed largely with respect to the PP type and increased with decreasing degree of crystallinity in the materials [2]. Stereocomplexation improved the migration resistance of novel polylactide based packaging materials in contact with food simulants [3]. When polymeric materials are recycled one point of concern is the presence of unknown low molecular weight products in the materials. In addition the recycled materials could be more susceptible for further degradation even when further stabilized. We have shown that increasing amounts of degradation products are formed during aging of in-plant recycling of polyamide 6.6[4]. The amount of degradation products could also be correlated to deterioration of material properties such as mechanical properties. The odor coming polypropylene materials containing recycled milled phenol-formaldehyde glass-fiber scrap was shown to be caused by the presence of phenol in the materials [5].

    1. J. Alin and M. Hakkarainen, Journal of Agricultural and Food Chemistry (2011) 59(10), 5418-5427

    2. J. Alin and M. Hakkarainen, Journal of Applied Polymer Science (2010) 118(2), 1084-1093.

    3. Y. Bor, J. Alin and M. Hakkarainen, Packaging Technology and Science, DOI: 10.1002/pts.990.

    4. M. Gröning and M. Hakkarainen, Journal of Applied Polymer Science, (2002) 86, 3396-3407

    5. M. Gröning, H. Eriksson, M. Hakkarainen and A.-C. Albertsson, Polymer Degradation andStability, (2006) 91, 1815-1823

  • 79.
    Alin, Jonas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Microwave heating causes rapid degradation of antioxidants in polypropylene packaging leading to greatly increased specific migration to food simulants as shown by ESI-MS and GC-MS2011In: Journal of Agricultural and Food Chemistry, ISSN 0021-8561, E-ISSN 1520-5118, Vol. 59, no 10, p. 5418-5427Article in journal (Refereed)
    Abstract [en]

    Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.

  • 80.
    Alin, Jonas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    The significant effect of polypropylene material on the migration of antioxidants from food container to food simulants2010Conference paper (Other academic)
  • 81.
    Alin, Jonas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Type of Polypropylene Material Significantly Influences the Migration of Antioxidants from Polymer Packaging to Food Simulants During Microwave Heating2010In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 118, no 2, p. 1084-1093Article in journal (Refereed)
    Abstract [en]

    Three different polypropylene materials, polypropylene homopolymer (PP), propylene-ethylene random copolymer (PP-R), and propylene-ethylene copolymer (PP-C) are commonly used in plastic containers designed for microwave heating of food. Migration of antioxidants, Irganox 1010 and Irgafos 168, from PP. PP-R, and PP-C during microwave heating in contact with different food simulants was investigated by utilizing microwave assisted extraction (MAE) and high performance liquid chromatography (HPLC). The polypropylene material significantly influenced the migration rate, which decreased in the order of increasing degree of crystallinity in the materials. PP homopolymer was the most migration resistant of the studied materials especially in contact with fatty food simulants. The use of isooctane as fatty food simulant resulted in rapid depletion of antioxidants, while migration to another fatty food simulant, 96% ethanol, was much more limited. Migration to aqueous and acidic food simulants was in most cases under the detection limits irrespective of microwaving time and temperature. The diffusion coefficients were similar to what have been found previously under similar conditions but without microwaves. The effect of swelling was shown by the large increase in the calculated diffusion coefficients when isooctane was used as food simulant instead of 96% ethanol. (C) 2010 Wiley Periodicals, Inc. I Appl Polym Sci 118: 1084-1093,2010

  • 82.
    Alipour, Nazanin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymeric Materials.
    Structure and Mechanical/Transport properties of Single and Multilayer Polyethylene-based Materials2014Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The current study discusses the structure, mechanical and transport properties of polyethylene-based materials into two parts. The first part deals with the migration and chemical depletion of active substance such as insecticides from moulded polyethylene sheets. Deltamethrin (DM) and synergist piperonyl butoxide (PBO) are often used for insect control purpose. It was found that DM as a powder was incapable of recrystallization and remained in liquid state after cooling to room temperature, and that the evaporation of a DM/PBO solution was greater than that predicted from the evaporation rates of pristine separate material components. Infrared spectroscopy and liquid chromatography showed that the loss of DM and PBO through polyethylene sheets was negligible over 30 days, when aged in air at 80 °C (60 and 80 %RH). However, significant migration of the active species was observed in aged polyethylene sheets which were exposed in liquid water (at 80 and 95 °C). In the second part, the structure and properties of multi–layered polymer films were studied in terms of crystallization kinetics, mechanical and transport properties. Previously, it has been shown that when the layer thickness decreases from micrometre-scale to nanometre-scale, leading to improvement of the film performance such as crack propagation and oxygen barrier properties. In this work, two multi-layered systems were considered based on compatible (i) or incompatible layers (ii). In the first case (i), metallocene polyethylene (mPE) and low-density polyethylene (LDPE) where investigated as 2, 24, and 288 adjacent layers. In the second case (ii) poly(ethylene-co-vinyl alcohol) (EVOH) and polyethylene adhesive was evaluated as 5 and 19 layers. The crystallization kinetic studies showed that the crystallization rate was retarded as the layers became thinner with increasing number of layers in the multi-layered films as compared to the reference films (2 and 5 layers). The observation was suggested to stem from greater association between layers (inter layer mixing) in the case of mPE/LDPE films with 2 layers. Furthermore, the crack growth resistance increased with increasing number of layers. The x-ray scattering and tensile testing showed that the films were orientated more in extrusion direction than in the transverse direction, besides the EVOH films (the incompatible system) showed higher orientation in the extrusion direction than mPE/LDPE films. The uptake of n-hexane was reduced significantly in multi-layered EVOH films due to the effective protective role of EVOH. Furthermore, it was revealed that non-homogenous swelling causing a folding/curling of bilayer films when exposed to the vapour of the solvent.

  • 83.
    Alipour, Nazanin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Andersson, Richard L.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Olsson, Richard T.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Gedde, Ulf W.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    VOC-Induced Flexing of Single and Multilayer Polyethylene Films As Gas Sensors2016In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 8, no 15, p. 9946-9953Article in journal (Refereed)
    Abstract [en]

    The differential swelling and bending of multilayer polymeric films due to the dissimilar uptake of volatile organic compounds (VOCs; n-hexane, limonene) in the different layers was studied. Motions of thin polyethylene films triggered by the penetrant were investigated to learn more about how their deformation is related to VOC absorption. Single layers of metallocene or low-density polyethylene, and multilayers (2-288-layers) of these in alternating positions were considered. Single-, 24-, and 288 layer films displayed no motion when uniformly subjected to VOCs, but they could display simple curving modes when only one side of the film was wetted with a liquid VOC. Two-layer films displayed simple bending when uniformly subjected to VOCs due to the different swelling in the two layers, but when the VOC was applied to only one side of the film, more complex modes of motion as well as dynamic oscillations were observed (e.g., constant amplitude wagging at 2 Hz for ca. 50 s until all the VOC had evaporated). Diffusion modeling was used to study the transport behavior of VOCs inside the films and the different bending modes. Finally a prototype VOC sensor was developed, where the reproducible curving of the two-layer film was calibrated with n-hexane. The sensor is simple, cost-efficient, and nondestructive and requires no electricity.

  • 84.
    Alipour, Yousef
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Furnace Wall Corrosion in a Wood-fired Boiler2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The use of renewable wood-based fuel has been increasing in the last few decades because it is said to be carbon neutral. However, wood-based fuel, and especially used wood (also known as recycled wood or waste wood), is more corrosive than virgin wood (forest fuel), because of higher amounts of chlorine and heavy metals. These elements increase the corrosion problems at the furnace walls where the oxygen level is low.

    Corrosion mechanisms are usually investigated at the superheaters where the temperature of the material and the oxygen level is higher than at the furnace walls.  Much less work has been performed on furnace wall corrosion in wood or used wood fired boilers, which is the reason for this project.    Tests are also mostly performed under simplified conditions in laboratories, making the results easier to interpret.  In power plants the interpretation is more complicated. Difficulties in the study of corrosion processes are caused by several factors such as deposit composition, flue gas composition, boiler design, and combustion characteristics and so on. Therefore, the laboratory tests should be a complement to the field test ones. This doctoral project involved in-situ testing at the furnace wall of power boilers and may thus contribute to fill the gap.

    The base material for furnace walls is a low alloy steel, usually 16Mo3, and the tubes may be coated or uncoated. Therefore tests were performed both on 16Mo3 and more highly alloyed materials suitable for protective coatings.

    Different types of samples exposed in used-wood fired boilers were analysed by different techniques such as LOM (light optical microscopy), XRD (X-ray diffraction), SEM (scanning electron microscopy), EDS (energy dispersive spectroscopy), WDS (wavelength dispersive spectroscopy), FIB (focused ion beam) and GD-OES (glow discharge optical emission spectroscopy). The corrosion rate was measured. The environment was also thermodynamically modelled by TC (Thermo-Calc ®).

    The results showed that 16Mo3 in the furnace wall region is attacked by HCl, leading to the formation of iron chloride and a simultaneous oxidation of the iron chloride. The iron chloride layer appeared to reach a steady state thickness.  

    Long term exposures showed that A 625 (nickel chromium alloy) and Kanthal APMT (iron-chromium-aluminium alloy) had the lowest corrosion rate (about 25-30% of the rate for 16Mo3), closely followed by 310S (stainless steel), making these alloys suitable for coating materials. It was found that the different alloys were attacked by different species, although they were exposed in the boiler at the same time in the same place. The dominant corrosion process in the A 625 samples seemed to be by a potassium-lead combination, while lead did not attack the APMT samples. Potassium attacked the alumina layer in the APMT samples, leading to the formation of a low-protective aluminate and chlorine was found to attack the base material.  The results showed that stainless steels are attacked by both mechanisms (Cl- induced attack and K-Pb combination).

    Decreasing the temperature of the furnace walls of a waste wood fired boiler could decrease the corrosion rate of 16Mo3. However, this low corrosion rate corresponds to a low final steam pressure of the power plant, which in not beneficial for the electrical efficiency.

    The short term testing results showed that co-firing of sewage sludge with used wood can lead to a reduction in the deposition of K and Cl on the furnace wall during short term testing. This led to corrosion reduction of furnace wall materials and coatings. The alkali chlorides could react with the aluminosilicates in the sludge and be converted to alkali silicates. The chromia layer in A 625 and alumina in APMT were maintained with the addition of sludge. 

  • 85.
    Alipour, Yousef
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    High temperature corrosion in a biomass-fired power boiler: Reducing furnace wall corrosion in a waste wood-fired power plant with advanced steam data2013Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    The use of waste (or recycled) wood as a fuel in heat and power stations is becoming more widespread in Sweden (and Europe), because it is CO2 neutral with a lower cost than forest fuel. However, it is a heterogeneous fuel with a high amount of chlorine, alkali and heavy metals which causes more corrosion than fossil fuels or forest fuel.

    A part of the boiler which is subjected to a high corrosion risk is the furnace wall (or waterwall) which is formed of tubes welded together. Waterwalls are made of ferritic low-alloyed steels, due to their low price, low stress corrosion cracking risk, high heat transfer properties and low thermal expansion. However, ferritic low alloy steels corrode quickly when burning waste wood in a low NOx environment (i.e. an environment with low oxygen levels to limit the formation of NOx). Apart from pure oxidation two important forms of corrosion mechanisms are thought to occur in waste environments: chlorine corrosion and alkali corrosion.

    Although there is a great interest from plant owners to reduce the costs associated with furnace wall corrosion very little has been reported on wall corrosion in biomass boilers. Also corrosion mechanisms on furnace walls are usually investigated in laboratories, where interpretation of the results is easier. In power plants the interpretation is more complicated. Difficulties in the study of corrosion mechanisms are caused by several factors such as deposit composition, flue gas flow, boiler design, combustion characteristics and flue gas composition. Therefore, the corrosion varies from plant to plant and the laboratory experiments should be complemented with field tests. The present project may thus contribute to fill the power plant corrosion research gap.

    In this work, different kinds of samples (wall deposits, test panel tubes and corrosion probes) from Vattenfall’s Heat and Power plant in Nyköping were analysed. Coated and uncoated samples with different alloys and different times of exposure were studied by scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), X-ray diffraction (XRD) and light optical microscopy (LOM). The corrosive environment was also simulated by Thermo-Calc software.

    The results showed that a nickel alloy coating can dramatically reduce the corrosion rate. The corrosion rate of the low alloy steel tubes, steel 16Mo3, was linear and the oxide scale non-protective, but the corrosion rate of the nickel-based alloy was probably parabolic and the oxide much more protective. The nickel alloy and stainless steels showed good corrosion protection behavior in the boiler. This indicates that stainless steels could be a good (and less expensive) alternative to nickel-based alloys for protecting furnace walls.

    The nickel alloy coated tubes (and probe samples) were attacked by a potassium-lead combination leading to the formation of non-protective potassium lead chromate. The low alloy steel tubes corroded by chloride attack. Stainless steels were attacked by a combination of chlorides and potassium-lead.

    The Thermo-Calc modelling showed chlorine gas exists at extremely low levels (less than 0.1 ppm) at the tube surface; instead the hydrated form is thermodynamically favoured, i.e. gaseous hydrogen chloride. Consequently chlorine can attack low alloy steels by gaseous hydrogen chloride rather than chlorine gas as previously proposed. This is a smaller molecule than chlorine which could easily diffuse through a defect oxide of the type formed on the steel.

  • 86.
    Alipour, Yousef
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Reducing furnace wall corrosion by coating the furnace tubes in a waste wood fired boiler plant2012Conference paper (Refereed)
  • 87.
    Alipour, Yousef
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Henderson, Pamela
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Initial Corrosion of Waterwalls Materials in a Waste Wood Fired Power PlantManuscript (preprint) (Other academic)
  • 88.
    Alipour, Yousef
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Henderson, Pamela
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    The effect of co-firing of sewage sludge with waste wood on furnace wall corrosion2014In: International Symposium On High-Temperature Oxidation And Corrosion Hakodate, Hokkaido Japan, 2014, 23-27 June, 2014Conference paper (Refereed)
  • 89.
    Alipour, Yousef
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Henderson, Pamela
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Szakalos, Peter
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    The effect of a nickel alloy coating on the corrosion of furnace wall tubes in a waste wood fired power plant2014In: Materials and corrosion - Werkstoffe und Korrosion, ISSN 0947-5117, E-ISSN 1521-4176, Vol. 65, no 2, p. 217-225Article in journal (Refereed)
    Abstract [en]

    The use of waste wood as a fuel in power plants is becoming more widespread in Europe, because it is a renewable energy source with a lower cost than forest fuel. However it is more corrosive than coal and corrosion problems have arisen in the furnace wall area of a low NOx heat and power boiler. The furnace walls are made of a low alloy steel which has been coated in some parts with a nickel alloy to reduce corrosion. In this work, furnace tubes coated with a nickel alloy were compared to the uncoated tubes of the low alloy steel 16Mo3 after 3 years of exposure in the boiler. The nickel alloy coating and uncoated material were also compared with more controlled testing on a corrosion probe lasting for about 6 weeks. The corrosion rates were measured and the samples were chemically analysed by SEM/EDS/WDS and XRD methods. The corrosive environment was also modelled with Thermo-Calc software. The corrosion rates measured from the probe and tube samples of 16Mo3 agreed well with each other, implying linear corrosion rates. The results also showed that the use of nickel alloy coatings changes the corrosion mechanism, which leads to a dramatic reduction in the corrosion rate. The results are discussed in terms of the corrosion mechanisms and thermodynamic stability of the corrosion products.

  • 90.
    Alipour, Yousef
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Talus, A.
    Henderson, Pamela
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. Vattenfall AB, Stockholm 169 92, Sweden.
    Norling, R.
    The effect of co-firing sewage sludge with used wood on the corrosion of an FeCrAl alloy and a nickel-based alloy in the furnace region2015In: Fuel processing technology, ISSN 0378-3820, E-ISSN 1873-7188, Vol. 138, p. 805-813Article in journal (Refereed)
    Abstract [en]

    The effect of digested sewage sludge as a fuel additive to reduce corrosion of furnace walls has been studied. The nickel base alloy Alloy 625 and the iron-chromium-aluminium alloy Kanthal APMT™ were exposed for 14.25. h at the furnace wall in a power boiler burning 100% used (also known as waste or recycled) wood. The test was then repeated with the addition of sewage sludge to the waste wood. The samples were chemically analysed and thermodynamically modelled and the corrosion mechanisms were investigated. The results showed that the co-firing of sewage sludge with recycled wood leads to a reduction in the corrosion. Attack by a potassium-lead combination appeared to be the main corrosion mechanism in Alloy 625 during waste wood combustion, while attack by alkali chloride was found to be dominant in APMT alloy.

  • 91.
    Alipour, Yousef
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Viklund, Peter
    Henderson, Pamela
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    The analysis of furnace wall deposits in a low-NOx waste wood-fired bubbling fluidised bed boiler2012In: VGB PowerTech Journal, ISSN 1435-3199, Vol. 92, no 12, p. 96-100Article in journal (Other academic)
    Abstract [en]

    Increasing use is being made of biomass as fuel for electricity production as the price of natural wood continues to rise. Therefore, more use is being made of waste wood (recycled wood). However, waste wood contains more chlorine, zinc and lead, which are believed to increase corrosion rates. Corrosion problems have occurred on the furnace walls of a fluidised bed boiler firing 100 % waste wood under low-NOx conditions. The deposits have been collected and analysed in order to understand the impact of the fuel.

  • 92.
    Alkasalias, Hakar
    KTH, School of Chemical Science and Engineering (CHE).
    Återvinning av lösningsmedel från produktion av cellulosasfärer2017Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Cellutech AB is a small wood technology company located at Green House Labs at KTH. The production of cellulose spheres, also called Cellupsheres, is being operated by Cellutech. Parts of the process behind the production of the spheres are patented and the first steps have been taken towards commercialization.

    In the process, a lot of solvent is used for the production of spheres. In the production of 1 ton spheres, more than 50 tons of solvent are sent for destruction. This is a problem to be solved by recycling the solvent and reusing it in the process. The recovery of the solvent is primarily for economic profitability, but also for the protection of the environment.

    To solve this problem, an analysis method has been found to analyze and quantify the different components of the coagulation bath where the spheres are formed. Thereafter, a separation method has also been found to separate the solvent from the coagulation bath. Once an analysis method and a separation method have been found and been applied, a yield has been calculated of how much recycled solvent there is after each production cycle.

    In this report, several analytical methods and separation methods have been tested. The various analysis methods performed are thermogravimetric analysis, capillary electrophoresis and distillation / rotary evaporation. One of the separation methods tested was distillation. The results showed that the distillation as a separation method was a very good method and where the separation of the solvent was successful.Distillation as a separation method dissolved the cellulose and could obtain a new cellulose solution which was viscous, as sought. On the other hand, no separation was achieved by spray-drying, which also was a separation method tested. The analytical method of analyzing and quantifying the solvent was by rotary evaporation. However, the other two analytical methods failed to analyze and quantify the solvent because of the failure of finding the correct parameters for each method at the time available for this project.

    Distillation as a separation method and rotary evaporation as an analytical method in combination could be used as a recycling process for the solvent. Three production cycles were subjected to this recycling process where the coagulation bath after each cycle was allowed to be analyzed and quantified and also for the separation of the solvent to occur. The yield of the three runs showed a recovery of the solvent of at least 70% for each run. The yield for the first cycle was circa 80%, for the second cycle circa 74 % and for the third 79%. This provides an economically viable recycling process that can be recommended for further processing of spheres on Cellutech. .

  • 93.
    Allerborg, Marcus
    KTH, School of Chemical Science and Engineering (CHE).
    Lokalisering av rötningsanläggning på Åland2015Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The purpose for this project is to evaluate if anaerobic digestion is possible as a waste management method on Åland islands.

    The goal with this project was to create a plan for how the waste should be collected to the anaerobic digestion plant and how the end product should be distributed to the farmers. This project have investigated where the plant should be located to reduce the impact of the environment and to make the transportation of the waste and end product easier. This project have also investigate the benefits of using anaerobic digestion instead of composting.

    A lot of Ålands islands waste is composted or sent to other countries for burning. It affects the environment in a bad way because of its long transportation distance and the formation of greenhouse gases that are released in composting.

    Svinryggens landfill has been chosen as the location for the plant. It was chosen by a visit to the different sites after taking factors like transportation distance for the waste and product, if there needs to do any ground work before the construction and if there are a lot of neighbors in case of an odor problem.

    Based on the location a system of gathering and destitution have been decided. Collecting household waste should be collected in a similar way as today. By areas where the people living is spread out like in the county side. There will be a waste station where the people leave there waste and then later picked up and transported to the plant. The station is emptied regularly. In areas where people live closer together the waste can be collected by their homes.

    Collection of manure will be happen in a storage place which is located close to the farmers. The farmers will leave the manure in exchange of the digestate. The collection will occurs on scheduled dates to reduce the storage time.

    To use anaerobic digestion instead of composting will give some advantages. Less environmental impact of greenhouse gases because of the gases that are released during anaerobic digestion have a lover global warming potential then the gases that are formed during composting. A anaerobic digestion plant on Åland would release 3 101 ton carbon dioxide equivalents while a compost would release 54 503 ton carbon dioxide equivalents. Anaerobic digestion are Anaerobic digestion gives the waste management system a better energy balance then using composting because of the heat that is generated when composting. Better control of the nutrients that will be used for farming which reduces the risk of over-fertilization.

    The investment for the plant is 24 million SEK. The yearly cost for the plant is 2,7 million SEK. About 2 million SEK is personal costs if the plant dimensioned for 21 760 ton waste. This makes the price 0,09 SEK for every kg, which the digestate should be sold for to cover the yearly cost. The cost can also be decided by taking the nutritional value into account. This makes the price 0,08 SEK per kg based on the nutritional value. This price would not cover the yearly cost for the plant. The nutritional value of the digestate is estimated and that makes it hard to determine if the price of 0,08 SEK per kg is reasonable. The digestate can also be sold with the water removed. This makes the price 2,21 SEK per dry matter to cover the yearly cost for the plant.

  • 94.
    Al-Naamani, Laila
    et al.
    Sultan Qaboos Univ, Dept Marine Sci & Fisheries, POB 34, Muscat 123, Oman.;Minist Municipal & Water Resources, Muscat 112, Oman..
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Dobretsov, Sergey
    Sultan Qaboos Univ, Dept Marine Sci & Fisheries, POB 34, Muscat 123, Oman.;Sultan Qaboos Univ, Ctr Excellence Marine Biotechnol, POB 50, Muscat 123, Oman..
    Nanocomposite Zinc Oxide-Chitosan Coatings on Polyethylene Films for Extending Storage Life of Okra (Abelmoschus esculentus)2018In: NANOMATERIALS, ISSN 2079-4991, Vol. 8, no 7, article id 479Article in journal (Refereed)
    Abstract [en]

    Efficiency of nanocomposite zinc oxide-chitosan antimicrobial polyethylene packaging films for the preservation of quality of vegetables was studied using okra Abelmoschus esculentus. Low density polyethylene films (LDPE) coated with chitosan-ZnO nanocomposites were used for packaging of okra samples stored at room temperature (25 degrees C). Compared to the control sample (no coating), the total bacterial concentrations in the case of chitosan and nanocomposite coatings were reduced by 53% and 63%, respectively. The nanocomposite coating showed a 2-fold reduction in total fungal concentrations in comparison to the chitosan treated samples. Results demonstrate the effectiveness of the nanocomposite coatings for the reduction of fungal and bacterial growth in the okra samples after 12 storage days. The nanocomposite coatings did not affect the quality attributes of the okra, such as pH, total soluble solids, moisture content, and weight loss. This work demonstrates that the chitosan-ZnO nanocomposite coatings not only maintains the quality of the packed okra but also retards microbial and fungal growth. Thus, chitosan-ZnO nanocomposite coating can be used as a potential coating material for active food packaging applications.

  • 95.
    Alvfors, Per
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Arnell, Jenny
    IVL.
    Berglin, Niklas
    Innventia.
    Björnsson, Lovisa
    LU.
    Börjesson, Pål
    LU.
    Grahn, Maria
    Chalmers/SP.
    Harvey, Simon
    Chalmers.
    Hoffstedt, Christian
    Innventia.
    Holmgren, Kristina
    IVL.
    Jelse, Kristian
    IVL.
    Klintbom, Patrik
    Kusar, Henrik
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Lidén, Gunnar
    LU.
    Magnusson, Mimmi
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Pettersson, Karin
    Chalmers.
    Rydberg, Tomas
    IVL.
    Sjöström, Krister
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Stålbrand, Henrik
    LU.
    Wallberg, Ola
    LU.
    Wetterlund, Elisabeth
    LiU.
    Zacchi, Guido
    LU.
    Öhrman, Olof
    ETC Piteå.
    Research and development challenges for Swedish biofuel actors – three illustrative examples: Improvement potential discussed in the context of Well-to-Tank analyses2010Report (Other academic)
    Abstract [en]

    Currently biofuels have strong political support, both in the EU and Sweden. The EU has, for example, set a target for the use of renewable fuels in the transportation sector stating that all EU member states should use 10% renewable fuels for transport by 2020. Fulfilling this ambition will lead to an enormous market for biofuels during the coming decade. To avoid increasing production of biofuels based on agriculture crops that require considerable use of arable area, focus is now to move towards more advanced second generation (2G) biofuels that can be produced from biomass feedstocks associated with a more efficient land use. Climate benefits and greenhouse gas (GHG) balances are aspects often discussed in conjunction with sustainability and biofuels. The total GHG emissions associated with production and usage of biofuels depend on the entire fuel production chain, mainly the agriculture or forestry feedstock systems and the manufacturing process. To compare different biofuel production pathways it is essential to conduct an environmental assessment using the well-to-tank (WTT) analysis methodology. In Sweden the conditions for biomass production are favourable and we have promising second generation biofuels technologies that are currently in the demonstration phase. In this study we have chosen to focus on cellulose based ethanol, methane from gasification of solid wood as well as DME from gasification of black liquor, with the purpose of identifying research and development potentials that may result in improvements in the WTT emission values. The main objective of this study is thus to identify research and development challenges for Swedish biofuel actors based on literature studies as well as discussions with the the researchers themselves. We have also discussed improvement potentials for the agriculture and forestry part of the WTT chain. The aim of this study is to, in the context of WTT analyses, (i) increase knowledge about the complexity of biofuel production, (ii) identify and discuss improvement potentials, regarding energy efficiency and GHG emissions, for three biofuel production cases, as well as (iii) identify and discuss improvement potentials regarding biomass supply, including agriculture/forestry. The scope of the study is limited to discussing the technologies, system aspects and climate impacts associated with the production stage. Aspects such as the influence on biodiversity and other environmental and social parameters fall beyond the scope of this study. We find that improvement potentials for emissions reductions within the agriculture/forestry part of the WTT chain include changing the use of diesel to low-CO2-emitting fuels, changing to more fuel-efficient tractors, more efficient cultivation and manufacture of fertilizers (commercial nitrogen fertilizer can be produced in plants which have nitrous oxide gas cleaning) as well as improved fertilization strategies (more precise nitrogen application during the cropping season). Furthermore, the cultivation of annual feedstock crops could be avoided on land rich in carbon, such as peat soils and new agriculture systems could be introduced that lower the demand for ploughing and harrowing. Other options for improving the WTT emission values includes introducing new types of crops, such as wheat with higher content of starch or willow with a higher content of cellulose. From the case study on lignocellulosic ethanol we find that 2G ethanol, with co-production of biogas, electricity, heat and/or wood pellet, has a promising role to play in the development of sustainable biofuel production systems. Depending on available raw materials, heat sinks, demand for biogas as vehicle fuel and existing 1G ethanol plants suitable for integration, 2G ethanol production systems may be designed differently to optimize the economic conditions and maximize profitability. However, the complexity connected to the development of the most optimal production systems require improved knowledge and involvement of several actors from different competence areas, such as chemical and biochemical engineering, process design and integration and energy and environmental systems analysis, which may be a potential barrier.

  • 96.
    Alvfors, Per
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Svedberg, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Modelling of the simultaneous calcination, sintering and sulphation of limestone and dolomite1992In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 47, no 8, p. 1903-1912Article in journal (Refereed)
    Abstract [en]

    The partially sintered spheres model, describing the sulphation of a sorbent particle consisting of CaO and inert content, is incorporated in a model taking into account the calcination of the limestone or dolomite and the sintering of the nascent oxide resulting from the calcination. The model is applicable, for example, to the sulphation of limestone or dolomite when injected into the furnace of a pulverized coal-fired boiler. The simulations show a temperature optimum in the calcium conversion. Increased calcium conversion is found when inert material is present. Satisfactory experimental verifications of the model are shown.

  • 97.
    Alvfors, Per
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Svedberg, Gunnar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Modelling of the sulphation of calcined limestone and dolomite—a gas-solid reaction with structural changes in the presence of inert solids1988In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 43, no 5, p. 1183-1193Article in journal (Refereed)
    Abstract [en]

    The partially sintered spheres model is further developed to account for the influence of inert material present in the solid reactant. This model is applicable, for example, to the sulphation of CaO with a variable amount of inert material. An example is the reaction between calcined dolomite, CaO·MgO, and SO2, when used as an SO2 sorbent in a boiler furnace. The results show that the rate of reaction increases and the active part of the sorbent reaches a higher degree of conversion when inert material is present.

  • 98. Amer, Wael A.
    et al.
    Wang, Li
    Amin, Abid M.
    Yu, Haojie
    Zhang, Lei
    Li, Chao
    Wang, Yang
    KTH, School of Information and Communication Technology (ICT).
    Liquid-crystalline azobenzene-containing ferrocene-based polymers: study on synthesis and properties of main-chain ferrocene-based polyesters with azobenzene in the side chain2013In: Polymers for Advanced Technologies, ISSN 1042-7147, E-ISSN 1099-1581, Vol. 24, no 2, p. 181-190Article in journal (Refereed)
    Abstract [en]

    Ferrocene-based polymers are characterized by their electrochemical activity, good redox properties, thermal, photochemical stability, and liquid crystallinity, and thus they have various applications in different fields. A comprehensive investigation on the synthesis and properties of three novel main-chain ferrocene-based polyesters with azobenzene in the side chain (MFPAS) was carried out. The main-chain ferrocene-based polyester, poly(N-phenyldiethanolamine 1,1'-ferrocene dicarboxylate (PPFD), was synthesized via the solution polycondensation reaction of 1,1'-ferrocenedicarbonyl chloride with phenyldiethanolamine (PDE). The novel MFPAS were synthesized via the post-polymerization azo-coupling reaction of PPFD with three different 4-substituted anilines including 4-nitroaniline, 4-aminobenzoic acid, and 4-aminobenzonitrile to produce 4-nitrophenylazo-functionalized-PPFD (PPFD-NT), 4-carboxyphenylazo-functionalized-PPFD (PPFD-CA), and 4-cyanophenylazo-functionalized-PPFD (PPFD-CN), respectively. All the synthesized polymers were characterized by 1H NMR spectroscopy, Fourier transform infrared spectroscopy, and UVvisible spectroscopy. In addition, powder X-ray diffraction patterns were measured for the synthesized polymers. The photoisomerization of the MFPAS was studied. The thermal properties of the MFPAS were studied using thermogravimetric analysis and differential scanning calorimetry. PPFD-CA and PPFD-CN were found to be more thermally stable than PPFD-NT. Finally, the liquid-crystalline properties of PPFD and the MFPAS were examined using polarized optical microscope. It was found that all the polymers possessed nematic phases and exhibited textures with schlieren disclinations.

  • 99. Amer, Wael A.
    et al.
    Wang, Li
    Yu, Haojie
    Amin, Abid M.
    Wang, Yang
    KTH, School of Information and Communication Technology (ICT).
    Synthesis and Properties of a Ferrocene-based Metallomesogenic Polymer Containing Bis(4-hydroxyoctoxyphenyl)sulfone2012In: Journal of Inorganic and Organometallic Polymers and Materials, ISSN 1574-1443, Vol. 22, no 6, p. 1229-1239Article in journal (Refereed)
    Abstract [en]

    Poly[bis(4-hydroxyoctoxyphenyl)sulfone 1,1'-ferrocene dicarboxylate] (PHOSFD) was synthesized by solution polycondensation reaction of bis(4-hydroxyoctoxyphenyl)sulfone with 1,1'-ferrocenyl chloride. The synthesized polymer was characterized via the measurement of its H-1 NMR spectrum, UV-Vis spectrum and FTIR spectrum. X-ray diffraction pattern was measured to investigate the crystallinity of the synthesized polymer and it was found that the polymer is mostly amorphous. The molecular weight of the polymer was determined by gel permeation chromatography. In addition, the electrochemical, the thermal, and the liquid crystalline properties of the synthesized polymer were examined and compared with the properties of poly(diethyleneglycol 1,1'-ferrocene dicarboxylate) (PDEFD) that was synthesized in our earlier study. The electrochemical processes of PHOSFD in CH2Cl2 were confirmed neither to be totally reversible nor completely irreversible. Generally, the electrochemical properties of PHOSFD and PDEFD were found to be similar to each other. PHOSFD was found to be thermally stable but its thermal stability is lower than that of PDEFD. Both of PHOSFD and PDEFD showed liquid crystalline properties and they possessed nematic phase textures with schlieren disclinations during heating and cooling.

  • 100.
    Aminlashgari, Nina
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    LDI-MS strategies for analysis of polymer degradation products, additives and drugs2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The advancement of mass spectrometry (MS) has been and continues to be a prominent analytical technique for highly accurate determination of analytes. The goal of this thesis was to develop new laser desorption ionization-mass spectrometric (LDI-MS) methods for analysis of polymer degradation products, additives and drugs. Modifications in the sample preparation were evaluated in the presence and absence of surface assisting materials. Various nanoparticles were evaluated as effective absorbents for energy transfer in the LDI procedure of the small molecules.

    In paper I and II, LDI-MS methods were developed for following the progression of chemical reactions. First, the procedure to optimize microwave assisted hydrothermal degradation products of cellulose were analyzed; second, the synthesis of glucose hexanoate ester plasticizers was monitored as a function of reaction time. The LDI-MS method provided rapid detection for the elucidation of the chemical products and their relative ratios. In contrast, the electrospray ionization-mass spectrometry (ESI-MS) analysis produced a noisy spectrum primarily containing peaks from salt clusters. A surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) method was developed in paper III enabling the identification of poly(e-caprolactone) and its degradation products by using nanoparticles as the substrate. Similar analysis by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) was not as successful due to convolution of the analyte peaks with clusters released from the matrix. ESI-MS analysis verified the SALDI-MS method as comparable degradation product patterns were observed. Furthermore, the possibility of using polylactide based nanocomposites as surfaces in the analysis of drugs was evaluated in paper IV. An advantage was the ease of handling compared to the use of free nanoparticles. Paper V introduces the potential of direct examination of oxygen plasma modified parylene C surfaces by a LDI-MS methodology. 

1234567 51 - 100 of 2463
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf