Change search
Refine search result
12 51 - 52 of 52
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Tilliander, Anders
    et al.
    KTH, Superseded Departments, Applied Process Metallurgy.
    Jonsson, T. L. I.
    KTH, Superseded Departments, Applied Process Metallurgy.
    Jönsson, Pär G.
    KTH, Superseded Departments, Applied Process Metallurgy.
    Fundamental mathematical modeling of gas injection in AOD converters2004In: ISIJ International, ISSN 0915-1559, E-ISSN 1347-5460, Vol. 44, no 2, p. 326-333Article in journal (Refereed)
    Abstract [en]

    A novel mathematical model of gas injection in the AOD converter process has been developed. The model is based on fundamental transport equations and includes separate solutions of both the steel and the gas phases and their coupling by friction. The inlet boundary conditions at the nozzle are predicted using a separate fundamental mathematical model of an AOD nozzle. This approach, together with the two phase solution, avoids the need to guess the inlet boundary conditions. The predicted gas plume has been compared to a plume from a scaled down water model of an AOD nozzle in a qualitative manner. The plume shapes are very similar, which indicates that the model predictions are of the right order of magnitude. The AOD model has also been used to predict fluid flow patterns, turbulence characteristics and bubble diameters.

  • 52.
    Widlund, Daniel
    KTH, Superseded Departments, Applied Process Metallurgy.
    Artificial neural networks for simulation of the LD process1998Licentiate thesis, comprehensive summary (Other scientific)
12 51 - 52 of 52
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf