Change search
Refine search result
1234567 51 - 100 of 412
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Brethouwer, Geert
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Duguet, Yohann
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Johansson, Arne V.
    KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Recurrent Bursts via Linear Processes in Turbulent Environments2014In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 112, no 14, p. 144502-Article in journal (Refereed)
    Abstract [en]

    Large-scale instabilities occurring in the presence of small-scale turbulent fluctuations are frequently observed in geophysical or astrophysical contexts but are difficult to reproduce in the laboratory. Using extensive numerical simulations, we report here on intense recurrent bursts of turbulence in plane Poiseuille flow rotating about a spanwise axis. A simple model based on the linear instability of the mean flow can predict the structure and time scale of the nearly periodic and self-sustained burst cycles. Poiseuille flow is suggested as a prototype for future studies of low-dimensional dynamics embedded in strongly turbulent environments.

  • 52.
    Brynjell-Rahkola, Mattias
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Studies on instability and optimal forcing of incompressible flows2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis considers the hydrodynamic instability and optimal forcing of a number of incompressible flow cases. In the first part, the instabilities of three problems that are of great interest in energy and aerospace applications are studied, namely a Blasius boundary layer subject to localized wall-suction, a Falkner–Skan–Cooke boundary layer with a localized surface roughness, and a pair of helical vortices. The two boundary layer flows are studied through spectral element simulations and eigenvalue computations, which enable their long-term behavior as well as the mechanisms causing transition to be determined. The emergence of transition in these cases is found to originate from a linear flow instability, but whereas the onset of this instability in the Blasius flow can be associated with a localized region in the vicinity of the suction orifice, the instability in the Falkner–Skan–Cooke flow involves the entire flow field. Due to this difference, the results of the eigenvalue analysis in the former case are found to be robust with respect to numerical parameters and domain size, whereas the results in the latter case exhibit an extreme sensitivity that prevents domain independent critical parameters from being determined. The instability of the two helices is primarily addressed through experiments and analytic theory. It is shown that the well known pairing instability of neighboring vortex filaments is responsible for transition, and careful measurements enable growth rates of the instabilities to be obtained that are in close agreement with theoretical predictions. Using the experimental baseflow data, a successful attempt is subsequently also made to reproduce this experiment numerically.

    In the second part of the thesis, a novel method for computing the optimal forcing of a dynamical system is developed. The method is based on an application of the inverse power method preconditioned by the Laplace preconditioner to the direct and adjoint resolvent operators. The method is analyzed for the Ginzburg–Landau equation and afterwards the Navier–Stokes equations, where it is implemented in the spectral element method and validated on the two-dimensional lid-driven cavity flow and the flow around a cylinder.

  • 53.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Barman, Emelie
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    On the stability of a Blasius boundary layer subject to localized suction2017Report (Other academic)
    Abstract [en]

    In this work the problem of premature transition in boundary layers due to localized suction is revisited. A thorough study involving nonlinear direct numerical simulations, a three-dimensional linear stability analysis, a sensitivity study and a Koopman analysis is presented. The ensemble of these different techniques enables the origins of oversuction to be studied in great detail and provides new insight into the transition process of the flow. The configuration considered consists of an infinite row of widely separated suction pipes that are mounted to the plate at right angles. For the parameter range investigated, the flow inside the pipe is seen to bifurcate at a lower suction ratio than the boundary layer and thus act as an oscillator that forces the external flow over the plate. At low levels of suction, this forcing is not enough to cause transition in the boundary layer, but as the suction level is increased beyond criticality, modes originating from the pipe and extending into the boundary layer are seen to destabilize as well. These modes enable the perturbations forced in the pipe to also amplify in the boundary layer, which leads to a rapid breakdown to turbulence in the wake of the suction hole.

  • 54.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    A note on the numerical realization of helical vortices: application to vortex instability2017Report (Other academic)
    Abstract [en]

    The need to numerically represent a free vortex system arises frequently in fundamental and applied research. Many possible techniques for realizing this vortex system exist but most tend to prioritize accuracy either inside or outside of the vortex core, which therefore makes them unsuitable to for a stability analysis considering the entire flow field. In this article, a simple method is presented that is shown to yield an accurate representation of the flow inside and outside of the vortex core. The method is readily implemented in any incompressible Navier–Stokes solver using primitive variables and Cartesian coordinates. It can potentially be used to model a wide range of vortices but is here applied to reproduce a recent experiment by Quaranta et al. (2017) considering two helices. A three-dimensional stability analysis is performed and yields an eigenvalue spectrum that features both long- and short-wave instabilities.

  • 55.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Mechanics of Industrial Processes. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Modal analysis of roughness-induced crossflow vortices in a Falkner-Skan-Cooke boundary layer2013In: International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2013, TSFP-8 , 2013Conference paper (Refereed)
    Abstract [en]

    A three-dimensional global stability analysis using high-order direct numerical simulations is performed to investigate the effect of surface roughness with Reynolds number (based on roughness height) Rek above and below the critical value for transition, on the eigenmodes of a Falkner-Skan-Cooke boundary layer. The surface roughness is introduced with the immersed boundary method and the eigenvalues and eigenfunctions are solved using an iterative time-stepper method. The study reveals a global instability for the case with higher Reynolds number that causes the flow in the non-linear simulations to break down to turbulence shortly downstream of the roughness. Examination of the unstable linear global modes show that these are the same modes that are observed in experiments immediately before breakdown due to secondary instability, which emphasizes the importance of these modes in transition.

  • 56.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.
    Shahriari, Nima
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.
    Stability and sensitivity of a cross-flow-dominated Falkner-Skan-Cooke boundary layer with discrete surface roughness2017In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 826, p. 830-850Article in journal (Refereed)
    Abstract [en]

    With the motivation of determining the critical roughness size, a global stability and sensitivity analysis of a three-dimensional Falkner-Skan-Cooke (FSC) boundary layer with a cylindrical surface roughness is performed. The roughness size is chosen such that breakdown to turbulence is initiated by a global version of traditional secondary instabilities of the cross-flow (CF) vortices instead of an immediate flow tripping at the roughness. The resulting global eigenvalue spectra of the systems are found to be very sensitive to numerical parameters and domain size. This sensitivity to numerical parameters is quantified using the epsilon-pseudospectrum, and the dependency on the domain is analysed through an impulse response, structural sensitivity analysis and an energy budget. It is shown that while the frequencies remain relatively unchanged, the growth rates increase with domain size, which originates from the inclusion of stronger CF vortices in the baseflow. This is reflected in a change in the rate of advective energy transport by the baseflow. It is concluded that the onset of global instability in a FSC boundary layer as the roughness height is increased does not correspond to an immediate flow tripping behind the roughness, but occurs for lower roughness heights if sufficiently long domains are considered. However, the great sensitivity results in an inability to accurately pinpoint the exact parameter values for the bifurcation, and the large spatial growth of the disturbances in the long domains eventually becomes larger than can be resolved using finite-precision arithmetic.

  • 57.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Shahriari, Nima
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. Swedish Defence Research Agency, Sweden.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Stability and sensitivity of a crossflow-dominated Falkner–Skan–Cooke boundary layer with discrete surface roughness2016In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645Article in journal (Refereed)
    Abstract [en]

    With the motivation of determining the critical roughness size, a global stability and sensitivity analysis of a three-dimensional Falkner–Skan–Cooke (FSC) boundary layer with a cylindrical surface roughness is performed. The roughness size is chosen such that breakdown to turbulence is initiated by a global version of traditional secondary instabilities of the crossflow (CF) vortices, instead of an immediate flow tripping at the roughness. The resulting global eigenvalue spectra of the systems are found to be very sensitive to numerical parameters and domain size. This sensitivity to numerical parameters is quantified using the "-pseudospectrum, and the dependency on the domain is analysed through an impulse response and an energy budget. It is shown that the growth rates increase with domain size, which originates from the inclusion of stronger CF vortices in the baseflow. This is reflected in a change in the rate of advective energy transport by the baseflow. It is concluded that the onset of global instability in a FSC boundary layer as the roughness height is increased does not correspond to an immediate flow tripping behind the roughness, but occurs for lower roughness heights if su ciently long domains are considered. However, the great sensitivity results in an inability to accurately pinpoint the exact parameter values for the bifurcation, and the large spatial growth of the disturbances in the long domains eventually becomes larger than what can be resolved using finite precision arithmetics. 

  • 58.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Tuckerman, L. S.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Computing Optimal Forcing Using Laplace Preconditioning2017In: Communications in Computational Physics, ISSN 1815-2406, E-ISSN 1991-7120, Vol. 22, no 5, p. 1508-1532Article in journal (Refereed)
    Abstract [en]

    For problems governed by a non-normal operator, the leading eigenvalue of the operator is of limited interest and a more relevant measure of the stability is obtained by considering the harmonic forcing causing the largest system response. Various methods for determining this so-called optimal forcing exist, but they all suffer from great computational expense and are hence not practical for large-scale problems. In the present paper a new method is presented, which is applicable to problems of arbitrary size. The method does not rely on timestepping, but on the solution of linear systems, in which the inverse Laplacian acts as a preconditioner. By formulating the search for the optimal forcing as an eigenvalue problem based on the resolvent operator, repeated system solves amount to power iterations, in which the dominant eigenvalue is seen to correspond to the energy amplification in a system for a given frequency, and the eigenfunction to the corresponding forcing function. Implementation of the method requires only minor modifications of an existing timestepping code, and is applicable to any partial differential equation containing the Laplacian, such as the Navier-Stokes equations. We discuss the method, first, in the context of the linear Ginzburg-Landau equation and then, the two-dimensional lid-driven cavity flow governed by the Navier-Stokes equations. Most importantly, we demonstrate that for the lid-driven cavity, the optimal forcing can be computed using a factor of up to 500 times fewer operator evaluations than the standard method based on exponential timestepping.

  • 59.
    Bäbler, Matthäus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Biferale, Luca
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Feudel, Ulrike
    Guseva, Ksenia
    Lanotte, Alessandra S.
    Marchioli, Cristian
    Picano, Francesco
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. University of Padua, Italy.
    Sardina, Gaetano
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Soldati, Alfredo
    Toschi, Federico
    Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows2015In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 766Article in journal (Refereed)
    Abstract [en]

    Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress sigma similar to epsilon(1/2), with epsilon being the energy dissipation at the position of the aggregate, overcomes a given threshold sigma(cr), which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.

  • 60.
    Canton, Jacopo
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.
    Örlü, Ramis
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. KTH, School of Industrial Engineering and Management (ITM), Centres, Competence Center for Gas Exchange (CCGEx). KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Linear stability of the flow in a toroidal pipe2015In: 9th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2015, TSFP-9 , 2015Conference paper (Refereed)
    Abstract [en]

    While hydrodynamic stability and transition to turbulence in straight pipes - being one of the most fundamental problems in fluid mechanics - has been studied extensively, the stability of curved pipes has received less attention. In the present work, the first (linear) instability of the canonical flow inside a toroidal pipe is investigated as a first step in the study of the related laminar-turbulent transition process. The impact of the curvature of the pipe, in the range 8 e [0.002,1], on the stability properties of the flow is studied in the framework of linear stability analysis. Results show that the flow is indeed modally unstable for all curvatures investigated and that the wave number corresponding to the critical mode depends on the curvature, as do several other features of this problem. The critical modes are mainly located in the region of the Dean vortices, and are characterised by oscillations which are symmetric or antisymmetric as a function of the curvature. The neutral curve associated with the first bifurcation is the result of a complex interaction between isolated modes and branches composed by several modes characterised by a common structure. This behaviour is in obvious contrast to that of straight pipes, which are linearly stable for all Reynolds numbers.

  • 61.
    Canton, Jacopo
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Örlü, Ramis
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Modal instability of the flow in a toroidal pipe2016In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 792, p. 894-909Article in journal (Refereed)
    Abstract [en]

    The modal instability encountered by the incompressible flow inside a toroidal pipe is studied, for the first time, by means of linear stability analysis and direct numerical simulation (DNS). In addition to the unquestionable aesthetic appeal, the torus represents the smallest departure from the canonical straight pipe flow, at least for low curvatures. The flow is governed by only two parameters: the Reynolds number (Formula presented.) and the curvature of the torus (Formula presented.), i.e. the ratio between pipe radius and torus radius. The absence of additional features, such as torsion in the case of a helical pipe, allows us to isolate the effect that the curvature has on the onset of the instability. Results show that the flow is linearly unstable for all curvatures investigated between 0.002 and unity, and undergoes a Hopf bifurcation at (Formula presented.) of about 4000. The bifurcation is followed by the onset of a periodic regime, characterised by travelling waves with wavelength (Formula presented.) pipe diameters. The neutral curve associated with the instability is traced in parameter space by means of a novel continuation algorithm. Tracking the bifurcation provides a complete description of the modal onset of instability as a function of the two governing parameters, and allows a precise calculation of the critical values of (Formula presented.) and (Formula presented.). Several different modes are found, with differing properties and eigenfunction shapes. Some eigenmodes are observed to belong to groups with a set of common characteristics, deemed ‘families’, while others appear as ‘isolated’. Comparison with nonlinear DNS shows excellent agreement, confirming every aspect of the linear analysis, its accuracy, and proving its significance for the nonlinear flow. Experimental data from the literature are also shown to be in considerable agreement with the present results.

  • 62.
    Canton, Jacopo
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Örlü, Ramis
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Chin, Cheng
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Reynolds number dependence of large-scale friction control in turbulent channel flow2016In: Physical Review Fluids, E-ISSN 2469-990X, Vol. 1, no 8, article id 081501Article in journal (Refereed)
    Abstract [en]

    The present work investigates the effectiveness of the control strategy introduced by Schoppa and Hussain [Phys. Fluids 10, 1049 (1998)] as a function of Reynolds number (Re). The skin-friction drag reduction method proposed by these authors, consisting of streamwise-invariant, counter-rotating vortices, was analyzed by Canton et al. [Flow, Turbul. Combust. 97, 811 (2016)] in turbulent channel flows for friction Reynolds numbers (Re t) corresponding to the value of the original study (i.e., 104) and 180. For these Re, a slightly modified version of the method proved to be successful and was capable of providing a drag reduction of up to 18%. The present study analyzes the Reynolds number dependence of this drag-reducing strategy by performing two sets of direct numerical simulations (DNS) for Re-tau = 360 and 550. A detailed analysis of the method as a function of the control parameters (amplitude and wavelength) and Re confirms, on the one hand, the effectiveness of the large-scale vortices at low Re and, on the other hand, the decreasing and finally vanishing effectiveness of this method for higher Re. In particular, no drag reduction can be achieved for Re t = 550 for any combination of the parameters controlling the vortices. For low Reynolds numbers, the large-scale vortices are able to affect the near-wall cycle and alter the wall-shear-stress distribution to cause an overall drag reduction effect, in accordance with most control strategies. For higher Re, instead, the present method fails to penetrate the near-wall region and cannot induce the spanwise velocity variation observed in other more established control strategies, which focus on the near-wall cycle. Despite the negative outcome, the present results demonstrate the shortcomings of the control strategy and show that future focus should be on methods that directly target the near-wall region or other suitable alternatives.

  • 63.
    Canton, Jacopo
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Örlü, Ramis
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Characterisation of the steady, laminar incompressible flow in toroidal pipes covering the entire curvature range2017In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 66, p. 95-107Article in journal (Refereed)
    Abstract [en]

    This work is concerned with a detailed investigation of the steady (laminar), incompressible flow inside bent pipes. In particular, a toroidal pipe is considered in an effort to isolate the effect of the curvature, δ, on the flow features, and to compare the present results to available correlations in the literature. More than 110 000 numerical solutions are computed, without any approximation, spanning the entire curvature range, 0 ≤ δ ≤ 1, and for bulk Reynolds numbers Re up to 7 000, where the flow is known to be unsteady. Results show that the Dean number De provides a meaningful non-dimensional group only below very strict limits on the curvature and the Dean number itself. For δ>10−6 and De > 10, in fact, not a single flow feature is found to scale well with the Dean number. These considerations are also valid for quantities, such as the Fanning friction factor, that were previously considered Dean-number dependent only. The flow is therefore studied as a function of two equally important, independent parameters: the curvature of the pipe and the Reynolds number. The analysis shows that by increasing the curvature the flow is fundamentally changed. Moderate to high curvatures are not only quantitatively, but also qualitatively different from low δ cases. A complete description of some of the most relevant flow quantities is provided. Most notably the friction factor f for laminar flow in curved pipes by Ito [J. Basic Eng. 81:123–134 (1959)] is reproduced, the influence of the curvature on f is quantified and the scaling is discussed. A complete database including all the computed solutions is available at www.flow.kth.se.

  • 64. Capuccini, Marco
    et al.
    Ahmed, Laeeq
    KTH, School of Computer Science and Communication (CSC), High Performance Computing and Visualization (HPCViz).
    Schaal, Wesley
    Laure, Erwin
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for High Performance Computing, PDC. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Computer Science and Communication (CSC), High Performance Computing and Visualization (HPCViz). KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).
    Spjuth, Ola
    Large-scale virtual screening on public cloud resources with Apache Spark2017In: Journal of Cheminformatics, ISSN 1758-2946, E-ISSN 1758-2946, Vol. 9, article id 15Article in journal (Refereed)
    Abstract [en]

    Background: Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. Results: We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against similar to 2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Conclusion: Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries.

  • 65. Cedervall, Johan
    et al.
    Andersson, Mikael Svante
    Sarkar, Tapati
    Delczeg-Czirjak, Erna K.
    Bergqvist, Lars
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hansen, Thomas C.
    Beran, Premysl
    Nordblad, Per
    Sahlberg, Martin
    Magnetic structure of the magnetocaloric compound AlFe2B22016In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 664, p. 784-791Article in journal (Refereed)
    Abstract [en]

    The crystal and magnetic structures of AlFe2B2 have been studied with a combination of X-ray and neutron diffraction and electronic structure calculations. The magnetic and magnetocaloric properties have been investigated by magnetisation measurements. The samples have been produced using high temperature synthesis and subsequent heat treatments. The compound crystallises in the orthorhombic crystal system Cmmm and it orders ferromagnetically at 285 K through a second order phase transition. At temperatures below the magnetic transition the magnetic moments align along the crystallographic a-axis. The magnetic entropy change from 0 to 800 kA/m was found to be - 1.3 J/K kg at the magnetic transition temperature.

  • 66.
    Chaparian, Emad
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Tammisola, Outi
    An adaptive finite element method for elastoviscoplastic fluid flows2019In: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 271, article id UNSP 104148Article in journal (Refereed)
    Abstract [en]

    Elastoviscoplastic fluids are a class of yield-stress fluids that behave like neoHookean (or viscoelastic) solids when the imposed stress is less than the yield stress whereas after yielding, their behaviour is described by a viscoplastic fluid with an additional elastic history. This exceptional behaviour has been recently observed by many yield stress fluids in rheometric tests such as waxy crude oil, Carbopol gel, etc. Moreover, interesting phenomena have been evidenced experimentally such as the presence of a negative wake and a loss of fore-aft symmetry about a settling particle which are predominantly related to the elastic behaviour of yield-stress fluids (i.e., coupling of elasticity and plasticity). Here, we present a numerical scheme based on the so-called augmented Lagrangian method for numerical simulation of elastoviscoplastic fluid flows. The method is benchmarked by two rheometric flows: Poiseuille and circular Couette flows for which analytical solutions are derived. Moreover, anisotropic adaptive mesh procedure (which was previously introduced for viscoplastic fluid flows by Saramito and Roquet, Comput. Meth. Appl. Mech. Eng., vol. 190, 2001, pp. 5391-5412) is coupled to obtain a fine resolution of the yield surfaces. Finally, the presented method is applied to study more complex flows: elastoviscoplastic fluid flow in a wavy channel.

  • 67.
    Chattopadhyaya, Mausumi
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Murugan, N. Arul
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Rinkevicius, Zilvinas
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Origin of the Absorption Band of Bromophenol Blue in Acidic and Basic pH: Insight from a Combined Molecular Dynamics and TD-DFT/MM Study2016In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 120, no 36, p. 7175-7182Article in journal (Refereed)
    Abstract [en]

    We study the linear and nonlinear optical properties of a well-known acid base indicator, bromophenol blue (BPB), in aqueous solution by employing static and integrated approaches. In the static approach, optical properties have been calculated using time-dependent density functional theory (TD-DFT) on the fully relaxed geometries of the neutral and different unprotonated forms of BPB. Moreover, both closed and open forms of BPB were considered. In the integrated approach, the optical properties have been computed over many snapshots extracted from molecular dynamics simulation using a hybrid time-dependent density functional theory/molecular mechanics approach. The static approach suggests closed neutral double right arrow anionic interconversion as the dominant mechanism for the red shift in the absorption spectra of BPB due to a change from acidic to basic pH. It is found by employing an integrated approach that the two interconversions, namely open neutral double right arrow anionic and open neutral double right arrow dianionic, can contribute to the pH- dependent shift in the absorption spectra of BPB. Even though both static and integrated approaches reproduce the pH-dependent red shift in the absorption spectra of BPB, the latter one is suitable to determine both the spectra and spectral broadening. Finally, the computed static first hyperpolarizability for various protonated and deprotonated forms of BPB reveals that this molecule can be used as a nonlinear optical probe for pH sensing in addition to its highly exploited use as an optical probe.

  • 68. Chen, Yuxi
    et al.
    Toth, Gabor
    Cassak, Paul
    Jia, Xianzhe
    Gombosi, Tamas I.
    Slavin, James A.
    Markidis, Stefano
    KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Peng, Ivy Bo
    KTH.
    Jordanova, Vania K.
    Henderson, Michael G.
    Global Three-Dimensional Simulation of Earth's Dayside Reconnection Using a Two-Way Coupled Magnetohydrodynamics With Embedded Particle-in-Cell Model: Initial Results2017In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 10, p. 10318-10335Article in journal (Refereed)
    Abstract [en]

    We perform a three-dimensional (3-D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model. During the 1 h long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We find that the magnetic field signature of FTEs at their early formation stage is similar to a "crater FTE," which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomes an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. The LHDI electric field is about 8 mV/m, and its dominant wavelength relative to the electron gyroradius agrees reasonably with Magnetospheric Multiscale (MMS) observations.

  • 69. Citro, Vincenzo
    et al.
    Giannetti, Flavio
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Luchini, Paolo
    Linear three-dimensional global and asymptotic stability analysis of incompressible open cavity flow2015In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 768Article in journal (Refereed)
    Abstract [en]

    The viscous and inviscid linear stability of the incompressible flow past a square open cavity is studied numerically. The analysis shows that the flow first undergoes a steady three-dimensional bifurcation at a critical Reynolds number of 1370. The critical mode is localized inside the cavity and has a flat roll structure with a spanwise wavelength of about 0.47 cavity depths. The adjoint global mode reveals that the instability is most efficiently triggered in the thin region close to the upstream tip of the cavity. The structural sensitivity analysis identifies the wavemaker as the region located inside the cavity and spatially concentrated around a closed orbit. As the flow outside the cavity plays no role in the generation mechanisms leading to the bifurcation, we confirm that an appropriate parameter to describe the critical conditions in open cavity flows is the Reynolds number based on the average velocity between the two upper edges. Stabilization is achieved by a decrease of the total momentum inside the shear layer that drives the core vortex within the cavity. The mechanism of instability is then studied by means of a short-wavelength approximation considering pressureless inviscid modes. The closed streamline related to the maximum inviscid growth rate is found to be the same as that around which the global wavemaker is concentrated. The structural sensitivity field based on direct and adjoint eigenmodes, computed at a Reynolds number far higher than that of the base flow, can predict the critical orbit on which the main instabilities inside the cavity arise. Further, we show that the sub-leading unstable time-dependent modes emerging at supercritical conditions are characterized by a period that is a multiple of the revolution time of Lagrangian particles along the orbit of maximum growth rate. The eigenfrequencies of these modes, computed by global stability analysis, are in very good agreement with the asymptotic results.

  • 70.
    Costa, Pedro
    et al.
    Delft Univ Technol, Proc & Energy Dept Multiphase Syst, Leeghwaterstr 21, NL-2621 CA Delft, Netherlands..
    Picano, Francesco
    Univ Padua, Dept Ind Engn, Via Venezia 1, I-35131 Padua, Italy..
    Brandt, L.uca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Breugem, Wim-Paul
    Delft Univ Technol, Proc & Energy Dept Multiphase Syst, Leeghwaterstr 21, NL-2621 CA Delft, Netherlands..
    Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions2018In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 843, p. 450-478Article in journal (Refereed)
    Abstract [en]

    We use interface-resolved numerical simulations to study finite-size effects in turbulent channel flow of neutrally buoyant spheres. Two cases with particle sizes differing by a factor of two, at the same solid volume fraction of 20% and bulk Reynolds number are considered. These are complemented with two reference single-phase flows: the unladen case, and the flow of a Newtonian fluid with the effective suspension viscosity of the same mixture in the laminar regime. As recently highlighted in Costa etal. (Phys. Rev. Lett., vol.117, 2016, 134501), a particle-wall layer is responsible for deviations of the mesoscale-averaged statistics from what is observed in the continuum limit where the suspension is modelled as a Newtonian fluid with (higher) effective viscosity. Here we investigate in detail the fluid and particle dynamics inside this layer and in the bulk. In the particle-wall layer, the near-wall inhomogeneity has an influence on the suspension microstructure over a distance proportional to the particle size. In this layer, particles have a significant (apparent) slip velocity that is reflected in the distribution of wall shear stresses. This is characterized by extreme events (both much higher and much lower than the mean). Based on these observations we provide a scaling for the particle-to-fluid apparent slip velocity as a function of the flow parameters. We also extend the scaling laws in Costa etal. (Phys. Rev. Lett., vol.117, 2016, 134501) to second-order Eulerian statistics in the homogeneous suspension region away from the wall. The results show that finite-size effects in the bulk of the channel become important for larger particles, while negligible for lower-order statistics and smaller particles. Finally, we study the particle dynamics along the wall-normal direction. Our results suggest that single-point dispersion is dominated by particle-turbulence (and not particle-particle) interactions, while differences in two-point dispersion and collisional dynamics are consistent with a picture of shear-driven interactions.

  • 71. Costa, Pedro
    et al.
    Picano, Francesco
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Breugem, Wim-Paul
    Universal Scaling Laws for Dense Particle Suspensions in Turbulent Wall-Bounded Flows2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, no 13, article id 134501Article in journal (Refereed)
    Abstract [en]

    The macroscopic behavior of dense suspensions of neutrally buoyant spheres in turbulent plane channel flow is examined. We show that particles larger than the smallest turbulence scales cause the suspension to deviate from the continuum limit in which its dynamics is well described by an effective suspension viscosity. This deviation is caused by the formation of a particle layer close to the wall with significant slip velocity. By assuming two distinct transport mechanisms in the near-wall layer and the turbulence in the bulk, we define an effective wall location such that the flow in the bulk can still be accurately described by an effective suspension viscosity. We thus propose scaling laws for the mean velocity profile of the suspension flow, together with a master equation able to predict the increase in drag as a function of the particle size and volume fraction.

  • 72.
    Dadfar, Reza
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Control of instabilities in an unswept wing boundary layer2018In: AIAA Journal, ISSN 0001-1452, E-ISSN 1533-385X, Vol. 56, no 5, p. 1750-1759Article in journal (Refereed)
    Abstract [en]

    Linear control theory is used to construct an output feedback controller to attenuate the amplitude of the Tollmien–Schlichting waves inside the boundary layer developing over an unswept wing. The analysis is based on direct numerical simulations. The studied scenario includes the impulse response of the system to a generic disturbance in the freestream, which triggers a Tollmien–Schlichting wave packet inside the boundary layer. The performance of a linear quadratic Gaussian controller is analyzed to suppress the amplitude of the Tollmien–Schlichting wave packet using a row of sensors and plasma actuators localized at the wall. The target of the controller is chosen as a subset of proper orthogonal decomposition modes describing the dynamics of the unstable disturbances. The plasma actuators are implemented as volume forcing. To account for the limitations of the plasma actuators concerning a unidirectional forcing, several strategies are implemented in the linear quadratic Gaussian framework. Their performances are compared with that for classical linear quadratic Gaussian controller. These controllers successfully reduced the amplitude of the wave packet.

  • 73. De Aguiar Quintanilha Junior, H. R.
    et al.
    Kataras, P. B.
    Theofilis, V.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
    Nonmodal stability analysis of the HIFiRE-5 elliptic cone model flow in different flight altitudes2018In: 58th Israel Annual Conference on Aerospace Sciences, IACAS 2018, Israel Annual Conference on Aerospace Sciences , 2018, p. 1543-1555Conference paper (Refereed)
    Abstract [en]

    Nonmodal instability analysis is carried out for a 2:1 elliptic cone with base flow conditions selected for a Ma=7 and two different ight altitudes, namely 33km and 21km with unit Reynolds number Re′ = 1.89 x 106 m-1 and Re′ = 1.015 x 107 m-1, respectively. The aim is to analyze the effects of transiently growing optimal disturbances and their possible relation to instability mechanisms that have been confirmed to exist in previous modal crossow. Local linear stability results obtained at several streamwise locations on the cone surface indicate that transient growth in the crossow region may be correlated to streamwise oriented structures having spanwise spacing of the same order of magnitude as which have long been known to exist in this flow.

  • 74.
    De Vita, Francesco
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Rosti, Marco E.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Izbassarov, Daulet
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Duffo, L.
    Tammisola, Outi
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hormozi, S.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Elastoviscoplastic flows in porous media2018In: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 258, p. 10-21Article in journal (Refereed)
    Abstract [en]

    We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier–Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution [1]. In this model, the material behaves as a viscoelastic solid when unyielded, and as a viscoelastic Oldroyd-B fluid for stresses higher than the yield stress. The porous media is made of a symmetric array of cylinders, and we solve the flow in one periodic cell. We find that the solution is time-dependent even at low Reynolds numbers as we observe oscillations in time of the unyielded region especially at high Bingham numbers. The volume of the unyielded region slightly decreases with the Reynolds number and strongly increases with the Bingham number; up to 70% of the total volume is unyielded for the highest Bingham numbers considered here. The flow is mainly shear dominated in the yielded region, while shear and elongational flow are equally distributed in the unyielded region. We compute the relation between the pressure drop and the flow rate in the porous medium and present an empirical closure as function of the Bingham and Reynolds numbers. The apparent permeability, normalized with the case of Newtonian fluids, is shown to be greater than 1 at low Bingham numbers, corresponding to lower pressure drops due to the flow elasticity, and smaller than 1 for high Bingham numbers, indicating larger dissipation in the flow owing to the presence of the yielded regions. Finally we investigate the effect of the Weissenberg number on the distribution of the unyielded regions and on the pressure gradient.

  • 75. Delczeg-Czirjak, E. K.
    et al.
    Pereiro, M.
    Bergqvist, Lars
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Kvashnin, Y. O.
    Di Marco, I
    Li, Guijiang
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Vitos, Levente
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. Uppsala Univ, Div Mat Theory, Dept Phys & Astron, Sweden.
    Eriksson, O.
    Origin of the magnetostructural coupling in FeMnP0.75Si0.252014In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 90, no 21, p. 214436-Article in journal (Refereed)
    Abstract [en]

    The strong coupling between the crystal structure and magnetic state (ferromagnetic or helical antiferromagnetic) of FeMnP0.75Si0.25 is investigated using density functional theory in combination with atomistic spin dynamics. We find many competing energy minima for drastically different ferromagnetic and noncollinear magnetic configurations. We also find that the appearance of a helical spin-spiral magnetic structure at finite temperature is strongly related to one of the crystal structures reported for this material. Shorter Fe-Fe distances are found to lead to a destabilized ferromagnetic coupling, while out-of-plane Mn-Mn exchange interactions become negative with the shortening of the interatomic distances along the c axis, implying an antiferromagnetic coupling for the nearest-neighbor Mn-Mn interactions. The impact of the local dynamical correlations is also discussed.

  • 76. Di, Yana
    et al.
    Popovic, Jelena
    KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.
    Runborg, Olof
    KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    AN ADAPTIVE FAST INTERFACE TRACKING METHOD2015In: Journal of Computational Mathematics, ISSN 0254-9409, E-ISSN 1991-7139, Vol. 33, no 6, p. 576-586Article in journal (Refereed)
    Abstract [en]

    An adaptive numerical scheme is developed for the propagation of an interface in a velocity field based on the fast interface tracking method proposed in [2]. A multiresolution stategy to represent the interface instead of point values, allows local grid refinement while controlling the approximation error on the interface. For time integration, we use an explicit Runge-Kutta scheme of second-order with a multiscale time step, which takes longer time steps for finer spatial scales. The implementation of the algorithm uses a dynamic tree data structure to represent data in the computer memory. We briefly review first the main algorithm, describe the essential data structures, highlight the adaptive scheme, and illustrate the computational efficiency by some numerical examples.

  • 77.
    Duan, Sai
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology. Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China..
    Rinkevicius, Zilvinas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology. KTH, Centres, SeRC - Swedish e-Science Research Centre. Kaunas Univ Technol, Dept Phys, LT-51368 Kaunas, Lithuania..
    Tian, Guangjun
    Yanshan Univ, Sch Sci, Key Lab Microstruct Mat Phys Hebei Prov, Qinhuangdao 066004, Hebei, Peoples R China..
    Luo, Yi
    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China..
    Optomagnetic Effect Induced by Magnetized Nanocavity Plasmon2019In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 141, no 35, p. 13795-13798Article in journal (Refereed)
    Abstract [en]

    We propose a new type of optomagnetic effect induced by a highly confined plasmonic field in a nanocavity. It is shown that a very large dynamic magnetic field can be generated as the result of the inhomogeneity of nanocavity plasmons, which can directly activate spin-forbidden transitions in molecules. The dynamic optomagnetic effects on optical transitions between states of different spin multiplicities are illustrated by first-principles calculations for C-60. Remarkably, the intensity of spin forbidden singlet-to-triplet transitions can even be stronger than that of singlet-to-singlet transitions when the spatial distribution of plasmon is comparable with the molecular size. This approach not only offers a powerful optomagnetic means to rationally fabricate molecular excited states with different multiplicities but also provides a groundbreaking concept of the light-matter interaction that could lead to the observation of new physical phenomena and the development of new techniques.

  • 78. Duguet, Yohann
    et al.
    Monokrousos, Antonios
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Minimal transition thresholds in plane Couette flow2013In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 25, no 8, p. 084103-Article in journal (Refereed)
    Abstract [en]

    Subcritical transition to turbulence requires finite-amplitude perturbations. Using a nonlinear optimisation technique in a periodic computational domain, we identify the perturbations of plane Couette flow transitioning with least initial kinetic energy for Re <= 3000. We suggest a new scaling law E-c = O(Re-2.7) for the energy threshold vs. the Reynolds number, in quantitative agreement with experimental estimates for pipe flow. The route to turbulence associated with such spatially localised perturbations is analysed in detail for Re = 1500. Several known mechanisms are found to occur one after the other: Orr mechanism, oblique wave interaction, lift-up, streak bending, streak breakdown, and spanwise spreading. The phenomenon of streak breakdown is analysed in terms of leading finite-time Lyapunov exponents of the associated edge trajectory.

  • 79. Durrenfeld, P.
    et al.
    Gerhard, F.
    Chico, J.
    Dumas, R. K.
    Ranjbar, M.
    Bergman, A.
    Bergqvist, Lars
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Delin, Anna
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. KTH, Centres, SeRC - Swedish e-Science Research Centre. Uppsala University, Sweden.
    Gould, C.
    Molenkamp, L. W.
    Åkerman, Johan
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. University of Gothenburg, Sweden; NanOsc AB, Sweden.
    Tunable damping, saturation magnetization, and exchange stiffness of half-Heusler NiMnSb thin films2015In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 21, article id 214424Article in journal (Refereed)
    Abstract [en]

    The half-metallic half-Heusler alloy NiMnSb is a promising candidate for applications in spintronic devices due to its low magnetic damping and its rich anisotropies. Here we use ferromagnetic resonance (FMR) measurements and calculations from first principles to investigate how the composition of the epitaxially grown NiMnSb influences the magnetodynamic properties of saturation magnetization M-S, Gilbert damping alpha, and exchange stiffness A. M-S and A are shown to have a maximum for stoichiometric composition, while the Gilbert damping is minimum. We find excellent quantitative agreement between theory and experiment for M-S and alpha. The calculated A shows the same trend as the experimental data but has a larger magnitude. In addition to the unique in-plane anisotropy of the material, these tunabilities of the magnetodynamic properties can be taken advantage of when employing NiMnSb films in magnonic devices.

  • 80. Dörr, P. C.
    et al.
    Kloker, M. J.
    Hanifi, Ardeshir
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Effect of upstream flow deformation using plasma actuators on crossflow transition induced by unsteady vortical free-stream disturbances2017In: 47th AIAA Fluid Dynamics Conference, 2017, American Institute of Aeronautics and Astronautics, 2017Conference paper (Refereed)
    Abstract [en]

    Upstream flow deformation (UFD) has been shown to be an effective technique to delay roughness induced laminar-turbulent transition at low free-stream turbulence level in three-dimensional boundary-layer flows. Beneficial steady crossflow vortex (CFV) control modes are excited and the resulting nonlinear CFVs induce a useful mean-flow distortion. We recently showed by direct numerical simulations that plasma actuators, modeled by localized steady volume forcing, can be employed to excite the UFD control modes. In the current work we investigate the same actuator set-ups to control transition caused by traveling CFVs that are excited by single unsteady vortical free-stream disturbances (FSDs) impinging on the boundary layer. FSDs of various wavenumbers and frequencies are imposed either upstream or downstream, or at the position of the actuators to also scrutinize if the volume forcing has a direct unfavorable effect on the receptivity to the FSDs that adds to the stabilization by the UFD. For all investigated cases we show that a significant transition delay is achieved.

  • 81.
    Eitel-Amor, Georg
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Örlü, Ramis
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Simulation and validation of a spatially evolving turbulent boundary layer up to Reθ = 83002014In: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 47, p. 57-69Article in journal (Refereed)
    Abstract [en]

    Results of a finely resolved large-eddy simulation (LES) of a spatially developing zero-pressure-gradient turbulent boundary layer up to a Reynolds number of Reθ = 8300 are presented. The very long computational domain provides substantial assessment for suggested high Reynolds number (Re) trends. Statistics, integral quantities and spectral data are validated using high quality direct numerical simulation (DNS) ranging up to Reθ = 4300 and hot-wire measurements covering the remaining Re-range. The mean velocity, turbulent fluctuations, skin friction, and shape factor show excellent agreement with the reference data. Through utilisation of filtered DNS, subtle differences between the LES and DNS could to a large extent be explained by the reduced spanwise resolution of the LES. Spectra and correlations for the streamwise velocity and the wall-shear stress evidence a clear scale-separation and a footprint of large outer scales on the near-wall small scales. While the inner peak decreases in importance and reduces to 4% of the total energy at the end of the domain, the energy of the outer peak scales in outer units. In the near-wall region a clear k - 1 region emerges. Consideration of the two-dimensional spectra in time and spanwise space reveals that an outer time scale λt ≈ 10δ99 / U∞, with the boundary layer thickness δ99 and free-stream velocity U∞, is the correct scale throughout the boundary layer rather than the transformed streamwise wavelength multiplied by a (scale independent) convection velocity. Maps for the covariance of small scale energy and large scale motions exhibit a stronger linear Re dependence for the amplitude of the off-diagonal peak compared to the diagonal one, thereby indicating that the strength of the amplitude modulation can only qualitatively be assessed through the diagonal peak. In addition, the magnitude of the wall-pressure fluctuations confirms mixed scaling, and pressure spectra at the highest Re give a first indication of a -7/3 wave number dependence. © 2014 Elsevier Inc.

  • 82.
    Eitel-Amor, Georg
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Örlü, Ramis
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Flores, O.
    Hairpin vortices in turbulent boundary layers2015In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 27, no 2, article id 025108Article in journal (Refereed)
    Abstract [en]

    The present work presents a number of parallel and spatially developing simulations of boundary layers to address the question of whether hairpin vortices are a dominant feature of near-wall turbulence, and which role they play during transition. In the first part, the parent-offspring regeneration mechanism is investigated in parallel (temporal) simulations of a single hairpin vortex introduced in a mean shear flow corresponding to either turbulent channels or boundary layers (Re-tau less than or similar to 590). The effect of a turbulent background superimposed on the mean flow is considered by using an eddy viscosity computed from resolved simulations. Tracking the vortical structure downstream, it is found that secondary hairpins are only created shortly after initialization, with all rotational structures decaying for later times. For hairpins in a clean (laminar) environment, the decay is relatively slow, while hairpins in weak turbulent environments (10% of nu(t)) dissipate after a couple of eddy turnover times. In the second part, the role of hairpin vortices in laminar-turbulent transition is studied using simulations of spatial boundary layers tripped by hairpin vortices. These vortices are generated by means of specific volumetric forces representing an ejection event, creating a synthetic turbulent boundary layer initially dominated by hairpin-like vortices. These hairpins are advected towards the wake region of the boundary layer, while a sinusoidal instability of the streaks near the wall results in rapid development of a turbulent boundary layer. For Re-theta > 400, the boundary layer is fully developed, with no evidence of hairpin vortices reaching into the wall region. The results from both the parallel and spatial simulations strongly suggest that the regeneration process is rather short-lived and may not sustain once a turbulent background is developed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former direct numerical simulation studies is reminiscent of the transitional boundary layer and may not be connected to some aspects of the dynamics of the fully developed wall-bounded turbulence.

  • 83.
    El Khoury, George K.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Noorani, Azad
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Fischer, Paul F.
    Brethouwer, Geert
    KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Johansson, Arne V.
    KTH, School of Engineering Sciences (SCI), Mechanics, Turbulence. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers2013In: Flow Turbulence and Combustion, ISSN 1386-6184, E-ISSN 1573-1987, Vol. 91, no 3, p. 475-495Article in journal (Refereed)
    Abstract [en]

    Fully resolved direct numerical simulations (DNSs) have been performed with a high-order spectral element method to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Re (tau) = 180, 360, 550 and . The new set of data is put into perspective with other simulation data sets, obtained in pipe, channel and boundary layer geometry. In particular, differences between different pipe DNS are highlighted. It turns out that the pressure is the variable which differs the most between pipes, channels and boundary layers, leading to significantly different mean and pressure fluctuations, potentially linked to a stronger wake region. In the buffer layer, the variation with Reynolds number of the inner peak of axial velocity fluctuation intensity is similar between channel and boundary layer flows, but lower for the pipe, while the inner peak of the pressure fluctuations show negligible differences between pipe and channel flows but is clearly lower than that for the boundary layer, which is the same behaviour as for the fluctuating wall shear stress. Finally, turbulent kinetic energy budgets are almost indistinguishable between the canonical flows close to the wall (up to y (+) a parts per thousand aEuro parts per thousand 100), while substantial differences are observed in production and dissipation in the outer layer. A clear Reynolds number dependency is documented for the three flow configurations.

  • 84.
    Elgammal, Karim
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Material Physics, MF.
    Delin, Anna
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. KTH, Superseded Departments (pre-2005), Materials Science and Engineering. KTH, Centres, SeRC - Swedish e-Science Research Centre. Uppsala University.
    Adsorption of carbon dioxide and water molecules on graphene on top of silica substrates: dispersion corrected density functional calculationsManuscript (preprint) (Other academic)
    Abstract [en]

    We report on systematic computational studies of carbon dioxide and water molecule adsorption on graphene, with the graphene layer deposited on top of a substrate. Specifically, we address the influence of cristobalite and quartz substrates, i.e. two different types of silicon dioxide. The computations are based on density functional theory (DFT), with a nonempirical nonlocal van der Waals density functional included to account for dispersion forces.We calculate the binding energies and equilibrium positions of the molecules, as well as charge transfer and how the charge density of the graphene layer changes due to the interactions with the substrate and the molecules. The molecule-graphene bonding distances are found to be in the range 3.3-3.4 Å, and the graphene-substrate bonding distances around 3.6 Å. These values are slightly larger than what we have found previously, using an empirical expression for the van der Waals density functional. At the same time, the values for the binding energies are increased, compared to what we have obtained in a previous study. We find, in all cases, a net electron transfer from the adsorbed molecule to the graphene+substrate system. For quartz, the total charge transfer is between 0.1 and 0.2 electrons per adsorbed molecule. For cristobalite, it is only about a tenth of that. Our findings are consistent with earlier calculations as well as experimental data.

  • 85.
    Elgammal, Karim
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Material Physics, MF.
    Delin, Anna
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. KTH, Superseded Departments (pre-2005), Materials Science and Engineering. KTH, Centres, SeRC - Swedish e-Science Research Centre. Uppsala University.
    Graphene adhesion on surfaces: a van der Waals density functional studyManuscript (preprint) (Other academic)
    Abstract [en]

    We present a van der Waals density functional (vdW-DF) calculations study of graphene adhesion to different types of substrates with different surface conditions. The study expands to both metal and semiconductor substrates with different surface endings. All substrate surfaces were the 111 surfaces where they have hexagonal lattice parameters perfectly matching with the graphene's. Adsorption geometries, energies, bader charges, dipole moments and electronic structure in terms of density of states are investigated. The results are showing a general agrement with both experimental results as well as theoritical findings done with similar setup. The results reveal that the degree of adhesive of graphene to different surfaces can affect the electronic structure of graphene ending in having different applications when designing graphene in building nano-electronic devices.

  • 86.
    Elgammal, Karim
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hugosson, Håkan W.
    Smith, Anderson D.
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. Chalmers Institute of Technology, Sweden.
    Råsander, Mikael
    Bergqvist, Lars
    KTH, School of Engineering Sciences (SCI), Applied Physics. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Delin, Anna
    KTH, School of Engineering Sciences (SCI), Applied Physics. KTH, Centres, SeRC - Swedish e-Science Research Centre. Uppsala University, Sweden.
    Density functional calculations of graphene-based humidity and carbon dioxide sensors: effect of silica and sapphire substrates2017In: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 663, p. 23-30Article in journal (Refereed)
    Abstract [en]

    We present dispersion-corrected density functional calculations of water and carbon dioxide molecules adsorption on graphene residing on silica and sapphire substrates. The equilibrium positions and bonding distances for the molecules are determined. Water is found to prefer the hollow site in the center of the graphene hexagon, whereas carbon dioxide prefers sites bridging carbon-carbon bonds as well as sites directly on top of carbon atoms. The energy differences between different sites are however minute - typically just a few tenths of a millielectronvolt. Overall, the molecule-graphene bonding distances are found to be in the range 3.1-3.3 (A) over circle. The carbon dioxide binding energy to graphene is found to be almost twice that of the water binding energy (around 0.17 eV compared to around 0.09 eV). The present results compare well with previous calculations, where available. Using charge density differences, we also qualitatively illustrate the effect of the different substrates and molecules on the electronic structure of the graphene sheet.

  • 87.
    Elgammal, Karim
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Hugosson, Håkan W.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Smith, Anderson D.
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Råsander, Mikael
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Bergqvist, Lars
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Delin, Anna
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. KTH, Centres, SeRC - Swedish e-Science Research Centre. Uppsala University.
    Density functional theory calculations of graphene-based humidity and carbon dioxide sensors: effect of silica and sapphire substratesManuscript (preprint) (Other academic)
  • 88.
    Elofsson, Arne
    et al.
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Solna, Sweden..
    Hess, Berk
    KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Lindahl, Erik
    KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Onufriev, Alexey
    Virginia Tech, Dept Comp Sci, Ctr Soft Matter & Biol Phys, Blacksburg, VA USA.;Virginia Tech, Dept Phys, Ctr Soft Matter & Biol Phys, Blacksburg, VA USA..
    van der Spoel, David
    Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Uppsala Ctr Computat Chem, Uppsala, Sweden..
    Wallqvist, Anders
    US Army Med Res & Mat Command, Dept Def Biotechnol High Performance Comp Softwar, Telemed & Adv Technol Res Ctr, Ft Detrick, MD USA..
    Ten simple rules on how to create open access and reproducible molecular simulations of biological systems2019In: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 15, no 1, article id e1006649Article in journal (Other academic)
  • 89. Engquist, Björn
    et al.
    Runborg, Olof
    KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Tsai, Y. -HR.
    Preface2012In: Workshop on Numerical Analysis and Multiscale Computations, 2009, Springer Verlag , 2012Conference paper (Refereed)
  • 90.
    Eriksson, Olivia
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Computational Science and Technology (CST). KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Jauhiainen, Alexandra
    AstraZeneca, IMED Biotech Unit, Early Clin Dev, Biometr, Gothenburg, Sweden..
    Sasane, Sara Maad
    Lund Univ, Ctr Math Sci, Lund, Sweden..
    Kramer, Andrei
    KTH, School of Electrical Engineering and Computer Science (EECS), Computational Science and Technology (CST). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nair, Anu G.
    KTH, School of Electrical Engineering and Computer Science (EECS), Computational Science and Technology (CST). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sartorius, Carolina
    Lund Univ, Ctr Math Sci, Lund, Sweden..
    Hellgren Kotaleski, Jeanette
    KTH, School of Electrical Engineering and Computer Science (EECS), Computational Science and Technology (CST). KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Uncertainty quantification, propagation and characterization by Bayesian analysis combined with global sensitivity analysis applied to dynamical intracellular pathway models2019In: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 35, no 2, p. 284-292Article in journal (Refereed)
    Abstract [en]

    Motivation: Dynamical models describing intracellular phenomena are increasing in size and complexity as more information is obtained from experiments. These models are often over-parameterized with respect to the quantitative data used for parameter estimation, resulting in uncertainty in the individual parameter estimates as well as in the predictions made from the model. Here we combine Bayesian analysis with global sensitivity analysis (GSA) in order to give better informed predictions; to point out weaker parts of the model that are important targets for further experiments, as well as to give guidance on parameters that are essential in distinguishing different qualitative output behaviours. Results: We used approximate Bayesian computation (ABC) to estimate the model parameters from experimental data, as well as to quantify the uncertainty in this estimation (inverse uncertainty quantification), resulting in a posterior distribution for the parameters. This parameter uncertainty was next propagated to a corresponding uncertainty in the predictions (forward uncertainty propagation), and a GSA was performed on the predictions using the posterior distribution as the possible values for the parameters. This methodology was applied on a relatively large model relevant for synaptic plasticity, using experimental data from several sources. We could hereby point out those parameters that by themselves have the largest contribution to the uncertainty of the prediction as well as identify parameters important to separate between qualitatively different predictions. This approach is useful both for experimental design as well as model building.

  • 91.
    Ezhova, Ekaterina
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. University of Helsinki, Finland.
    Cenedese, C.
    Brandt, L.uca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Dynamics of a turbulent Buoyant Plume in a stratified fluid: An idealized model of subglacial discharge in Greenland Fjords2017In: Journal of Physical Oceanography, ISSN 0022-3670, E-ISSN 1520-0485, Vol. 47, no 10, p. 2611-2630Article in journal (Refereed)
    Abstract [en]

    This study reports the results of large-eddy simulations of an axisymmetric turbulent buoyant plume in a stratified fluid. The configuration used is an idealized model of the plume generated by a subglacial discharge at the base of a tidewater glacier with an ambient stratification typical of Greenland fjords. The plume is discharged from a round source of various diameters and characteristic stratifications for summer and winter are considered. The classical theory for the integral parameters of a turbulent plume in a homogeneous fluid gives accurate predictions in the weakly stratified lower layer up to the pycnocline, and the plume dynamics are not sensitive to changes in the source diameter. In winter, when the stratification is similar to an idealized two-layer case, turbulent entrainment and generation of internal waves by the plume top are in agreement with the theoretical and numerical results obtained for turbulent jets in a two-layer stratification. In summer, instead, the stratification is more complex and turbulent entrainment by the plume top is significantly reduced. The subsurface layer in summer is characterized by a strong density gradient and the oscillating plume generates internal waves that might serve as an indicator of submerged plumes not penetrating to the surface.

  • 92.
    Ezhova, Ekaterina
    et al.
    Univ Helsinki, Inst Atmospher & Earth Syst Res, Helsinki, Finland.;Univ Helsinki, Dept Phys, Fac Sci, Helsinki, Finland..
    Cenedese, Claudia
    Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA..
    Brandt, L.uca
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Mechanics of Industrial Processes. Royal Inst Technol, Linne FLOW Ctr, Stockholm, Sweden.;Royal Inst Technol, Swedish E Sci Res Ctr, Dept Mech, Stockholm, Sweden..
    Dynamics of Three-Dimensional Turbulent Wall Plumes and Implications for Estimates of Submarine Glacier Melting2018In: Journal of Physical Oceanography, ISSN 0022-3670, E-ISSN 1520-0485, Vol. 48, no 9, p. 1941-1950Article in journal (Refereed)
    Abstract [en]

    Subglacial discharges have been observed to generate buoyant plumes along the ice face of Greenland tidewater glaciers. These plumes have been traditionally modeled using classical plume theory, and their characteristic parameters (e.g., velocity) are employed in the widely used three-equation melt parameterization. However, the applicability of plume theory for three-dimensional turbulent wall plumes is questionable because of the complex near-wall plume dynamics. In this study, corrections to the classical plume theory are introduced to account for the presence of a wall. In particular, the drag and entrainment coefficients are quantified for a three-dimensional turbulent wall plume using data from direct numerical simulations. The drag coefficient is found to be an order of magnitude larger than that for a boundary layer flow over a flat plate at a similar Reynolds number. This result suggests a significant increase in the melting estimates by the current parameterization. However, the volume flux in a wall plume is found to be one-half that of a conical plume that has 2 times the buoyancy flux. This finding suggests that the total entrainment (per unit area) of ambient water is the same and that the plume scalar characteristics (i.e., temperature and salinity) can be predicted reasonably well using classical plume theory.

  • 93.
    Ezhova, Ekaterina
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Cenedese, Claudia
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Interaction between a Vertical Turbulent Jet and a Thermocline2016In: Journal of Physical Oceanography, ISSN 0022-3670, E-ISSN 1520-0485, Vol. 46, no 11, p. 3415-3437Article in journal (Refereed)
    Abstract [en]

    The behavior of an axisymmetric vertical turbulent jet in an unconfined stratified environment is studied by means of well-resolved, large-eddy simulations. The stratification is two uniform layers separated by a thermocline. This study considers two cases: when the thermocline thickness is small and on the order of the jet diameter at the thermocline entrance. The Froude number of the jet at the thermocline varies from 0.6 to 1.9, corresponding to the class of weak fountains. The mean jet penetration, stratified turbulent entrainment, jet oscillations, and the generation of internal waves are examined. The mean jet penetration is predicted well by a simple model based on the conservation of the source energy in the thermocline. The entrainment coefficient for the thin thermocline is consistent with the theoretical model for a two-layer stratification with a sharp interface, while for the thick thermocline entrainment is larger at low Froude numbers. The data reveal the presence of a secondary horizontal flow in the upper part of the thick thermocline, resulting in the entrainment of fluid from the thermocline rather than from the upper stratification layer. The spectra of the jet oscillations in the thermocline display two peaks, at the same frequencies for both stratifications at fixed Froude number. For the thick thermocline, internal waves are generated only at the lower frequency, since the higher peak exceeds the maximal buoyancy frequency. For the thin thermocline, conversely, the spectra of the internal waves show the two peaks at low Froude numbers, whereas only one peak at the lower frequency is observed at higher Froude numbers.

  • 94.
    Fan, Xuge
    et al.
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Elgammal, Karim
    KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Applied Physics.
    Smith, Anderson D.
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits.
    Delin, Anna
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. KTH, Centres, SeRC - Swedish e-Science Research Centre. Department of Physics and Astronomy, Materials Theory Division, Uppsala University, Box 516, SE-75120 Uppsala, Sweden.
    Lemme, Max C.
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. Department of Electronic Devices, RWTH Aachen University, 52074 Aachen, Germany.
    Niklaus, Frank
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Humidity and CO2 gas sensing properties of double-layer graphene2018In: Carbon, ISSN 0008-6223, E-ISSN 1873-3891, Vol. 127, p. 576-587Article in journal (Refereed)
    Abstract [en]

    Graphene has interesting gas sensing properties with strong responses of the graphene resistance when exposed to gases. However, the resistance response of double-layer graphene when exposed to humidity and gasses has not yet been characterized and understood. In this paper we study the resistance response of double-layer graphene when exposed to humidity and CO2, respectively. The measured response and recovery times of the graphene resistance to humidity are on the order of several hundred milliseconds. For relative humidity levels of less than ~ 3% RH, the resistance of double-layer graphene is not significantly influenced by the humidity variation. We use such a low humidity atmosphere to investigate the resistance response of double-layer graphene that is exposed to pure CO2 gas, showing a consistent response and recovery behaviour. The resistance of the double-layer graphene decreases linearly with increase of the concentration of pure CO2 gas. Density functional theory simulations indicate that double-layer graphene has a weaker gas response compared to single-layer graphene, which is in agreement with our experimental data. Our investigations contribute to improved understanding of the humidity and CO2 gas sensing properties of double-layer graphene which is important for realizing viable graphene-based gas sensors in the future.

  • 95.
    Fornari, Walter
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Chaudhuri, Pinaki
    Umbert López, Cyan
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Mitra, Dhrubaditya
    Picano, Francesco
    Rheology of extremely confined non-Brownian suspensions2016In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 116, no 1, article id 018301Article in journal (Other academic)
    Abstract [en]

    We study the rheology of confined suspensions of  neutrally buoyant rigid monodisperse spheres in plane-Couetteflow using Direct Numerical Simulations.We find that if the width of the channel is a (small) integer multiple of the spherediameter, the spheres self-organize into two-dimensional layersthat slide on each other and the effective viscosity of the suspension  issignificantly reduced.  Each two-dimensional layer is found to be structurallyliquid-like but its dynamics is frozen in time.

  • 96.
    Fornari, Walter
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Formenti, A.
    Picano, F.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions2016In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 28, no 3, article id 033301Article in journal (Refereed)
    Abstract [en]

    We study the effect of varying the mass and volume fraction of a suspension of rigid spheres dispersed in a turbulent channel flow. We performed several direct numerical simulations using an immersed boundary method for finite-size particles changing the solid to fluid density ratio R, the mass fraction χ, and the volume fraction φ. We find that varying the density ratio R between 1 and 10 at constant volume fraction does not alter the flow statistics as much as when varying the volume fraction φ at constant R and at constant mass fraction. Interestingly, the increase in overall drag found when varying the volume fraction is considerably higher than that obtained for increasing density ratios at same volume fraction. The main effect at density ratios R of the order of 10 is a strong shear-induced migration towards the centerline of the channel. When the density ratio R is further increased up to 1000, the particle dynamics decouple from that of the fluid. The solid phase behaves as a dense gas and the fluid and solid phase statistics drastically change. In this regime, the collision rate is high and dominated by the normal relative velocity among particles.

  • 97.
    Fornari, Walter
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Kazerooni, Hamid Tabaei
    KTH, School of Engineering Sciences (SCI), Mechanics. Ruhr-Universität Bochum, Department of Hydraulic Fluid Machinery, Universitätsstrae 150, Bochum, Germany.
    Hussong, Jeanette
    Ruhr Univ Bochum, Chair Hydraul Fluid Machinery, Univ Str 150, D-44801 Bochum, Germany..
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Suspensions of finite-size neutrally buoyant spheres in turbulent duct flow2018In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 851, p. 148-186Article in journal (Refereed)
    Abstract [en]

    We study the turbulent square duct flow of dense suspensions of neutrally buoyant spherical particles. Direct numerical simulations (DNS) are performed in the range of volume fractions phi = 0-0.2, using the immersed boundary method (IBM) to account for the dispersed phase. Based on the hydraulic diameter a Reynolds number of 5600 is considered. We observe that for phi = 0.05 and 0.1, particles preferentially accumulate on the corner bisectors, close to the corners, as also observed for laminar square duct flows of the same duct-to-particle size ratio. At the highest volume fraction, particles preferentially accumulate in the core region. For plane channel flows, in the absence of lateral confinement, particles are found instead to be uniformly distributed across the channel. The intensity of the cross-stream secondary flows increases (with respect to the unladen case) with the volume fraction up to phi = 0.1, as a consequence of the high concentration of particles along the corner bisector. For phi = 0.2 the turbulence activity is reduced and the intensity of the secondary flows reduces to below that of the unladen case. The friction Reynolds number increases with phi in dilute conditions, as observed for channel flows. However, for phi = 0.2 the mean friction Reynolds number is similar to that for phi = 0.1. By performing the turbulent kinetic energy budget, we see that the turbulence production is enhanced up to phi = 0.1, while for phi = 0.2 the production decreases below the values for phi = 0.05. On the other hand, the dissipation and the transport monotonically increase with phi The interphase interaction term also contributes positively to the turbulent kinetic energy budget and increases monotonically with phi, in a similar way as the mean transport. Finally, we show that particles move on average faster than the fluid. However, there are regions close to the walls and at the corners where they lag behind it. In particular, for phi = 0.05, 0.1, the slip velocity distribution at the corner bisectors seems correlated to the locations of maximum concentration: the concentration is higher where the slip velocity vanishes. The wall-normal hydrodynamic and collision forces acting on the particles push them away from the corners. The combination of these forces vanishes around the locations of maximum concentration. The total mean forces are generally low along the corner bisectors and at the core, also explaining the concentration distribution for phi = 0.2.

  • 98.
    Fornari, Walter
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Brandt, L.uca
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics.
    Clustering and increased settling speed of oblate particles at finite Reynolds number2017In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645Article in journal (Refereed)
  • 99.
    Fornari, Walter
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Niazi Ardekani, Mehdi
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
    Clustering and increased settling speed of oblate particles at finite Reynolds number2018In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 848, p. 696-721Article in journal (Refereed)
    Abstract [en]

    We study the settling of rigid oblates in a quiescent fluid using interface-resolved direct numerical simulations. In particular, an immersed boundary method is used to account for the dispersed solid phase together with lubrication correction and collision models to account for short-range particle-particle interactions. We consider semi-dilute suspensions of oblate particles with aspect ratio AR = 1/3 and solid volume fractions (Phi = 0.5-10%. The solid-to-fluid density ratio R = 1.02 and the Galileo number (i.e. the ratio between buoyancy and viscous forces) based on the diameter of a sphere with equivalent volume Ga = 60. With this choice of parameters, an isolated oblate falls vertically with a steady wake with its broad side perpendicular to the gravity direction. At this Ga, the mean settling speed of spheres is a decreasing function of the volume Phi and is always smaller than the terminal velocity of the isolated particle, V-t. On the contrary, in dilute suspensions of oblate particles (with Phi <= 1 %), the mean settling speed is approximately 33 % larger than V-t. At higher concentrations, the mean settling speed decreases becoming smaller than the terminal velocity V-t between (Phi = 5 % and 10%. The increase of the mean settling speed is due to the formation of particle clusters that for Phi = 0.5-1 % appear as columnar-like structures. From the pair distribution function we observe that it is most probable to find particle pairs almost vertically aligned. However, the pair distribution function is non-negligible all around the reference particle indicating that there is a substantial amount of clustering at radial distances between 2 and 6c (with c the polar radius of the oblate). Above Phi = 5 %, the hindrance becomes the dominant effect, and the mean settling speed decreases below V-t. As the particle concentration increases, the mean particle orientation changes and the mean pitch angle (the angle between the particle axis of symmetry and gravity) increases from 23 degrees to 47 degrees . Finally, we increase Ga from 60 to 140 for the case with (Phi = 0.5 % and find that the mean settling speed (normalized by V-t) decreases by less than 1 % with respect to Ga = 60. However, the fluctuations of the settling speed around the mean are reduced and the probability of finding vertically aligned particle pairs increases.

  • 100.
    Fornari, Walter
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Picano, Francesco
    Brandt, Luca
    KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    The effect of polydispersity in a turbulent channel flow laden with finite-size particles2018In: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 67, p. 54-64Article in journal (Refereed)
    Abstract [en]

    We study turbulent channel flows of monodisperse and polydisperse suspensions of finite-size spheres by means of Direct Numerical Simulations using an immersed boundary method to account for the dispersed phase. Suspensions with 3 different Gaussian distributions of particle radii are considered (i.e. 3 different standard deviations). The distributions are centered on the reference particle radius of the monodisperse suspension. In the most extreme case, the radius of the largest particles is 4 times that of the smaller particles. We consider two different solid volume fractions, 2% and 10%. We find that for all polydisperse cases, both fluid and particles statistics are not substantially altered with respect to those of the monodisperse case. Mean streamwise fluid and particle velocity profiles are almost perfectly overlapping. Slightly larger differences are found for particle velocity fluctuations. These increase close to the wall and decrease towards the centerline as the standard deviation of the distribution is increased. Hence, the behavior of the suspension is mostly governed by excluded volume effects regardless of particle size distribution (at least for the radii here studied). Due to turbulent mixing, particles are uniformly distributed across the channel. However, smaller particles can penetrate more into the viscous and buffer layer and velocity fluctuations are therein altered. Non trivial results are presented for particle-pair statistics.

    The full text will be freely available from 2020-02-29 15:45
1234567 51 - 100 of 412
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf