Change search
Refine search result
1234567 51 - 100 of 419
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51. Boekel, Jorrit
    et al.
    Chilton, John M
    Cooke, Ira R
    Horvatovich, Peter L
    Jagtap, Pratik D
    Käll, Lukas
    KTH, School of Biotechnology (BIO), Gene Technology.
    Lehtiö, Janne
    Lukasse, Pieter
    Moerland, Perry D
    Griffin, Timothy J
    Multi-omic data analysis using Galaxy2015In: Nature Biotechnology, ISSN 1087-0156, E-ISSN 1546-1696, Vol. 33, no 2, p. 137-9Article in journal (Refereed)
  • 52.
    Borgström, Erik
    KTH, School of Biotechnology (BIO), Gene Technology.
    Technologies for Single Cell Genome Analysis2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    During the last decade high throughput DNA sequencing of single cells has evolved from an idea to one of the most high profile fields of research. Much of this development has been possible due to the dramatic reduction in costs for massively parallel sequencing. The four papers included in this thesis describe or evaluate technological advancements for high throughput DNA sequencing of single cells and single molecules.

    As the sequencing technologies improve, more samples are analyzed in parallel. In paper 1, an automated procedure for preparation of samples prior to massively parallel sequencing is presented. The method has been applied to several projects and further development by others has enabled even higher sample throughputs. Amplification of single cell genomes is a prerequisite for sequence analysis. Paper 2 evaluates four commercially available kits for whole genome amplification of single cells. The results show that coverage of the genome differs significantly among the protocols and as expected this has impact on the downstream analysis. In Paper 3, single cell genotyping by exome sequencing is used to confirm the presence of fat cells derived from donated bone marrow within the recipients’ fat tissue. Close to hundred single cells were exome sequenced and a subset was validated by whole genome sequencing. In the last paper, a new method for phasing (i.e. determining the physical connection of variant alleles) is presented. The method barcodes amplicons from single molecules in emulsion droplets. The barcodes can then be used to determine which variants were present on the same original DNA molecule. The method is applied to two variable regions in the bacterial 16S gene in a metagenomic sample.

    Thus, two of the papers (1 and 4) present development of new methods for increasing the throughput and information content of data from massively parallel sequencing. Paper 2 evaluates and compares currently available methods and in paper 3, a biological question is answered using some of these tools.

  • 53.
    Borgström, Erik
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology.
    Lundin, Sverker
    KTH, School of Biotechnology (BIO), Gene Technology.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology.
    Large Scale Library Generation for High Throughput Sequencing Authors and Affiliations2011In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, no 4, p. e19119-Article in journal (Refereed)
    Abstract [en]

    Background: Large efforts have recently been made to automatethe sample preparation protocols for massively parallel sequencing in order to match the increasing instrument throughput. Still, the size selection through agarose gel electrophoresis separation is a labor-intensive bottleneck of these protocols. Methodology/Principal Findings: In this study a method for automatic library preparation and size selection on a liquid handling robot is presented. The method utilizes selective precipitation of certain sizes of DNA molecules on to paramagnetic beads for cleanup and selection after standard enzymatic reactions. Conclusions/Significance: The method is used to generate libraries for de novo and re-sequencing on the Illumina HiSeq 2000 instrument with a throughput of 12 samples per instrument in approximately 4 hours. The resulting output data show quality scores and pass filter rates comparable to manually prepared samples. The sample size distribution can be adjusted for each application, and are suitable for all high throughput DNA processing protocols seeking to control size intervals.

  • 54.
    Borgström, Erik
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Paterlini, Marta
    Mold, Jeff E.
    Frisen, Jonas
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Comparison of whole genome amplification techniques for human single cell exome sequencing2017In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, no 2, article id e0171566Article in journal (Refereed)
    Abstract [en]

    Background Whole genome amplification (WGA) is currently a prerequisite for single cell whole genome or exome sequencing. Depending on the method used the rate of artifact formation, allelic dropout and sequence coverage over the genome may differ significantly. Results The largest difference between the evaluated protocols was observed when analyzing the target coverage and read depth distribution. These differences also had impact on the downstream variant calling. Conclusively, the products from the AMPLI1 and MALBAC kits were shown to be most similar to the bulk samples and are therefore recommended for WGA of single cells. Discussion In this study four commercial kits for WGA (AMPLI1, MALBAC, Repli-G and PicoPlex) were used to amplify human single cells. The WGA products were exome sequenced together with non-amplified bulk samples from the same source. The resulting data was evaluated in terms of genomic coverage, allelic dropout and SNP calling.

  • 55.
    Borgström, Erik
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology.
    Paterlini, Marta
    Mold, Jeff
    Frisen, Jonas
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology.
    Comparison of Whole Genome Amplification Techniques for Human Single Cell (Exome) SequencingManuscript (preprint) (Other academic)
  • 56.
    Borgström, Erik
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Redin, David
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundin, Sverker
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Berglund, Emelie
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ahmadian, Afshin
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Phasing of single DNA molecules by massively parallel barcoding2015In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 6, article id 7173Article in journal (Refereed)
    Abstract [en]

    High-throughput sequencing platforms mainly produce short-read data, resulting in a loss of phasing information for many of the genetic variants analysed. For certain applications, it is vital to know which variant alleles are connected to each individual DNA molecule. Here we demonstrate a method for massively parallel barcoding and phasing of single DNA molecules. First, a primer library with millions of uniquely barcoded beads is generated. When compartmentalized with single DNA molecules, the beads can be used to amplify and tag any target sequences of interest, enabling coupling of the biological information from multiple loci. We apply the assay to bacterial 16S sequencing and up to 94% of the hypothesized phasing events are shown to originate from single molecules. The method enables use of widely available short-read-sequencing platforms to study long single molecules within a complex sample, without losing phase information.

  • 57. Branca, Rui M. M.
    et al.
    Orre, Lukas M.
    Johansson, Henrik J.
    Granholm, Viktor
    Huss, Mikael
    Perez-Bercoff, Åsa
    Forshed, Jenny
    Käll, Lukas
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, Centres, SeRC - Swedish e-Science Research Centre.
    Lehtiö, Janne
    HiRIEF LC-MSMS enables deep proteome coverage and unbiased proteogenomics2014In: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 11, no 1, p. 59-Article in journal (Refereed)
    Abstract [en]

    We present a liquid chromatography-mass spectrometry (LC-MSMS)-based method permitting unbiased (gene prediction-independent) genome-wide discovery of protein-coding loci in higher eukaryotes. Using high-resolution isoelectric focusing (HiRIEF) at the peptide level in the 3.7-5.0 pH range and accurate peptide isoelectric point (pI) prediction, we probed the six-reading-frame translation of the human and mouse genomes and identified 98 and 52 previously undiscovered protein-coding loci, respectively. The method also enabled deep proteome coverage, identifying 13,078 human and 10,637 mouse proteins.

  • 58. Bresso, F.
    et al.
    Edlundh-Rose, Esther
    KTH, School of Biotechnology (BIO), Gene Technology.
    D'Amato, M.
    Are, A.
    Grecius, G.
    Lidén, A.
    Sjöqvist, U.
    Löfberg, R.
    Arulampalam, V.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology.
    Pettersson, S.
    Investigating the chemopreventive role of ursodeoxycholic acid in colorectal cancer cellsManuscript (Other academic)
  • 59. Brouns, Stan J. J.
    et al.
    Walther, Jasper
    Snijders, Ambrosius P. L.
    de Werken, Harmen J. G. van
    Willemen, Hanneke L. D. M.
    Worm, Petra
    de Vos, Marjon G. J.
    Andersson, Anders
    KTH, School of Biotechnology (BIO), Gene Technology.
    Lundgren, Magnus
    Mazon, Hortense F. M.
    van den Heuvel, Robert H. H.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics.
    Salmon, Laurent
    de Vos, Willem M.
    Wright, Phillip C.
    Bernander, Rolf
    van der Oost, John
    Identification of the missing links in prokaryotic pentose oxidation pathways - Evidence for enzyme recruitment2006In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 281, no 37, p. 27378-27388Article in journal (Refereed)
    Abstract [en]

    The pentose metabolism of Archaea is largely unknown. Here, we have employed an integrated genomics approach including DNA microarray and proteomics analyses to elucidate the catabolic pathway for D-arabinose in Sulfolobus solfataricus. During growth on this sugar, a small set of genes appeared to be differentially expressed compared with growth on D-glucose. These genes were heterologously overexpressed in Escherichia coli, and the recombinant proteins were purified and biochemically studied. This showed that D-arabinose is oxidized to 2-oxoglutarate by the consecutive action of a number of previously uncharacterized enzymes, including a D-arabinose dehydrogenase, a D-arabinonate dehydratase, a novel 2-keto-3-deoxy-D-arabinonate dehydratase, and a 2,5-dioxopentanoate dehydrogenase. Promoter analysis of these genes revealed a palindromic sequence upstream of the TATA box, which is likely to be involved in their concerted transcriptional control. Integration of the obtained biochemical data with genomic context analysis strongly suggests the occurrence of pentose oxidation pathways in both Archaea and Bacteria, and predicts the involvement of additional enzyme components. Moreover, it revealed striking genetic similarities between the catabolic pathways for pentoses, hexaric acids, and hydroxyproline degradation, which support the theory of metabolic pathway genesis by enzyme recruitment.

  • 60. Brownstein, Catherine A.
    et al.
    Beggs, Alan H.
    Homer, Nils
    Merriman, Barry
    Yu, Timothy W.
    Flannery, Katherine C.
    DeChene, Elizabeth T.
    Towne, Meghan C.
    Savage, Sarah K.
    Price, Emily N.
    Holm, Ingrid A.
    Luquette, Lovelace J.
    Lyon, Elaine
    Majzoub, Joseph
    Neupert, Peter
    McCallie, David, Jr.
    Szolovits, Peter
    Willard, Huntington F.
    Mendelsohn, Nancy J.
    Temme, Renee
    Finkel, Richard S.
    Yum, Sabrina W.
    Medne, Livija
    Sunyaev, Shamil R.
    Adzhubey, Ivan
    Cassa, Christopher A.
    de Bakker, Paul I. W.
    Duzkale, Hatice
    Dworzynski, Piotr
    Fairbrother, William
    Francioli, Laurent
    Funke, Birgit H.
    Giovanni, Monica A.
    Handsaker, Robert E.
    Lage, Kasper
    Lebo, Matthew S.
    Lek, Monkol
    Leshchiner, Ignaty
    MacArthur, Daniel G.
    McLaughlin, Heather M.
    Murray, Michael F.
    Pers, Tune H.
    Polak, Paz P.
    Raychaudhuri, Soumya
    Rehm, Heidi L.
    Soemedi, Rachel
    Stitziel, Nathan O.
    Vestecka, Sara
    Supper, Jochen
    Gugenmus, Claudia
    Klocke, Bernward
    Hahn, Alexander
    Schubach, Max
    Menzel, Mortiz
    Biskup, Saskia
    Freisinger, Peter
    Deng, Mario
    Braun, Martin
    Perner, Sven
    Smith, Richard J. H.
    Andorf, Janeen L.
    Huang, Jian
    Ryckman, Kelli
    Sheffield, Val C.
    Stone, Edwin M.
    Bair, Thomas
    Black-Ziegelbein, E. Ann
    Braun, Terry A.
    Darbro, Benjamin
    DeLuca, Adam P.
    Kolbe, Diana L.
    Scheetz, Todd E.
    Shearer, Aiden E.
    Sompallae, Rama
    Wang, Kai
    Bassuk, Alexander G.
    Edens, Erik
    Mathews, Katherine
    Moore, Steven A.
    Shchelochkov, Oleg A.
    Trapane, Pamela
    Bossler, Aaron
    Campbell, Colleen A.
    Heusel, Jonathan W.
    Kwitek, Anne
    Maga, Tara
    Panzer, Karin
    Wassink, Thomas
    Van Daele, Douglas
    Azaiez, Hela
    Booth, Kevin
    Meyer, Nic
    Segal, Michael M.
    Williams, Marc S.
    Tromp, Gerard
    White, Peter
    Corsmeier, Donald
    Fitzgerald-Butt, Sara
    Herman, Gail
    Lamb-Thrush, Devon
    McBride, Kim L.
    Newsom, David
    Pierson, Christopher R.
    Rakowsky, Alexander T.
    Maver, Ales
    Lovrecic, Luca
    Palandacic, Anja
    Peterlin, Borut
    Torkamani, Ali
    Wedell, Anna
    Huss, Mikael
    Alexeyenko, Andrey
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Stockholm Bioinformatics Centre, Science for Life Laboratory, Solna, Sweden .
    Lindvall, Jessica M.
    Magnusson, Mans
    Nilsson, Daniel
    Stranneheim, Henrik
    Taylan, Fulya
    Gilissen, Christian
    Hoischen, Alexander
    van Bon, Bregje
    Yntema, Helger
    Nelen, Marcel
    Zhang, Weidong
    Sager, Jason
    Zhang, Lu
    Blair, Kathryn
    Kural, Deniz
    Cariaso, Michael
    Lennon, Greg G.
    Javed, Asif
    Agrawal, Saloni
    Ng, Pauline C.
    Sandhu, Komal S.
    Krishna, Shuba
    Veeramachaneni, Vamsi
    Isakov, Ofer
    Halperin, Eran
    Friedman, Eitan
    Shomron, Noam
    Glusman, Gustavo
    Roach, Jared C.
    Caballero, Juan
    Cox, Hannah C.
    Mauldin, Denise
    Ament, Seth A.
    Rowen, Lee
    Richards, Daniel R.
    San Lucas, F. Anthony
    Gonzalez-Garay, Manuel L.
    Caskey, C. Thomas
    Bai, Yu
    Huang, Ying
    Fang, Fang
    Zhang, Yan
    Wang, Zhengyuan
    Barrera, Jorge
    Garcia-Lobo, Juan M.
    Gonzalez-Lamuno, Domingo
    Llorca, Javier
    Rodriguez, Maria C.
    Varela, Ignacio
    Reese, Martin G.
    De la Vega, Francisco M.
    Kiruluta, Edward
    Cargill, Michele
    Hart, Reece K.
    Sorenson, Jon M.
    Lyon, Gholson J.
    Stevenson, David A.
    Bray, Bruce E.
    Moore, Barry M.
    Eilbeck, Karen
    Yandell, Mark
    Zhao, Hongyu
    Hou, Lin
    Chen, Xiaowei
    Yan, Xiting
    Chen, Mengjie
    Li, Cong
    Yang, Can
    Gunel, Murat
    Li, Peining
    Kong, Yong
    Alexander, Austin C.
    Albertyn, Zayed I.
    Boycott, Kym M.
    Bulman, Dennis E.
    Gordon, Paul M. K.
    Innes, A. Micheil
    Knoppers, Bartha M.
    Majewski, Jacek
    Marshall, Christian R.
    Parboosingh, Jillian S.
    Sawyer, Sarah L.
    Samuels, Mark E.
    Schwartzentruber, Jeremy
    Kohane, Isaac S.
    Margulies, David M.
    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge2014In: Genome Biology, ISSN 1465-6906, E-ISSN 1474-760X, Vol. 15, no 3, p. R53-Article in journal (Refereed)
    Abstract [en]

    Background: There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. Results: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. Conclusions: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups.

  • 61. Bulut, Z.
    et al.
    Tepeli, C.
    Nizamlioglu, M.
    Kurar, E.
    Erdogan, M.
    Yilmaz, A.
    Savolainen, Peter
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Microsatellite analysis of Kangal shepherd dogs in Turkey, Uzbekistan, Ajerbaijan and Iran2012In: The FEBS Journal, ISSN 1742-464X, E-ISSN 1742-4658, Vol. 279, p. 349-349Article in journal (Other academic)
  • 62.
    Båge, Tove
    et al.
    Karolinska Inst, Div Pediat Dent.
    Lindberg, Johan
    KTH, School of Biotechnology (BIO), Gene Technology.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology.
    Modéer, Thomas
    Karolinska Inst, Div Pediat Dent.
    Yucel-Lindberg, Tülay
    Karolinska Inst, Div Pediat Dent.
    Microarray analysis of the regulation of TNFa-stimulated PGE2 production in gingival fibroblasts: special reference to intracellular signal transduction pathwaysArticle in journal (Other academic)
  • 63. Båge, Tove
    et al.
    Lindberg, Johan
    KTH, School of Biotechnology (BIO), Gene Technology.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology.
    Modéer, Thomas
    Yucel-Lindberg, Tülay
    Signal pathways JNK and NF-kappa B, identified by global gene expression profiling, are involved in regulation of TNF alpha-induced mPGES-1 and COX-2 expression in gingival fibroblasts2010In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 11, p. 241-Article in journal (Refereed)
    Abstract [en]

    Background: Prostaglandin E-2 (PGE(2)) is involved in several chronic inflammatory diseases including periodontitis, which causes loss of the gingival tissue and alveolar bone supporting the teeth. We have previously shown that tumor necrosis factor a (TNF alpha) induces PGE(2) synthesis in gingival fibroblasts. In this study we aimed to investigate the global gene expression profile of TNF alpha-stimulated primary human gingival fibroblasts, focusing on signal pathways related to the PGE(2)-synthesizing enzymes prostaglandin E synthases (PGES), as well as the upstream enzyme cyclooxygenase-2 (COX-2) and PGE(2) production. Results: Microarray and western blot analyses showed that the mRNA and protein expression of the inflammatory induced microsomal prostaglandin E synthase-1 (mPGES-1) was up-regulated by the cytokine TNF alpha, accompanied by enhanced expression of COX-2 and increased production of PGE(2). In contrast, the expression of the isoenzymes microsomal prostaglandin E synthase-2 (mPGES-2) and cytosolic prostaglandin E synthase (cPGES) was unaffected by TNF alpha treatment. Using oligonucleotide microarray analysis in a time-course factorial design including time points 1, 3 and 6 h, differentially expressed genes in response to TNF alpha treatment were identified. Enrichment analysis of microarray data indicated two positively regulated signal transduction pathways: c-Jun N-terminal kinase (JNK) and Nuclear Factor-kappa B (NF-kappa B). To evaluate their involvement in the regulation of mPGES-1 and COX-2 expression, we used specific inhibitors as well as phosphorylation analysis. Phosphorylation analysis of JNK (T183/Y185) and NF-kappa B p65 (S536) showed increased phosphorylation in response to TNF alpha treatment, which was decreased by specific inhibitors of JNK (SP600125) and NF-kappa B (Bay 11-7082, Ro 106-9920). Inhibitors of JNK and NF-kappa B also decreased the TNF alpha-stimulated up-regulation of mPGES-1 and COX-2 as well as PGE(2) production. Conclusion: In the global gene expression profile, the enrichment analysis of microarray data identified the two signal transduction pathways JNK and NF-kappa B as positively regulated by the cytokine TNF alpha. Inhibition of these TNF alpha-activated signal pathways reduced the expression of mPGES-1 and COX-2 as well as their end product PGE(2) in gingival fibroblasts. The involvement of the signal pathways JNK and NF-kappa B in the regulation of PGE(2) induced by TNF alpha may suggest these two pathways as possible attractive targets in the chronic inflammatory disease periodontitis.

  • 64.
    Carlberg, Konstantin
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology.
    Vickovic, Sanja
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ståhl, Patrik
    KTH, School of Biotechnology (BIO), Gene Technology.
    Salmén, Fredrik
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Korotkova, Marina
    Malmstrom, Vivianne
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    TRANSCRIPTOME VISUALISATION OF THE INFLAMED RHEUMATOID ARTHRITIS JOINT2017In: Annals of the Rheumatic Diseases, ISSN 0003-4967, E-ISSN 1468-2060, Vol. 76, p. A58-A59Article in journal (Refereed)
  • 65. Caspeta, Luis
    et al.
    Chen, Yun
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nielsen, Jens
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30 degrees C2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 27003Article in journal (Refereed)
    Abstract [en]

    Exposure to long-term environmental changes across >100s of generations results in adapted phenotypes, but little is known about how metabolic and transcriptional responses are optimized in these processes. Here, we show that thermotolerant yeast strains selected by adaptive laboratory evolution to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature is increased. Remarkably, the sum of global transcriptional changes activated in the thermotolerant strains when transferred from the optimal to the high temperature, corresponded, in magnitude and direction, to the global changes observed in the ancestral strain exposed to the same transition. This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased temperatures, but this also causes a trade-off in the growth rate at the optimal ancestral temperature.

  • 66. Cheung, Louisa
    et al.
    Andersen, Malin
    KTH, School of Biotechnology (BIO), Gene Technology.
    Gustavsson, Carolina
    Odeberg, Jacob
    KTH, School of Biotechnology (BIO), Biochemistry.
    Fernández-Pérez, Leandro
    Norsteds, Gunnar
    Tollet-Egnell, Petra
    Hormonal and nutritional regulation of alternative CD36 transcripts in rat liver: a role for growth hormone in alternative exon usage2007In: BMC Molecular Biology, ISSN 1471-2199, E-ISSN 1471-2199, Vol. 8, no 60, p. 12-Article in journal (Refereed)
    Abstract [en]

    Background: CD36 is a multiligand receptor involved in various metabolic pathways, including cellular uptake of long-chain fatty acids. Defect function or expression of CD36 can result in dyslipidemia or insulin resistance. We have previously shown that CD36 expression is female-predominant in rat liver. In the present study, hormonal and nutritional regulation of hepatic CD36 expression was examined in male and female rats. Since alternative transcription start sites have been described in murine and human Cd36, we investigated whether alternative CD36 transcripts are differentially regulated in rat liver during these conditions.

    Results: Sequence information of the rat Cd36 5'-UTR was extended, showing that the gene structure of Cd36 in rat is similar to that previously described in mouse with at least two alternative first exons. The rat Cd36 exon 1a promoter was sequenced and found to be highly similar to murine and human Cd36. We show that alternative first exon usage is involved in the female-predominant expression of CD36 in rat liver and during certain hormonal states that induce CD36 mRNA abundance. Estrogen treatment or continuous infusion of growth hormone (GH) in male rats induced CD36 expression preferentially through the exon 1a promoter. Old age was associated with increased CD36 expression in male rats, albeit without any preferential first exon usage. Intermittent GH treatment in old male rats reversed this effect. Mild starvation (12 hours without food) reduced CD36 expression in female liver, whereas its expression was increased in skeletal muscle.

    Conclusion: The results obtained in this study confirm and extend our previous observation that GH is an important regulator of hepatic CD36, and depending on the mode of treatment (continuous or intermittent) the gene might be either induced or repressed. We suggest that the effects of continuous GH secretion in females (which is stimulatory) and intermittent GH secretion in males (which is inhibitory) explains the sex-different expression of this gene. Furthermore, a female-specific repression of hepatic CD36 in response to food deprivation was found, which was in contrast to a stimulatory effect in skeletal muscle. This demonstrates a tissue-specific regulation of Cd36.

  • 67. Christensen, Mette M H
    et al.
    Brasch-Andersen, Charlotte
    Green, Henrik
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nielsen, Flemming
    Damkier, Per
    Beck-Nielsen, Henning
    Brosen, Kim
    The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c2011In: Pharmacogenetics & Genomics, ISSN 1744-6872, E-ISSN 1744-6880, Vol. 21, no 12, p. 837-850Article in journal (Refereed)
    Abstract [en]

    Objective The aim of this study was to evaluate the effect of genetic variations in OCT1, OCT2, MATE1, MATE 2, and PMAT on the trough steady-state plasma concentration of metformin and hemoglobin A1c (Hb1Ac). Method The South Danish Diabetes Study was a 2 x 2 x 2 factorial, prospective, randomized, double-blind, placebo-controlled, multicentre study. One hundred and fifty-nine patients received 1 g of metformin, twice daily continuously, and 415 repeated plasma metformin measurements were obtained after 3, 6, and 9 months of treatment.

    Results The mean trough steady-state metformin plasma concentration was estimated to be 576 ng/ml (range, 54-4133 ng/ml, rho = 0.55) and correlated to the number of reduced function alleles in OCT1 (none, one or two: 642, 542, 397 ng/ml; P = 0.001). The absolute decrease in Hb1Ac both initially and long term was also correlated to the number of reduced function alleles in OCT1 resulting in diminished pharmacodynamic effect of metformin after 6 and 24 months.

    Conclusion In a large cohort of type 2 diabetics, we either confirm or show for the first time: (a) an enormous 80-fold) variability in trough steady-state metformin plasma concentration, (b) OCT1 activity affects metformin steady-state pharmacokinetics, and (c) OCT1 genotype has a bearing on HbA1c during metformin treatment.

  • 68. Costa, H.
    et al.
    Xu, X.
    Overbeek, G.
    Vasaikar, S.
    Pawan K. Patro, C.
    Kostopoulou, O. N.
    Jung, M.
    Shafi, G.
    Ananthaseshan, S.
    Tsipras, G.
    Davoudi, B.
    Mohammad, A. -A
    Lam, H.
    Strååt, Klas
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska Institutet, Sweden.
    Wilhelmi, V.
    Shang, M.
    Tegner, J.
    Tong, J. C.
    Wong, K. T.
    Söderberg-Naucler, C.
    Yaiw, K. -C
    Human cytomegalovirus may promote tumour progression by upregulating arginase-22016In: OncoTarget, ISSN 1949-2553, E-ISSN 1949-2553, Vol. 7, no 30, p. 47221-47231Article in journal (Refereed)
    Abstract [en]

    Background: Both arginase (ARG2) and human cytomegalovirus (HCMV) have been implicated in tumorigenesis. However, the role of ARG2 in the pathogenesis of glioblastoma (GBM) and the HCMV effects on ARG2 are unknown. We hypothesize that HCMV may contribute to tumorigenesis by increasing ARG2 expression. Results: ARG2 promotes tumorigenesis by increasing cellular proliferation, migration, invasion and vasculogenic mimicry in GBM cells, at least in part due to overexpression of MMP2/9. The nor-NOHA significantly reduced migration and tube formation of ARG2-overexpressing cells. HCMV immediate-early proteins (IE1/2) or its downstream pathways upregulated the expression of ARG2 in U-251 MG cells. Immunostaining of GBM tissue sections confirmed the overexpression of ARG2, consistent with data from subsets of Gene Expression Omnibus. Moreover, higher levels of ARG2 expression tended to be associated with poorer survival in GBM patient by analyzing data from TCGA. Methods: The role of ARG2 in tumorigenesis was examined by proliferation-, migration-, invasion-, wound healing- and tube formation assays using an ARG2- overexpressing cell line and ARG inhibitor, N (omega)-hydroxy-nor-L-arginine (nor-NOHA) and siRNA against ARG2 coupled with functional assays measuring MMP2/9 activity, VEGF levels and nitric oxide synthase activity. Association between HCMV and ARG2 were examined in vitro with 3 different GBM cell lines, and ex vivo with immunostaining on GBM tissue sections. The viral mechanism mediating ARG2 induction was examined by siRNA approach. Correlation between ARG2 expression and patient survival was extrapolated from bioinformatics analysis on data from The Cancer Genome Atlas (TCGA). Conclusions: ARG2 promotes tumorigenesis, and HCMV may contribute to GBM pathogenesis by upregulating ARG2.

  • 69.
    Costea, Paul Igor
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Akan, Pelin
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    TagGD: Fast and Accurate Software for DNA Tag Generation and Demultiplexing2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 3, p. e57521-Article in journal (Refereed)
    Abstract [en]

    Multiplexing is of vital importance for utilizing the full potential of next generation sequencing technologies. We here report TagGD (DNA-based Tag Generator and Demultiplexor), a fully-customisable, fast and accurate software package that can generate thousands of barcodes satisfying user-defined constraints and can guarantee full demultiplexing accuracy. The barcodes are designed to minimise their interference with the experiment. Insertion, deletion and substitution events are considered when designing and demultiplexing barcodes. 20,000 barcodes of length 18 were designed in 5 minutes and 2 million barcoded Illumina HiSeq-like reads generated with an error rate of 2% were demultiplexed with full accuracy in 5 minutes. We believe that our software meets a central demand in the current high-throughput biology and can be utilised in any field with ample sample abundance. The software is available on GitHub (https://github.com/pelinakan/UBD.git).

  • 70. Coward, K.
    et al.
    Ponting, C. P.
    Chang, H. Y.
    Hibbitt, O.
    Savolainen, Peter
    KTH, School of Biotechnology (BIO), Gene Technology.
    Jones, K. T.
    Parrington, J.
    Phospholipase C zeta, the trigger of egg activation in mammals, is present in a non-mammalian species2005In: Reproduction, ISSN 1470-1626, E-ISSN 1476-3990, Vol. 130, no 2, p. 157-163Article in journal (Refereed)
    Abstract [en]

    The activation of the egg to begin development into an embryo is triggered by a sperm-induced increase in intracellular egg Ca2+. There has been much controversy about how the sperm induces this fundamental developmental event, but recent studies suggest that, in mammals, egg activation is triggered by a testis-specific phospholipase C: PLC zeta. Since the discovery of PLC zeta, it has been unclear whether its role in triggering egg activation is common to all vertebrates, or is confined to mammals. Here, we demonstrate for the first time that PLC zeta is present in a non-mammalian vertebrate. Using genomic and cDNA databases, we have identified the cDNA encoding a PLC zeta orthologue in the domestic chicken that, like the mammalian isoforms, is a testis-specific gene. The chicken PLC zeta cDNA is 2152 bp in size and encodes an open reading frame of 639 amino acids. When injected into mouse oocytes, chicken PLC zeta cRNA triggers Ca2+ oscillations, indicating that it has functional properties similar to those of mammalian PLC zeta. Our findings suggest that PLC zeta may have a universal role in triggering egg activation in vertebrates.

  • 71. Davanian, H.
    et al.
    Stranneheim, Henrik
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Båge, T.
    Lagervall, M.
    Jansson, L.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Yucel-Lindberg, T.
    Gene Expression Profiles in Paired Gingival Biopsies from Periodontitis-Affected and Healthy Tissues Revealed by Massively Parallel Sequencing2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 9, p. e46440-Article in journal (Refereed)
    Abstract [en]

    Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis.

  • 72. Davanian, Haleh
    et al.
    Båge, Tove
    Lindberg, Johan
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Concha, Hernan Q.
    Chen, Margaret Sallberg
    Yucel-Lindberg, Tulay
    Signaling pathways involved in the regulation of TNF alpha-induced toll-like receptor 2 expression in human gingival fibroblasts2012In: Cytokine, ISSN 1043-4666, E-ISSN 1096-0023, Vol. 57, no 3, p. 406-416Article in journal (Refereed)
    Abstract [en]

    Periodontitis is a chronic inflammatory disease characterized by a host inflammatory response against bacteria that leads to destruction of the supporting structures of the teeth. Bacterial components of pathogens in the periodontal pocket are recognized by toll-like receptors (TLRs) that trigger an inflammatory response. In this study, we investigated the effects of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF alpha) on TLR2 expression in human gingival fibroblasts. In addition, we examined the signaling pathways involved in the regulation of TNF alpha-induced TLR2 expression. Our results showed that TNF alpha increased TLR2 mRNA and protein expression. Microarray analysis and the inhibition of specific signaling pathways demonstrated that c-Jun N-terminal kinases (JNK) and nuclear factor kappa B (NF-kappa B) were involved in the regulation of INF alpha-induced TLR2 expression in gingival fibroblasts. Furthermore, the prostaglandin E-2 (PGE(2)) regulatory enzyme cytosolic phospholipase A(2) (cPLA(2)) and the anti-inflammatory prostaglandin 15-deoxy-Delta(12.14)-prostaglandin J(2) (15d-PGJ(2)), were found to regulate TLR2 mRNA expression stimulated by TNF alpha. Our findings suggest that these pathways and mediators, through the regulation of TLR2 expression in gingival fibroblasts, may be involved in the pathogenesis of periodontitis. The study provides new insights into the molecular mechanisms underlying the regulation of TLR2, implicated in the chronic inflammatory disease periodontitis.

  • 73. Delhomme, Nicolas
    et al.
    Sundstrom, Gorel
    Zamani, Neda
    Lantz, Henrik
    Lin, Yao-Cheng
    Hvidsten, Torgeir R.
    Hoppner, Marc P.
    Jern, Patric
    Van de Peer, Yves
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology.
    Grabherr, Manfred G.
    Street, Nathaniel R.
    Serendipitous Meta-Transcriptomics: The Fungal Community of Norway Spruce (Picea abies)2015In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, no 9, article id e0139080Article in journal (Refereed)
    Abstract [en]

    After performing de novo transcript assembly of >1 billion RNA-Sequencing reads obtained from 22 samples of different Norway spruce (Picea abies) tissues that were not surface sterilized, we found that assembled sequences captured a mix of plant, lichen, and fungal transcripts. The latter were likely expressed by endophytic and epiphytic symbionts, indicating that these organisms were present, alive, and metabolically active. Here, we show that these serendipitously sequenced transcripts need not be considered merely as contamination, as is common, but that they provide insight into the plant's phyllosphere. Notably, we could classify these transcripts as originating predominantly from Dothideomycetes and Leotiomycetes species, with functional annotation of gene families indicating active growth and metabolism, with particular regards to glucose intake and processing, as well as gene regulation.

  • 74.
    Dezfouli, Mahya
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Barcoded DNA Sequencing for Parallel Protein Detection2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The work presented in this thesis describes methodologies developed for integration and accurate interpretation of barcoded DNA, to empower large-scale-omics analysis. The objectives mainly aim at enabling multiplexed proteomic measurements in high-throughput format through DNA barcoding and massive parallel sequencing. The thesis is based on four scientific papers that focus on three main criteria; (i) to prepare reagents for large-scale affinity-proteomics, (ii) to present technical advances in barcoding systems for parallel protein detection, and (iii) address challenges in complex sequencing data analysis.

    In the first part, bio-conjugation of antibodies is assessed at significantly downscaled reagent quantities. This allows for selection of affinity binders without restrictions to accessibility in large amounts and purity from amine-containing buffers or stabilizer materials (Paper I). This is followed by DNA barcoding of antibodies using minimal reagent quantities. The procedure additionally enables efficient purification of barcoded antibodies from free remaining DNA residues to improve sensitivity and accuracy of the subsequent measurements (Paper II). By utilizing a solid-phase approach on magnetic beads, a high-throughput set-up is ready to be facilitated by automation. Subsequently, the applicability of prepared bio-conjugates for parallel protein detection is demonstrated in different types of standard immunoassays (Papers I and II).

    As the second part, the method immuno-sequencing (I-Seq) is presented for DNAmediated protein detection using barcoded antibodies. I-Seq achieved the detection of clinically relevant proteins in human blood plasma by parallel DNA readout (Paper II). The methodology is further developed to track antibody-antigen interaction events on suspension bead arrays, while being encapsulated in barcoded emulsion droplets (Paper III). The method, denoted compartmentalized immuno-sequencing (cI-Seq), is potent to perform specific detections with paired antibodies and can provide information on details of joint recognition events.

    Recent progress in technical developments of DNA sequencing has increased the interest in large-scale studies to analyze higher number of samples in parallel. The third part of this thesis focuses on addressing challenges of large-scale sequencing analysis. Decoding of a huge DNA-barcoded data is presented, aiming at phase-defined sequence investigation of canine MHC loci in over 3000 samples (Paper IV). The analysis revealed new single nucleotide variations and a notable number of novel haplotypes for the 2nd exon of DLA DRB1.

    Taken together, this thesis demonstrates emerging applications of barcoded sequencing in protein and DNA detection. Improvements through the barcoding systems for assay parallelization, de-convolution of antigen-antibody interactions, sequence variant analysis, as well as large-scale data interpretation would aid biomedical studies to achieve a deeper understanding of biological processes. The future perspectives of the developed methodologies may therefore stem for advancing large-scale omics investigations, particularly in the promising field of DNA-mediated proteomics, for highly multiplex studies of numerous samples at a notably improved molecular resolution.

  • 75.
    Dezfouli, Mahya
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology.
    Magnusson, M.
    Arvestad, L.
    Lohi, H.
    Van Asch, D.
    Fain, S.
    Kennedy, L. J.
    Ahmadian, Afshin
    KTH, School of Biotechnology (BIO), Gene Technology.
    Savolainen, Peter
    KTH, School of Biotechnology (BIO), Gene Technology.
    Massively Parallel MHC-Typing by Sequencing RevealedNovel Variants of Canine Leukocyte AntigenManuscript (preprint) (Other academic)
  • 76.
    Dezfouli, Mahya
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology.
    Redin, David
    KTH, School of Biotechnology (BIO), Protein Technology.
    Borgström, Erik
    KTH, School of Biotechnology (BIO), Gene Technology.
    Edfors, Fredrik
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Ahmadian, Afshin
    KTH, School of Biotechnology (BIO), Gene Technology.
    Droplet-based Immuno-Sequencing to Deconvolute Affinity Recognition EventsManuscript (preprint) (Other academic)
  • 77.
    Dezfouli, Mahya
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Vickovic, Sanja
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Iglesias, Maria Jesus
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ahmadian, Afshin
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Magnetic bead assisted labeling of antibodies at nanogram scale2014In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 14, no 1, p. 14-18Article in journal (Refereed)
    Abstract [en]

    There are currently several initiatives that aim to produce binding reagents for proteome-wide analysis. To enable protein detection, visualization, and target quantification, covalent coupling of reporter molecules to antibodies is essential. However, current labeling protocols recommend considerable amount of antibodies, require antibody purity and are not designed for automation. Given that small amounts of antibodies are often sufficient for downstream analysis, we developed a labeling protocol that combines purification and modification of antibodies at submicrogram quantities. With the support of magnetic microspheres, automated labeling of antibodies in parallel using biotin or fluorescent dyes was achieved.

  • 78.
    Dezfouli, Mahya
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Vickovic, Sanja
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Iglesias, Maria Jesus
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ahmadian, Afshin
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Parallel barcoding of antibodies for DNA-assisted proteomics2014In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 14, no 21-22, p. 2432-2436Article in journal (Refereed)
    Abstract [en]

    DNA-assisted proteomics technologies enable ultra-sensitive measurements in multiplex format using DNA-barcoded affinity reagents. Although numerous antibodies are available, nowadays targeting nearly the complete human proteome, the majority is not accessible at the quantity, concentration, or purity recommended for most bio-conjugation protocols. Here, we introduce a magnetic bead-assisted DNA-barcoding approach, applicable for several antibodies in parallel, as well as reducing required reagents quantities up to a thousand-fold. The success of DNA-barcoding and retained functionality of antibodies were demonstrated in sandwich immunoassays and standard quantitative Immuno-PCR assays. Specific DNA-barcoding of antibodies for multiplex applications was presented on suspension bead arrays with read-out on a massively parallel sequencing platform in a procedure denoted Immuno-Sequencing. Conclusively, human plasma samples were analyzed to indicate the functionality of barcoded antibodies in intended proteomics applications.

  • 79. Dick, G J
    et al.
    Andersson, Anders
    KTH, School of Biotechnology (BIO), Gene Technology.
    Baker, B J
    Simmons, S L
    Thomas, B C
    Yelton, A P
    Banfield, J F
    Community-wide analysis of microbial genome sequence signatures2009In: Genome Biology, ISSN 1465-6906, E-ISSN 1474-760X, Vol. 10, no 8, p. R85-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Analyses of DNA sequences from cultivated microorganisms have revealed genome-wide, taxa-specific nucleotide compositional characteristics, referred to as genome signatures. These signatures have far-reaching implications for understanding genome evolution and potential application in classification of metagenomic sequence fragments. However, little is known regarding the distribution of genome signatures in natural microbial communities or the extent to which environmental factors shape them. RESULTS: We analyzed metagenomic sequence data from two acidophilic biofilm communities, including composite genomes reconstructed for nine archaea, three bacteria, and numerous associated viruses, as well as thousands of unassigned fragments from strain variants and low-abundance organisms. Genome signatures, in the form of tetranucleotide frequencies analyzed by emergent self-organizing maps, segregated sequences from all known populations sharing < 50 to 60% average amino acid identity and revealed previously unknown genomic clusters corresponding to low-abundance organisms and a putative plasmid. Signatures were pervasive genome-wide. Clusters were resolved because intra-genome differences resulting from translational selection or protein adaptation to the intracellular (pH approximately 5) versus extracellular (pH approximately 1) environment were small relative to inter-genome differences. We found that these genome signatures stem from multiple influences but are primarily manifested through codon composition, which we propose is the result of genome-specific mutational biases. CONCLUSIONS: An important conclusion is that shared environmental pressures and interactions among coevolving organisms do not obscure genome signatures in acid mine drainage communities. Thus, genome signatures can be used to assign sequence fragments to populations, an essential prerequisite if metagenomics is to provide ecological and biochemical insights into the functioning of microbial communities.

  • 80. Ding, Z. L.
    et al.
    Oskarsson, Mattias
    KTH, School of Biotechnology (BIO), Gene Technology.
    Ardalan, Arman
    KTH, School of Biotechnology (BIO), Gene Technology.
    Angleby, Helen
    KTH, School of Biotechnology (BIO), Gene Technology.
    Dahlgren, Lars-Göran
    KTH, School of Biotechnology (BIO), Gene Technology.
    Tepeli, C.
    Kirkness, E.
    Savolainen, Peter
    KTH, School of Biotechnology (BIO), Gene Technology.
    Zhang, Y. P.
    Origins of domestic dog in Southern East Asia is supported by analysis of Y-chromosome DNA2012In: Heredity, ISSN 0018-067X, E-ISSN 1365-2540, Vol. 108, no 5, p. 507-514Article in journal (Refereed)
    Abstract [en]

    Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog-wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14 437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13-24 wolf founders, but there was no indication of post-domestication dog-wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog-wolf hybridisation contributed modestly to the dog gene pool.

  • 81. Doucet, M.
    et al.
    Becker, K. F.
    Björkman, J.
    Bonnet, J.
    Clément, B.
    Daidone, M. -G
    Duyckaerts, C.
    Erb, G.
    Haslacher, H.
    Hofman, P.
    Huppertz, B.
    Junot, C.
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Metspalu, A.
    Lavitrano, M.
    Litton, J. -E
    Moore, H. M.
    Morente, M.
    Naimi, B. -Y
    Oelmueller, U.
    Ollier, B.
    Parodi, B.
    Ruan, L.
    Stanta, G.
    Turano, P.
    Vaught, J.
    Watson, P.
    Wichmann, H. -E
    Yuille, M.
    Zaomi, M.
    Zatloukal, K.
    Dagher, G.
    Quality Matters: 2016 Annual Conference of the National Infrastructures for Biobanking2017In: Biopreservation and Biobanking, ISSN 1947-5535, E-ISSN 1947-5543, Vol. 15, no 3, p. 270-276Article in journal (Refereed)
  • 82. Dupont, Chris L.
    et al.
    Larsson, John
    Yooseph, Shibu
    Ininbergs, Karolina
    Goll, Johannes
    Asplund-Samuelsson, Johannes
    McCrow, John P.
    Celepli, Narin
    Allen, Lisa Zeigler
    Ekman, Martin
    Lucas, Andrew J.
    Hagström, Åke
    Thiagarajan, Mathangi
    Brindefalk, Björn
    Richter, Alexander R.
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tenney, Aaron
    Lundin, Daniel
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tovchigrechko, Andrey
    Nylander, Johan A. A.
    Brami, Daniel
    Badger, Jonathan H.
    Allen, Andrew E.
    Rusch, Douglas B.
    Hoffman, Jeff
    Norrby, Erling
    Friedman, Robert
    Pinhassi, Jarone
    Venter, J. Craig
    Bergman, Birgitta
    Functional Tradeoffs Underpin Salinity-Driven Divergence in Microbial Community Composition2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 2, p. e89549-Article in journal (Refereed)
    Abstract [en]

    Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  • 83. Dwivedi, Bhakti
    et al.
    Xue, Bingjie
    Lundin, Daniel
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edwards, Robert A.
    Breitbart, Mya
    A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes2013In: BMC Evolutionary Biology, ISSN 1471-2148, E-ISSN 1471-2148, Vol. 13, p. 33-Article in journal (Refereed)
    Abstract [en]

    Background: Ribonucleotide reductase (RNR), the enzyme responsible for the formation of deoxyribonucleotides from ribonucleotides, is found in all domains of life and many viral genomes. RNRs are also amongst the most abundant genes identified in environmental metagenomes. This study focused on understanding the distribution, diversity, and evolution of RNRs in phages (viruses that infect bacteria). Hidden Markov Model profiles were used to analyze the proteins encoded by 685 completely sequenced double-stranded DNA phages and 22 environmental viral metagenomes to identify RNR homologs in cultured phages and uncultured viral communities, respectively. Results: RNRs were identified in 128 phage genomes, nearly tripling the number of phages known to encode RNRs. Class I RNR was the most common RNR class observed in phages (70%), followed by class II (29%) and class III (28%). Twenty-eight percent of the phages contained genes belonging to multiple RNR classes. RNR class distribution varied according to phage type, isolation environment, and the host's ability to utilize oxygen. The majority of the phages containing RNRs are Myoviridae (65%), followed by Siphoviridae (30%) and Podoviridae (3%). The phylogeny and genomic organization of phage and host RNRs reveal several distinct evolutionary scenarios involving horizontal gene transfer, co-evolution, and differential selection pressure. Several putative split RNR genes interrupted by self-splicing introns or inteins were identified, providing further evidence for the role of frequent genetic exchange. Finally, viral metagenomic data indicate that RNRs are prevalent and highly dynamic in uncultured viral communities, necessitating future research to determine the environmental conditions under which RNRs provide a selective advantage. Conclusions: This comprehensive study describes the distribution, diversity, and evolution of RNRs in phage genomes and environmental viral metagenomes. The distinct distributions of specific RNR classes amongst phages, combined with the various evolutionary scenarios predicted from RNR phylogenies suggest multiple inheritance sources and different selective forces for RNRs in phages. This study significantly improves our understanding of phage RNRs, providing insight into the diversity and evolution of this important auxiliary metabolic gene as well as the evolution of phages in response to their bacterial hosts and environments.

  • 84. Edberg, F.
    et al.
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Holmström, S. J. M.
    Bacterial Community Composition in the Water Column of a Lake Formed by a Former Uranium Open Pit Mine2012In: Microbial Ecology, ISSN 0095-3628, E-ISSN 1432-184X, Vol. 64, no 4, p. 870-880Article in journal (Refereed)
    Abstract [en]

    Mining of pyrite minerals is a major environmental issue involving both biological and geochemical processes. Here we present a study of an artificial lake of a former uranium open pit mine with the aim to connect the chemistry and bacterial community composition (454-pyrosequencing of 16S rRNA genes) in the stratified water column. A shift in the water chemistry from oxic conditions in the epilimnion to anoxic, alkaline, and metal and sulfide-rich conditions in the hypolimnion was corresponded by a strong shift in the bacterial community, with few shared operational taxonomic units (OTU) between the water layers. The epilimnetic bacterial community of the lake (~20 years old) showed similarities to other temperate freshwater lakes, while the hypolimnetic bacterial community showed similarity to extreme chemical environments. The epilimnetic bacterial community had dominance of Actinobacteria and Betaproteobacteria. The hypolimnion displayed a higher bacterial diversity and was dominated by the phototrophic green sulphur bacterium of the genus Chlorobium (ca. 40 % of the total community). Deltaproteobacteria were only represented in the hypolimnion and the most abundant OTUs were affiliated with ferric iron and sulfate reducers of the genus Geobacter and Desulfobulbus, respectively. The chemistry is clearly controlling, especially the hypolimnetic, bacterial community but the community composition also indicates that the bacteria are involved in metal cycling in the lake.

  • 85.
    Edfors, Fredrik
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Käll, Lukas
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ponten, Fredrik
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Technical University of Denmark, Denmark.
    Gene-specific correlation of RNA and protein levels in human cells and tissues2016In: Molecular Systems Biology, ISSN 1744-4292, E-ISSN 1744-4292, Vol. 12, no 10, article id 883Article in journal (Refereed)
    Abstract [en]

    An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.

  • 86.
    Edlundh-Rose, Esther
    KTH, School of Biotechnology (BIO), Gene Technology.
    Molecular Signatures of Cancer2006Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Cancer is an important public health concern in the western world, responsible for around 25% of all deaths. Although improvements have been made in the diagnosis of cancer, treatment of disseminated disease is inefficient, highlighting the need for new and improved methods of diagnosis and therapy. Tumours arise when the balance between proliferation and differentiation is perturbed and result from genetic and epigenetic alterations.

    Due to the heterogeneity of cancer, analysis of the disease is difficult and a wide range of methods is required. In this thesis, a number of techniques are demonstrated for the analysis of genetic, epigenetic and transcriptional alterations involved in cancer, with the purpose of identifying a number of molecular signatures. Pyrosequencing proved to be a valuable tool for the analysis of both point mutations and CpG methylation. Using this method, we showed that oncogenes BRAF and NRAS, members of the Ras-Raf-MAPK pathway, were mutated in 82% of melanoma tumours and were mutually exclusive. Furthermore, tumours with BRAF mutations were more often associated with infiltrating lymphocytes, suggesting a possible target for immunotherapy. In addition, methylation of the promoter region of the DNA repair gene MGMT was studied to find a possible correlation to clinical response to chemotherapy. Results showed a higher frequency of promoter methylation in non-responders as compared to responders, providing a possible predictive role and a potential basis for individually tailored chemotherapy. Microarray technology was used for transcriptional analysis of epithelial cells, with the purpose of characterization of molecular pathways of anti-tumourigenic agents and to identify possible target genes. Normal keratinocytes and colon cancer cells were treated with the antioxidant N-acetyl L-cysteine (NAC) in a time series and gene expression profiling revealed that inhibition of proliferation and stimulation of differentiation was induced upon treatment. ID-1, a secreted protein, was proposed as a possible early mediator of NAC action. In a similar study, colon cancer cells were treated with the naturally occurring bile acid ursodeoxycholic acid (UDCA) in a time series and analysed by microarray and FACS analysis. Results suggest a chemopreventive role of UDCA by G1 arrest and inhibition of cell proliferation, possibly through the secreted protein GDF15.

    These investigations give further evidence as to the diversity of cancer and its underlying mechanisms. Through the application of several molecular methods, we have found a number of potential targets for cancer therapy. Follow up studies are already in progress and may hopefully lead to novel methods of treatment.

  • 87.
    Edlundh-Rose, Esther
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology.
    Egyhazi, Suzanne
    Omholt, Katarina
    Mansson-Brahme, Eva
    Platz, Anton
    Hansson, Johan
    Lundeberg, Joakim
    KTH, School of Biotechnology (BIO), Gene Technology.
    NRAS and BRAF mutations in melanoma turnours in re ation to clinical characteristics: a study based on mutation screening by pyrosequencing2006In: Melanoma research, ISSN 0960-8931, E-ISSN 1473-5636, Vol. 16, no 6, p. 471-478Article in journal (Refereed)
    Abstract [en]

    We have previously demonstrated the use of pyrosequencing to investigate NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog] mutations in melanoma biopsies. Here, we expanded the analysis to include BRAF (V-raf murine sarcoma viral oncogene homolog 1311), another member of the Ras-Raf-mitogen-activated protein kinase (MAPK) signalling pathway, and analysed a total of 294 melanoma tumours from 219 patients. Mutations in BRAF exons 11 and 15 were identified in 156 (53%) tumours and NRAS exon 2 mutations in 86 (29%) tumours. Overall, mutations in NRAS or BRAF were found in 242 of 294 tumours; (82%) and were found to be mutually exclusive in all but two cases (0.7%). Multiple metastases were analysed in 57 of the cases and mutations were identical in all except three, indicating that BRAF and NRAS mutations occur before metastasis. Association with preexisting nevi was significantly higher in BRAF mutated tumours (P=0.014). In addition, tumours with BRAF mutations showed a significantly more frequent moderate to pronounced infiltration of lymphocytes (P=0.013). NRAS mutations were associated with a significantly higher Clark level of invasion (P=0.022) than BRAF mutations. Age at diagnosis was significantly higher in tumours with NRAS mutations than in those with BRAF mutations (P=0.019). NRAS and BRAF mutations, however, did not influence the overall survival from time of diagnosis (P=0.7). In conclusion, the separate genotypes were associated with differences in several key clinical and pathological parameters, indicating differences in the biology of melanoma tumours with different proto-oncogene mutations.

  • 88.
    Edsgärd, Daniel
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Iglesias, Maria Jesus
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska University Hospital, Sweden; Karolinska Institutet, Sweden .
    Reilly, Sarah-Jayne
    Hamsten, Anders
    Tornvall, Per
    Odeberg, Jacob
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska University Hospital, Sweden; Karolinska Institutet, Sweden; .
    Emanuelsson, Olof
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    GeneiASE: Detection of condition-dependent and static allele-specific expression from RNA-seq data without haplotype information2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 21134Article in journal (Refereed)
    Abstract [en]

    Allele-specific expression (ASE) is the imbalance in transcription between maternal and paternal alleles at a locus and can be probed in single individuals using massively parallel DNA sequencing technology. Assessing ASE within a single sample provides a static picture of the ASE, but the magnitude of ASE for a given transcript may vary between different biological conditions in an individual. Such condition-dependent ASE could indicate a genetic variation with a functional role in the phenotypic difference. We investigated ASE through RNA-sequencing of primary white blood cells from eight human individuals before and after the controlled induction of an inflammatory response, and detected condition-dependent and static ASE at 211 and 13021 variants, respectively. We developed a method, GeneiASE, to detect genes exhibiting static or condition-dependent ASE in single individuals. GeneiASE performed consistently over a range of read depths and ASE effect sizes, and did not require phasing of variants to estimate haplotypes. We observed condition-dependent ASE related to the inflammatory response in 19 genes, and static ASE in 1389 genes. Allele-specific expression was confirmed by validation of variants through real-time quantitative RT-PCR, with RNA-seq and RT-PCR ASE effect-size correlations r = 0.67 and r = 0.94 for static and condition-dependent ASE, respectively.

  • 89. Eisfeldt, Jesper
    et al.
    Nazaryan-Petersen, Lusine
    Lundin, Johanna Lundin
    Pettersson, Maria
    Nilsson, Daniel
    Wincent, Josephine
    Lieden, Agne
    Vezzi, Francesco
    Wirta, Valteri
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Käller, Max
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Duelund, Tina
    Houssari, Rayan
    Pignata, Laura
    Bak, Mads
    Tommerup, Niels
    Lundberg, Elisabeth Syk
    Tumer, Zeynep
    Lindstrand, Anna
    Whole genome characterization of array defined clustered CNVs reveals two distinct complex rearrangement subclasses generated through either non homologous repair or template switching2017In: Molecular Cytogenetics, ISSN 1755-8166, E-ISSN 1755-8166, Vol. 10Article in journal (Other academic)
  • 90. Elsemman, Ibrahim E.
    et al.
    Mardinoglu, Adil
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Chalmers University of Technology, Sweden.
    Shoaie, Saeed
    Soliman, Taysir H.
    Nielsen, Jens
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Chalmers University of Technology, Sweden.
    Systems biology analysis of hepatitis C virus infection reveals the role of copy number increases in regions of chromosome 1q in hepatocellular carcinoma metabolism2016In: Molecular Biosystems, ISSN 1742-206X, E-ISSN 1742-2051, Vol. 12, no 5, p. 1496-1506Article in journal (Refereed)
    Abstract [en]

    Hepatitis C virus (HCV) infection is a worldwide healthcare problem; however, traditional treatment methods have failed to cure all patients, and HCV has developed resistance to new drugs. Systems biology-based analyses could play an important role in the holistic analysis of the impact of HCV on hepatocellular metabolism. Here, we integrated HCV assembly reactions with a genome-scale hepatocyte metabolic model to identify metabolic targets for HCV assembly and metabolic alterations that occur between different HCV progression states (cirrhosis, dysplastic nodule, and early and advanced hepatocellular carcinoma (HCC)) and healthy liver tissue. We found that diacylglycerolipids were essential for HCV assembly. In addition, the metabolism of keratan sulfate and chondroitin sulfate was significantly changed in the cirrhosis stage, whereas the metabolism of acyl-carnitine was significantly changed in the dysplastic nodule and early HCC stages. Our results explained the role of the upregulated expression of BCAT1, PLOD3 and six other methyltransferase genes involved in carnitine biosynthesis and S-adenosylmethionine metabolism in the early and advanced HCC stages. Moreover, GNPAT and BCAP31 expression was upregulated in the early and advanced HCC stages and could lead to increased acyl-CoA consumption. By integrating our results with copy number variation analyses, we observed that GNPAT, PPOX and five of the methyltransferase genes (ASH1L, METTL13, SMYD2, TARBP1 and SMYD3), which are all located on chromosome 1q, had increased copy numbers in the cancer samples relative to the normal samples. Finally, we confirmed our predictions with the results of metabolomics studies and proposed that inhibiting the identified targets has the potential to provide an effective treatment strategy for HCV-associated liver disorders.

  • 91.
    Emanuelsson, Olof
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Arvestad, Lars
    KTH, Centres, Science for Life Laboratory, SciLifeLab. Stockholm University.
    Käll, Lukas
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Engagera och aktivera studenter med inspiration från konferenser: examination genom poster-presentation2014In: Proceedings 2014, 8:e Pedagogiska inspirationskonferensen 17 december 2014 / [ed] Roy Andersson, Lund, 2014Conference paper (Refereed)
    Abstract [sv]

    I en forskningsnära kurs om 7.5 hp på master-nivå inom bioinformatikämnet vid KTH består drygt halva kursen av ett projekt som genomförs i grupper om tre studenter. Varje projekt har en egen projektuppgift med inget eller marginellt överlapp med andra gruppers uppgifter. Projekten är så gott som uteslutande baserade på aktuella frågeställningar i lärarteamets egna forskningsgrupper eller deras närhet. Projektet redovisas dels genom en posterpresentation, dels med individuell webbaserad projektdagbok. Vid posterredovisningen, som omfattar tre timmar i slutet av tentamensperioden, är alla kursdeltagare med. Vi försöker i möjligaste mån efterlikna situationen där ett autentiskt forskningsresultat presenteras på en riktig konferens. Varje deltagare (student) förväntas alltså ta del av varje annan grupps poster, på samma sätt som sker vid de flesta vetenskapliga konferenser. Vi genomför en enklare kamratbedömning på posternivå, där varje student ska avge en kort och konfidentiell kommentar om var och en av övriga postrar. Kursens lärare bedömer förstås också postrarna. En av svårigheterna är att sätta individuella betyg. Här använder vi oss av individuella projektdagböcker, som ger vägledning till de olika individernas insatser inom projektet. Vi har provat detta under fyra kursomgångar med som mest sju projekt. Examinationsformen är rolig och motiverande både för studenterna och lärarna.

  • 92.
    Engdahl, Göran
    et al.
    KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
    Oscarsson, Mattias
    KTH, School of Biotechnology (BIO), Gene Technology.
    Key numbers in design of magnetostrictive actuators and generators2006In: Actuator 2006, 2006, p. 774-777Conference paper (Refereed)
    Abstract [en]

    In order to compare and judge magnetostrictive actuator designs with different design parameters a number of novel figures-of-merit are presented. The use of the suggested key numbers is demonstrated regarding the assessment of three different bias magnetization approaches. The features of a magnetostrictive power harvesting device, a so called VIBEL (VIBrational ELectric energy), are studied by means of the suggested key numbers. A VIBEL is built up like a magnetostrictive actuator, but converts a mechanical force excitation into electrical power.

  • 93. Erdogan, Metin
    et al.
    Tepeli, Cafer
    Brenig, Bertram
    Akbulut, Mine Dosay
    Uguz, Cevdet
    Savolainen, Peter
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ozbeyaz, Ceyhan
    Genetic variability among native dog breeds in Turkey2013In: Turkish Journal of Biology, ISSN 1300-0152, E-ISSN 1303-6092, Vol. 37, no 2, p. 176-183Article in journal (Refereed)
    Abstract [en]

    In this study, the genetic structures and relationships of native Turkish dog breeds were investigated using 20 polymorphic loci (17 microsatellites and 3 proteins). For this aim, a total of 141 blood samples were taken from Turkish shepherd dogs and Turkish Greyhounds located in several geographical regions of Turkey. Multilocus F-ST values indicated that around 1.92% of the total genetic variation could be explained by breed differences and the remaining 98.08% by differences among individuals. The gene flow between populations within each generation varied between 8.4 (Akbash-White Kars Shepherd dog pairs) and 62.3 (Black-Grey Kars Shepherd dog pairs). Four different groups appeared in the 3-dimensional factorial correspondence analysis, and among these, dogs from the Akbash, Kangal, Kars Shepherd, and Turkish Greyhound breeds grouped in clearly separated clusters in distant parts of the 3-dimensional graph. These results clearly show that Akbash and Kangal Shepherd dogs are different populations with different genetic structures. Therefore, the generalised grouping of Turkish shepherd dogs into a single breed called Anatolian or Turkish shepherd dogs is incorrect.

  • 94. Estigoy, C. B.
    et al.
    Pontén, F.
    Odeberg, Jacob
    KTH, School of Biotechnology (BIO), Gene Technology.
    Herbert, B.
    Guilhaus, M.
    Charleston, M.
    Ho, J. W. K.
    Cameron, D.
    dos Remedios, C. G.
    Intercalated discs: Multiple proteins perform multiple functions in non-failing and failing human hearts2009In: Biophysical Reviews, ISSN 1867-2450, Vol. 1, no 1, p. 43-49Article, review/survey (Refereed)
    Abstract [en]

    The intercalated disc (ICD) occupies a central position in the transmission of force, electrical continuity and chemical communication between cardiomyocytes. Changes in its structure and composition are strongly implicated in heart failure. ICD functions include: maintenance of electrical continuity across the ICD; physical links between membranes and the cytoskeleton; intercellular adhesion; maintenance of ICD structure and function; and growth. About 200 known proteins are associated with ICDs, 40% of which change in disease. We systemically reviewed cardiac immunohistochemical data on the Human Protein Atlas (HPA) web site, ExPASy protein binding data and published papers on ICDs. We identified 43 proteins not previously reported, and confirmed 37 proteins that have previously been described. In addition, 102 proteins not present on the HPA web site but were described in ICDs in the literature. We group these into clusters that demonstrate functionally interactive groups of proteins demonstrating that ICDs play a key role in cardiomyocyte function.

  • 95. Ettema, Thijs J. G.
    et al.
    Lindas, Ann-Christin
    Hjort, Karin
    Poplawski, Andrzej B.
    Kaessmann, Henrik
    Grogan, Dennis W.
    Kelman, Zvi
    Andersson, Anders F.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pelve, Erik
    Lundgren, Magnus
    Svard, Staffan G.
    Rolf Bernander (1956-2014): pioneer of the archaeal cell cycle (vol 92, pg 903, 2014)2014In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 93, no 3, p. 582-582Article in journal (Refereed)
  • 96. Ettema, Thijs J. G.
    et al.
    Lindås, Ann-Christin
    Hjort, Karin
    Poplawski, Andrzej B.
    Kaessmann, Henrik
    Grogan, Dennis W.
    Kelman, Zvi
    Andersson, Anders F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Gene Technology.
    Pelve, Erik A.
    Lundgren, Magnus
    Svard, Staffan G.
    Rolf Bernander (1956-2014): pioneer of the archaeal cell cycle Obituary2014In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 92, no 5, p. 903-909Article in journal (Refereed)
    Abstract [en]

    On 19 January 2014 Rolf (Roffe') Bernander passed away unexpectedly. Rolf was a dedicated scientist; his research aimed at unravelling the cell biology of the archaeal domain of life, especially cell cycle-related questions, but he also made important contributions in other areas of microbiology. Rolf had a professor position in the Molecular Evolution programme at Uppsala University, Sweden for about 8 years, and in January 2013 he became chair professor at the Department of Molecular Biosciences, The Wenner-Gren Institute at Stockholm University in Sweden. Rolf was an exceptional colleague and will be deeply missed by his family and friends, and the colleagues and co-workers that he leaves behind in the scientific community. He will be remembered for his endless enthusiasm for science, his analytical mind, and his quirky sense of humour.

  • 97. Ewels, P.
    et al.
    Magnusson, M.
    Lundin, S.
    Käller, Max
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    MultiQC: Summarize analysis results for multiple tools and samples in a single report2016In: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 32, no 19, p. 3047-3048Article in journal (Refereed)
    Abstract [en]

    Motivation: Fast and accurate quality control is essential for studies involving next-generation sequencing data. Whilst numerous tools exist to quantify QC metrics, there is no common approach to flexibly integrate these across tools and large sample sets. Assessing analysis results across an entire project can be time consuming and error prone; batch effects and outlier samples can easily be missed in the early stages of analysis. Results: We present MultiQC, a tool to create a single report visualising output from multiple tools across many samples, enabling global trends and biases to be quickly identified. MultiQC can plot data from many common bioinformatics tools and is built to allow easy extension and customization. Availability and implementation: MultiQC is available with an GNU GPLv3 license on GitHub, the Python Package Index and Bioconda. Documentation and example reports are available at http://multiqc.info.

  • 98.
    Fagerberg, Linn
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, C.
    Djureinovic, D.
    Odeberg, Jacob
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Habuka, Masato
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tahmasebpoor, S.
    Danielsson, A.
    Edlund, K.
    Asplund, A.
    Sjöstedt, E.
    Lundberg, E.
    Szigyarto, Cristina Al-Khalili
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ottosson Takanen, J.
    Berling, H.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mulder, J.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, C.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, A.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Forsberg, Mattias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Olsson, I.
    Navani, S.
    Huss, Mikael
    Nielsen, Jens
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics2014In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 13, no 2, p. 397-406Article in journal (Refereed)
    Abstract [en]

    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody- based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to 80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  • 99. Falk, Ingrid Jakobsen
    et al.
    Fyrberg, Anna
    Paul, Esbjorn
    Nahi, Hareth
    Hermanson, Monica
    Rosenquist, Richard
    Hoglund, Martin
    Palmqvist, Lars
    Stockelberg, Dick
    Wei, Yuan
    Gréen, Henrik
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lotfi, Kourosh
    Impact of ABCB1 single nucleotide polymorphisms 1236C>T and 2677G>T on overall survival in FLT3 wild-type de novo AML patients with normal karyotype2014In: British Journal of Haematology, ISSN 0007-1048, E-ISSN 1365-2141, Vol. 167, no 5, p. 671-680Article in journal (Refereed)
    Abstract [en]

    Drug resistance is a clinically relevant problem in the treatment of acute myeloid leukaemia (AML). We have previously reported a relationship between single nucleotide polymorphisms (SNPs) of ABCB1, encoding the multi-drug transporter P-glycoprotein, and overall survival (OS) in normal karyotype (NK)-AML. Here we extended this material, enabling subgroup analysis based on FLT3 and NPM1 status, to further elucidate the influence of ABCB1 SNPs. De novo NK-AML patients (n = 201) were analysed for 1199G>A, 1236C>T, 2677G>T/A and 3435C>T, and correlations to outcome were investigated. FLT3 wild-type 1236C/C patients have significantly shorter OS compared to patients carrying the variant allele; medians 20 vs. 49 months, respectively, P = 0.017. There was also an inferior outcome in FLT3 wild-type 2677G/G patients compared to patients carrying the variant allele, median OS 20 vs. 35 months, respectively, P = 0.039. This was confirmed in Cox regression analysis. Our results indicate that ABCB1 1236C>T and 2677G>T may be used as prognostic markers to distinguish relatively high risk patients in the intermediate risk FLT3 wild-type group, which may contribute to future individualizing of treatment strategies.

  • 100. Falk, Ingrid Jakobsen
    et al.
    Fyrberg, Anna
    Paul, Esbjörn
    Nahi, Hareth
    Hermanson, Monica
    Rosenquist, Richard
    Höglund, Martin
    Palmqvist, Lars
    Stockelberg, Dick
    Wei, Yuan
    Gréen, Henrik
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lotfi, Kourosh
    Decreased survival in normal karyotype AML with single-nucleotide polymorphisms in genes encoding the AraC metabolizing enzymes cytidine deaminase and 5 '-nucleotidase2013In: American Journal of Hematology, ISSN 0361-8609, E-ISSN 1096-8652, Vol. 88, no 12, p. 1001-1006Article in journal (Refereed)
    Abstract [en]

    De novo acute myeloid leukemia with normal karyotype (NK-AML) comprises a large group of patients with no common cytogenetic alterations and with a large variation in treatment response. Single-nucleotide polymorphisms (SNPs) in genes related to the metabolism of the nucleoside analogue AraC, the backbone in AML treatment, might affect drug sensitivity and treatment outcome. Therefore, SNPs may serve as prognostic biomarkers aiding clinicians in individualized treatment decisions, with the aim of improving patient outcomes. We analyzed polymorphisms in genes encoding cytidine deaminase (CDA 79A> C rs2072671 and 2451C> T rs532545), 50-nucleotidase (cN-II 7A> G rs10883841), and deoxycytidine kinase (DCK 30UTR 948T> C rs4643786) in 205 de novo NK-AML patients. In FLT3-internal tandem duplication (ITD)-positive patients, the CDA 79C/C and 2451T/T genotypes were associated with shorter overall survival compared to other genotypes (5 vs. 24 months, P< 0.001 and 5 vs. 23 months, P50.015, respectively), and this was most pronounced in FLT3-ITD-positive/NPM1-positive patients. We observed altered in vitro sensitivity to topoisomerase inhibitory drugs, but not to nucleoside analogues, and a decrease in global DNA methylation in cells carrying both CDA variant alleles. A shorter survival was also observed for the cN-II variant allele, but only in FLT3-ITD-negative patients (25 vs. 31 months, P50.075). Our results indicate that polymorphisms in genes related to nucleoside analog drug metabolism may serve as prognostic markers in de novo NK-AML.

1234567 51 - 100 of 419
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf