Change search
Refine search result
1234567 51 - 100 of 528
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Canovas, Rocio
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sanchez, Sara Padrell
    Karolinska Inst, Dept Clin Sci Intervent & Technol, SE-14186 Stockholm, Sweden.;Karolinska Univ Sjukhuset, Div Obstet & Gynecol, SE-14186 Stockholm, Sweden..
    Parrilla, Marc
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Cuartero, Maria
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Crespo, Gaston A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Cytotoxicity Study of Ionophore-Based Membranes: Toward On Body and in Vivo Ion Sensing2019In: ACS SENSORS, ISSN 2379-3694, Vol. 4, no 9, p. 2524-2535Article in journal (Refereed)
    Abstract [en]

    We present the most complete study to date comprising in vitro cytotoxicity tests of ion-selective membranes (ISMs) in terms of cell viability, proliferation, and adhesion assays with human dermal fibroblasts. ISMs were prepared with different types of plasticizers and ionophores to be tested in combination with assays that focus on the medium-term and long-term leaching of compounds. Furthermore, the ISMs were prepared in different configurations considering (i) inner-filling solution-type electrodes, (ii) all-solid-state electrodes based on a conventional drop-cast of the membrane, (iii) peeling after the preparation of a wearable sensor, and (iv) detachment from a microneedle-based sensor, thus covering a wide range of membrane shapes. One of the aims of this study, other than the demonstration of the biocompatibility of various ISMs and materials tested herein, is to create an awareness in the scientific community surrounding the need to perform biocompatibility assays during the the very first steps of any sensor development with an intended biomedical application. This will foster meeting the requirements for subsequent on-body application of the sensor and avoiding further problems during massive validations toward the final in vivo use and commercialization of such devices.

  • 52.
    Cao, Yanhui
    et al.
    Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Fujian, Peoples R China..
    Zheng, Dajiang
    Xiamen Univ, Coll Mat, Xiamen 361005, Fujian, Peoples R China..
    Dong, Shigang
    Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China.;Xiamen Univ, Sch Energy Res, Xiamen 361005, Fujian, Peoples R China..
    Zhang, Fan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Lin, Jinyan
    Xiamen Univ, Coll Mat, Xiamen 361005, Fujian, Peoples R China..
    Wang, Cheng
    Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Fujian, Peoples R China..
    Lin, Changjian
    Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Fujian, Peoples R China.;Xiamen Univ, Coll Mat, Xiamen 361005, Fujian, Peoples R China.;Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China.;Xiamen Univ, Sch Energy Res, Xiamen 361005, Fujian, Peoples R China..
    A Composite Corrosion Inhibitor of MgAl Layered Double Hydroxides Co-Intercalated with Hydroxide and Organic Anions for Carbon Steel in Simulated Carbonated Concrete Pore Solutions2019In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 166, no 11, p. C3106-C3113Article in journal (Refereed)
    Abstract [en]

    Corrosion of steel in concrete has resulted in shorter service life of concrete constructions and it may also cause serious safety accident. Chloride attack and carbonation of the concrete are two of the most crucial trigger factors for the initiation of corrosion. In order to protect the reinforced steel in concrete from corrosion, in this work, a composite inhibitor of layered double hydroxides (LDHs) intercalated with organic phthalates (PTL) and hydroxide ions (MgAl-LDHs-OH-PTL) were synthesized by calcination-reconstruction methods in ambient atmosphere. The structure, composition and morphology of the prepared MgAl-LDHs-OH-PTL were obtained by X-ray diffraction, Fourier transform infrared spectroscopy and Scanning Electron Microscopy, respectively. The electrochemical measurements indicated that the inhibition efficiency of MgAl-LDHs-OH-PTL for carbon steel in the simulated carbonated concrete pore (SCCP) solutions reached more than 90% when its concentration was 20 g/L. It was found that the MgAl-LDHs-OH-PTL possessed multifunctional protection roles for the carbon steel in concrete, which mainly included decrease of aggressive Cl-ions, increase of the pH of SCCP solutions and release of PTL anions to the solution gradually. The work indicated the promising potential of LDHs compounds as effective multifunctional inhibitors in the field of corrosion protection of reinforced concrete.

  • 53.
    Cao, Yanhui
    et al.
    Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China.;Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Fujian, Peoples R China..
    Zheng, Dajiang
    Xiamen Univ, Coll Mat, Xiamen 361005, Fujian, Peoples R China..
    Luo, Jingsong
    Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China.;Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Fujian, Peoples R China..
    Zhang, Fan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Dong, Shigang
    Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China.;Xiamen Univ, Sch Energy Res, Xiamen 361005, Fujian, Peoples R China..
    Pan, Jinshan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Lin, Changjian
    Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Fujian, Peoples R China.;Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Fujian, Peoples R China.;Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China.;Xiamen Univ, Sch Energy Res, Xiamen 361005, Fujian, Peoples R China..
    Insight into the Fabrication of ZnAl Layered Double Hydroxides Intercalated with Organic Anions and Their Corrosion Protection of Steel Reinforced Concrete2019In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 166, no 16, p. C617-C623Article in journal (Refereed)
    Abstract [en]

    This work provides insight into the fabrication of ZnAl layered double hydroxides (LDHs) intercalated with organic phthalates (PTL) and their corrosion protection of steel reinforced concrete. The structure, composition and morphology of the LDH products prepared by various methods were systematically characterized to find out the relationship of preparation-structure-properties. The ZnAl-LDH-PTL prepared by co-precipitation method presented the best performance of corrosion protection due to its good crystallinity. The corrosion protection mechanism of LDH for steel in concrete system was also discussed.

  • 54.
    Cappellini, Francesca
    et al.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Hedberg, Yolanda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Karolinska Inst, Inst Environm Med, Stockholm, Sweden.
    McCarrick, Sarah
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Hedberg, Jonas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Derr, Remco
    Toxys, Leiden, Netherlands..
    Hendriks, Giel
    Toxys, Leiden, Netherlands..
    Odnevall Wallinder, Inger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Karlsson, Hanna L.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides2018In: Nanotoxicology, ISSN 1743-5390, E-ISSN 1743-5404, Vol. 12, no 6, p. 602-620Article in journal (Refereed)
    Abstract [en]

    An increasing use of cobalt (Co)-based nanoparticles (NPs) in different applications and exposures at occupational settings triggers the need for toxicity assessment. Improved understanding regarding the physiochemical characteristics of Co metal NPs and different oxides in combination with assessment of toxicity and mechanisms may facilitate decisions for grouping during risk assessment. The aim of this study was to gain mechanistic insights in the correlation between NP reactivity and toxicity of three different Co-based NPs (Co, CoO, and Co3O4) by using various tools for characterization, traditional toxicity assays, as well as six reporter cell lines (ToxTracker) for rapid detection of signaling pathways of relevance for carcinogenicity. The results showed cellular uptake of all NPs in lung cells and induction of DNA strand breaks and oxidative damage (comet assay) by Co and CoO NPs. In-depth studies on the ROS generation showed high reactivity of Co, lower for CoO, and no reactivity of Co3O4 NPs. The reactivity depended on the corrosion and transformation/dissolution properties of the particles and the media highlighting the role of the surface oxide and metal speciation as also confirmed by in silico modeling. By using ToxTracker, Co NPs were shown to be highly cytotoxic and induced reporters related to oxidative stress (Nrf2 signaling) and DNA strand breaks. Similar effects were observed for CoO NPs but at higher concentrations, whereas the Co3O4 NPs were inactive at all concentrations tested. In conclusion, our study suggests that Co and CoO NPs, but not Co3O4, may be grouped together for risk assessment.

  • 55.
    Chang, Tingru
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Atmospheric corrosion of copper and copper-based alloys in architecture: from native surface oxides to fully developed patinas2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Copper and copper-based alloys are commonly used in both ancient and modern architecture. This requires an in-depth fundamental and applied understanding on their atmospheric corrosion behavior at different climatic, environmental and pollutant levels and how these parameters influence e.g. corrosion initiation, patina characteristics, aesthetic appearances, corrosion rates, and runoff rates. This doctoral thesis elucidates the role of native surface oxides on the corrosion performance, corrosion initiation, formation and evolution of corrosion products from hours to months, years and even centuries, to diffuse dispersion of metals from Cu metal/Cu alloy surfaces focusing on the roles of alloying elements, microstructure, and deposition of chlorides. In-depth investigations have been performed at both laboratory and field conditions on commercial Cu metal and copper-based alloys of a golden alloy (Cu5Zn5Al1Sn) and Sn-bronzes (Cu4Sn, Cu6Sn). Patina characteristics and relations to the presence of microstructural inclusions have in addition been investigated for historic patinas of Cu metal roofing of different age and origin, highlighted with data for a 400 years old Cu patina exposed at urban conditions.

    A multi-analytical approach comprising microscopic, spectroscopic and electrochemical methods was employed for in-depth investigations of surface characteristics and bulk properties. Electron backscattered diffraction (EBSD) was utilized to characterize the microstructure. Auger electron spectroscopy (scanning-AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES) were employed for surface chemical compositional analysis, and atomic absorption spectroscopy (AAS) to assess the amount of metal release from the patinas. Cathodic reduction (CR) and electrochemical impedance spectroscopy (EIS) were used to assess the amount and corrosion resistance of corrosion products formed at laboratory conditions. Confocal Raman micro-spectroscopy (CRM), infrared reflection absorption spectroscopy (IRAS) and grazing incidence X-ray diffraction (GIXRD) were used to identify the phases of corrosion products. Colorimetry was used to assess surface appearances.

    Cu5Zn5Al1Sn and Cu4Sn/Cu6Sn exhibit favorable bulk properties with respect to corrosion in terms of smaller grain size compared with Cu metal and show non-significant surface compositional variations. The presence of multi-component native oxides predominantly composed of Cu2O enriched with Sn-oxides on Cu4Sn/Cu6Sn, and with ZnO, SnO2 and Al2O3 on Cu5Zn5Al1Sn, improves the barrier properties of the native surface oxides and the overall corrosion resistance of Cu4Sn/Cu6Sn and Cu5Zn5Al1Sn. The formation of Zn/Al/Sn-containing corrosion products (e.g. Zn5(CO3)2(OH)6 and Zn6Al2(OH)16CO3·4H2O) significantly reduces the corrosion rate of Cu5Zn5Al1Sn in chloride-rich environments. Alloying with Sn reduces the corrosion rate of Sn-bronze at urban environments of low chloride levels but results in enhanced corrosion rates at chloride-rich marine conditions.

    A clear dual-layer structure patina was observed for centuries-old naturally patinated copper metal with an origin from the roof of Queen Anne's Summer Palace in Prague, the Czech Republic. The patina comprises an inner sub-layer of Cu2O and an outer sub-layer of Cu4SO4(OH)6/Cu3SO4(OH)4. Abundant relatively noble inclusions (mainly rosiaite (PbSb2O6)) were observed and incorporated in both the copper matrix and the patina. The largest inclusions of higher nobility than the surrounding material create significant micro-galvanic effects that result in a fragmentized patina and large thickness ratios between the Cu4SO4(OH)6/Cu3SO4(OH)4 and the Cu2O sub-layer, investigated via a statistical analysis of inclusions and patina characteristics of eight different historic urban copper patinas.

  • 56.
    Chang, Tingru
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architectureManuscript (preprint) (Other academic)
  • 57.
    Chang, Tingru
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Herting, Gunilla
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Goidanich, S.
    Sánchez Amaya, J. M.
    Arenas, M. A.
    Le Bozec, N.
    Jin, Y.
    Leygraf, Christopher
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Odnevall Wallinder, Inger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture2019In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 149, p. 54-67Article in journal (Refereed)
    Abstract [en]

    The role of Sn on the atmospheric corrosion performance of binary Cu-Sn bronze alloys (4–6 wt.% Sn) compared with Cu metal used in outdoor architecture is elucidated in terms of microstructure, native surface oxide composition, patina evolution, corrosion rates, appearance and metal release. Results are presented for non-exposed surfaces and surfaces exposed at different urban and marine sites in Europe up to 5 years and based on multi-analytical findings from microscopic, spectroscopic, electrochemical and chemical investigations. Alloying influenced the corrosion, aesthetic appearance and patina evolution, differently for urban and marine sites, whereas no effects were observed on the release pattern.

  • 58.
    Chang, Tingru
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Leygraf, Christopher
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Odnevall Wallinder, Inger
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jin, Ying
    Univ Sci & Technol Beijing, Natl Ctr Mat Serv Safety, Beijing 100083, Peoples R China..
    Understanding the Barrier Layer Formed via Adding BTAH in Copper Film Electrodeposition2019In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 166, no 2, p. D10-D20Article in journal (Refereed)
    Abstract [en]

    The influence of surface adsorption of benzotriazole (BTAH) and of chloride ions (Cl-) on the kinetics of copper electrodeposition/dissolution in copper sulfate solutions and on copper deposit characteristics have been investigated using electrochemical quartz crystal microbalance (EQCM) combined with cyclic voltammetry (CV). The addition of BTAH alone increases the overpotential of copper deposition, whereas a Cu(I)BTA complex forms at potentials higher than 0.08 V (vs. SCE) accompanied with the occurrence of copper anodic dissolution. With simultaneous addition of BTAH and Cl-, surface adsorption of Cl- competes with that of BTAH during the initial stage of copper nucleation. Different cuprous reaction intermediates form in the examined potential range -0.4 to 0.3 V (vs. SCE), which partly eliminate the favorable effect of BTAH on the deposited copper. A BTAH-containing adsorbed layer formed on the matte side of electrodeposited copper film in the presence of BTAH with or without Cl-, exhibiting a barrier surface property and an improved corrosion resistance compared with the copper film electrodeposited in the electrolyte without addition of BTAH.

  • 59.
    Chang, Tingru
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. University of Science and Technology Beijing, China.
    Wallinder, Inger Odnevall
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Jin, Ying
    Leygraf, Christofer
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    The golden alloy Cu-5Zn-5Al-1Sn: A multi-analytical surface characterization2018In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 131, p. 94-103Article in journal (Refereed)
    Abstract [en]

    The golden alloy Cu-5Zn-5Al-1Sn has found many applications because of its appearance and resistance to tarnishing. The microstructure and multi-component surface oxide of Cu-5Zn-5Al-1Sn have been investigated through a multi-analytical approach. Compared to commercial Cu metal, Cu-5Zn-5Al-1Sn has significantly smaller grains and higher fraction of coherent twin boundaries. The 5-10 nm thick oxide formed after diamond polishing has four identified sub-oxides all contributing to the overall corrosion resistance. Cu2O is mainly located in the outer part, followed by ZnO, SnO2 and Al2O3 closer to the alloy substrate. The latter three possess barrier properties, while Cu2O exhibits a more complex structure.

  • 60.
    Chaudhary, Himanshu
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Ferreira Fernandes, Ricardo M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, Porto, P-4169-007, Portugal.
    Gowda, Vasantha
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Claessens, Mirelle M. A. E.
    Furo, Istvan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Lendel, Christofer
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Intrinsically disordered protein as carbon nanotube dispersant: How dynamic interactions lead to excellent colloidal stability2019In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 556, p. 172-179Article in journal (Refereed)
    Abstract [en]

    The rich pool of protein conformations combined with the dimensions and properties of carbon nanotubes create new possibilities in functional materials and nanomedicine. Here, the intrinsically disordered protein α-synuclein is explored as a dispersant of single-walled carbon nanotubes (SWNTs) in water. We use a range of spectroscopic methods to quantify the amount of dispersed SWNT and to elucidate the binding mode of α-synuclein to SWNT. The dispersion ability of α-synuclein is good even with mild sonication and the obtained dispersion is very stable over time. The whole polypeptide chain is involved in the interaction accompanied by a fraction of the chain changing into a helical structure upon binding. Similar to other dispersants, we observe that only a small fraction (15–20%) of α-synuclein is adsorbed on the SWNT surface with an average residence time below 10 ms

  • 61. Chen, C.
    et al.
    Cheng, M.
    Li, H.
    Qiao, F.
    Liu, Peng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Kloo, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Molecular engineering of ionic type perylenediimide dimer-based electron transport materials for efficient planar perovskite solar cells2018In: Materials Today Energy, ISSN 2468-6069, Vol. 9, p. 264-270Article in journal (Refereed)
    Abstract [en]

    The main of this work is to overcome the drawbacks of the traditional fullerene derivatives used as electron transport materials (ETMs) for perovskite solar cells (PSCs). Herein, a new strategy to design non-fullerene ETMs is presented by molecular engineering to include charged moieties in the ETM. The designed ETM FA2+-PDI2 is intrinsically ionic and the incorporated counter ions in FA2+-PDI2 significantly increase the electron conductivity and improve the film formation properties. Through careful device optimization, PSCs based on the ionic ETM FA2+-PDI2 exhibit an impressive average power conversion efficiency (PCE) of 17.0%, which is comparable to the PSC based on PC61BM (17.5%). The superior photovoltaic performance can be attributed to efficient electron extraction and effective electron transfer in the PSCs. This work provides important insights regarding the future design of new and efficient non-fullerene ETMs for PSCs. 

  • 62.
    Chen, Cheng
    et al.
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Li, Hongping
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Ding, Xingdong
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Cheng, Ming
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Li, Henan
    Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China..
    Xu, Li
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Qiao, Fen
    Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China..
    Li, Huaming
    Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China..
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Molecular Engineering of Triphenylamine-Based Non-Fullerene Electron-Transport Materials for Efficient Rigid and Flexible Perovskite Solar Cells2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 45, p. 38970-38977Article in journal (Refereed)
    Abstract [en]

    There has been a growing interest in the design and synthesis of non-fullerene electron transport materials (ETMs) for perovskite solar cells (PSCs), which may overcome the drawbacks of traditional fullerene derivatives. In this work, a novel donor-acceptor (D-A) structured ETM termed TPA-3CN is presented by molecular engineering of triphenylamine (TPA) as the donor group and (3-cyano-4,5,5-trimethyl-2(5H)-furanylidene) malononitrile as the acceptor group. To further improve the electron mobility and conductivity and achieve excellent photovoltaic performance, a solution processable n-type dopant is introduced during the ETM spin-coating step. After device optimization, PSCs based on the doped TPA-3CN exhibit an impressive power conversion efficiency (PCE) of 19.2% with a negligible hysteresis. Benefitting from the low temperature and good solution processability of ETM TPA-3CN, it was further applied in flexible inverted PSCs and an impressive PCE of 13.2% was achieved, which is among the highest values reported for inverted flexible fullerene-free PSCs.

  • 63. Chen, H.
    et al.
    Gao, Y.
    Ye, L.
    Yao, Y.
    Chen, X.
    Wei, Y.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    A Cu2Se-Cu2O film electrodeposited on titanium foil as a highly active and stable electrocatalyst for the oxygen evolution reaction2018In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 39, p. 4979-4982Article in journal (Refereed)
    Abstract [en]

    Many nonprecious metal-selenide-based materials have been reported as electrocatalysts with high activity for the oxygen evolution reaction (OER). Herein, a hybrid catalyst film composed of Cu2Se and Cu2O nanoparticles directly grown on Ti foil (Cu2Se-Cu2O/TF) was prepared through a simple and fast cathodic electrodeposition method. Surprisingly, this electrode required a relatively low overpotential of 465 mV to achieve a catalytic current density of 10 mA cm-2 for the OER in 0.2 M carbonate buffer (pH = 11.0). Furthermore, a long-term constant current electrolysis test confirmed the high durability of the Cu2Se-Cu2O/TF anode at a current density of 10 mA cm-2 over 20 h. The XRD, TEM and XPS analysis of the sample after the OER indicated that a CuO protective layer formed on the surface of the Cu2Se-Cu2O catalyst, which effectively suppressed further oxidation of the Cu2Se-Cu2O catalyst during the OER and resulted in sustained catalytic oxidation of water.

  • 64.
    Chen, Pan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Terenzi, Camilla
    Wageningen Univ & Res, Wageningen, Netherlands..
    Furo, Istvan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Heterogeneous dynamics in cellulose from molecular dynamics simulations2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 65.
    Chen, Pan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Engn Res Ctr Cellulose & Its Derivat, 5 South Zhongguancun St, Beijing 100081, Peoples R China..
    Terenzi, Camilla
    Wageningen Univ & Res, Lab Biophys, Stippeneng 4, NL-6708 WE Wageningen, Netherlands..
    Furo, Istvan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Quantifying Localized Macromolecular Dynamics within Hydrated Cellulose Fibril Aggregates2019In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 52, no 19, p. 7278-7288Article in journal (Refereed)
    Abstract [en]

    Molecular dynamics (MD) simulations of C-13 NMR longitudinal relaxation (T-1) distributions were recently established as a powerful tool for characterizing moisture adsorption in natural amorphous polymers. Here, such computational-experimental synergy is demonstrated in a system with intrinsically high structural heterogeneity, namely crystalline cellulose nanofibrils (CNFs) in highly hydrated aggregated state. In such a system, structure-function properties on the nanoscale remain largely uncovered by experimental means alone. In this work, broadly polydispersed experimental C-13 NMR T-1 distributions could be successfully reproduced in simulations and, for the first time, were decomposed into contributions from distinct molecular sources within the aggregated CNFs, namely, (i) the core and (ii) the less-accessible and accessible surface regions of the CNFs. Furthermore, within the surface groups structurally different sites such as (iii) residues with different hydroxymethyl orientations and (iv) center and origin chains could be discerned based on their distinct molecular dynamics. The MD simulations unravel a direct correlation between dynamical and structural heterogeneity at an atomistic-level resolution that cannot be accessed by NMR experiments. The proposed approach holds the potential to enable quantitative interpretation of NMR data from a range of multicomponent high-performance nanocomposites with significantly heterogeneous macromolecular structure.

  • 66.
    Chen, Song
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Abdel-Magied, Ahmed F.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Fu, Le
    Uppsala Universitet, Department of Engineering Sciences.
    Jonsson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Incorporation of strontium and europium in crystals of α-calcium isosaccharinate2019In: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 364, p. 309-316Article in journal (Refereed)
    Abstract [en]

    The final repository for short-lived, low and intermediate level radioactive waste in Sweden is built to act as a passive repository. Already within a few years after closure water will penetrate the repository and conditions of high alkalinity (pH 10.5―13.5) and low temperature (< 7 °C) will prevail. The mobility of radionuclides in the repository is dependent on the radionuclides distribution between solid and liquid phases. In the present work the incorporation of strontium (II) and europium (III) in α-calcium isosaccharinate (ISA) under alkaline conditions (pH ~10) at 5 °C and 50 °C have been studied. The results show that strontium and europium are incorporated into α-Ca(ISA)2 when crystallized both at 5 °C and 50 °C. Europium is incorporated to a greater extent than strontium. The highest incorporation of europium and strontium at 5 °C rendered the phase compositions Ca0.986Eu0.014(ISA)2 (2.4% of Eu(ISA)3 by mass) and Ca0.98Sr0.02(ISA)2 (2.2% of Sr(ISA)2 by mass). XPS spectra show that both trivalent and divalent Eu coexist in the Eu incorporated samples. Strontium ions were found to retard the elongated growth of the Ca(ISA)2crystals. The incorporation of Sr2+ and Eu3+ into the solid phase of Ca(ISA)2 is expected to contribute to a decreased mobility of these ions in the repository.

  • 67.
    Chen, Sulin
    et al.
    Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China..
    Shen, Bin
    Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China..
    Zhang, Fan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Hong, Hong
    Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China..
    Pan, Jinshan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Mussel-Inspired Graphene Film with Enhanced Durability as a Macroscale Solid Lubricant2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 34, p. 31386-31392Article in journal (Refereed)
    Abstract [en]

    Graphene has exhibited massive potential as a macroscale solid lubricant, but its durability is limited due to the weak adhesion between graphene sheets and the substrate. Here, inspired by mussel adhesive protein (MAP), effective reinforcement of the graphene-substrate interaction to attain remarkable enhancement on the durability of the graphene film is presented. The mussel-inspired graphene (mGr) film exhibits a coefficient of friction stabilizing at 0.16 up to 490000 sliding cycles in the friction testing against the silicon nitride ball; in the identical sliding condition, comparatively, the graphene (Gr) film without MAP only lasts 4300 sliding cycles. The analysis of Raman and ATR-FTIR demonstrates that, on the one hand, the MAP film firmly adsorbs onto the substrate via forming metal-catechol coordination bonds with metal atoms; on the other hand, it establishes strong interactions with graphene sheets by hydrogen bonding as well as the pi-pi overlap. As an interlayer, MAP retains graphene sheets within the contact interface in the form of a compact tribo-layer, which results in an over 2 orders of magnitude enhancement of durability for the mGr film. This strategy of improving the graphene-substrate adhesion via MAP offers an avenue for the development of effective and reliable graphene-based solid lubricants for engineering applications.

  • 68.
    Cheng, Jie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Tsinghua University, Beijing, China.
    Pan, J.
    Wang, T.
    Lu, X.
    Micro-galvanic corrosion of Cu/Ru couple in potassium periodate (KIO4) solution2018In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 137, p. 184-193Article in journal (Refereed)
    Abstract [en]

    This paper focuses on the study of micro-galvanic corrosion of the Cu/Ru couple in KIO4 solution. Practical nobility across the Cu/Ru interface was evaluated by Volta potential mapping, and the morphological changes were monitored by in-situ atomic force microscopy measurements during exposure in a KIO4 solution. Chemical composition of precipitated corrosion product was analyzed by Confocal Raman spectroscopy immediately after the exposure. The results show that Cu is the anode of the Cu/Ru couple, and accelerated dissolution of Cu preferentially occurs near the Cu/Ru interface. However, subsequent formation of insoluble Cu(IO3)2·nH2O leads to precipitation, which impedes further Cu corrosion.

  • 69.
    Chernyshev, Alexander
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Jonsson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Impact of organic cement additives on the mobility of radionuclides in a radioactive waste repository2017Conference paper (Refereed)
  • 70.
    Chernyshev, Alexander N.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Jonsson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Characterization and degradation of a polyaryl ether based superplasticizer for use in concrete barriers in deep geological repositories2018In: Applied Geochemistry, ISSN 0883-2927, E-ISSN 1872-9134, Vol. 95, p. 172-181Article in journal (Refereed)
    Abstract [en]

    Superplasticizers are important additives used in concrete barriers in geological waste repositories. Superplasticizers have been a major concern in the long-term assessments of safe geological disposal for radioactive waste since superplasticizers and their degradation products can act as complexing ligands and thereby increase the mobility of radionuclides. In this work a new type of superplasticizer, based on a polyaryl ether polymer, has been characterized. It was found that the superplasticizer combines the structural features of polycarboxylate ether based superplasticizers and sulfonated naphthalene-formaldehyde based superplasticizers and that it contains organophosphatecharged groups. A novel method for evaluating the rate of degradation of the superplasticizer under alkaline conditions was elaborated and the degradation products and rate constant of the process was determined. The results demonstrate that degradation occurs rapidly compared to the typical lifetime of a repository.

  • 71.
    Cifelli, M.
    et al.
    Univ Pisa, Dipartimento Chim & Chim Ind, I-56124 Pisa, Italy..
    Domenici, V.
    Univ Pisa, Dipartimento Chim & Chim Ind, I-56124 Pisa, Italy..
    Chizhik, V. I.
    St Petersburg State Univ, Dept Phys, St Petersburg 199034, Russia..
    Dvinskikh, Sergey
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. St Petersburg State Univ, Lab Biomol NMR, St Petersburg 199034, Russia.
    N-15-C-13 Dipole Couplings in Smectic Mesophase of a Thermotropic Ionic Liquid2018In: Applied Magnetic Resonance, ISSN 0937-9347, E-ISSN 1613-7507, Vol. 49, no 6, p. 553-562Article in journal (Refereed)
    Abstract [en]

    Unique combination of ionic conductivity and anisotropic physical properties in ionic liquid crystals leads to new dynamic properties exploited in modern technological applications. Structural and dynamics information at atomic level for molecules and ions in mesophases can be obtained by nuclear magnetic resonance (NMR) spectroscopy through the measurements of dipole-dipole spin couplings. While C-13-H-1 and N-15-H-1 dipolar NMR spectra can be routinely acquired in samples with natural isotopic abundance, recording N-15-C-13 dipolar NMR spectra is challenging because of the unfavourable combination of two rare isotopes. In the present study, an approach to measure N-15-C-13 dipole-dipole NMR spectra in static liquid crystalline samples with natural abundance is introduced. We demonstrate that well-resolved spectra can be recorded within 10 h of experimental time using a conventional NMR probe and a moderately strong magnetic field. The technique is applied to a thermotropic smectic mesophase formed by an ionic liquid with imidazolium-based organic cation.

  • 72.
    Claesson, Per M.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE.
    Dobryden, Illia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    He, Yunjuan
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
    Li, Gen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Surface Nanomechanics of Coatings and Hydrogels2019In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing , 2019, no 1Conference paper (Refereed)
    Abstract [en]

    Due to the increasing use of nanostructured materials and thin coatings as barrier materials, it has become of high importance to measure and understand material properties on the nm to 100 nm length scales. In this article we demonstrate and discuss how atomic force microscopy techniques can be used to this end. It is demonstrated that the classical analysis based on the assumption of a purely elastic material response is a fair approximation for relatively stiff coatings (elastic modulus order of GPa), whereas viscous responses must be considered for soft materials (apparent modulus order of MPa) such as hydrogels.

  • 73.
    Cuartero, Maria
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Chai, Lijun
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    De Marco, Roland
    Univ Sunshine Coast, Fac Sci Hlth Educ & Engn, 90s Sippy Downs Dr, Sippy Downs, Qld 4556, Australia.;Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia.;Curtin Univ, Fuels & Energy Technol Inst, Perth, WA 6102, Australia..
    Crespo, Gaston A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Ferrocene self assembled monolayer as a redox mediator for triggering ion transfer across nanometer-sized membranes2019In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 315, p. 84-93Article in journal (Refereed)
    Abstract [en]

    Modulation of ion-transfer processes across nanometer-sized voltammetry membranes by ferrocene-based self-assembled monolayer on regular glassy carbon electrode is herein demonstrated. The composition of the membrane is advantageously tuned to promote either cation or anion transfer: the presence of an exchangeable cation results in cation transfer, whereas a lipophilic salt induces anion transfer through the fulfilment of the electroneutrality of the system. When an anodic scan oxidizes ferrocene moieties in the monolayer, these are stabilized by the pairing of lipophilic anions present in the membrane. As a result, either, hydrophilic cations present in the membrane are expelled into the solution or anions enter from the solution generating hence reversible and voltammetric waves for these transfers. The use of a redox active monolayer rather than a conducting polymer film or a redox active compound into the membrane overcomes a number of drawbacks previously manifested by these systems. The confinement of the redox process in a thin film at the immediate vicinity of the membrane allows to avoid the need of elevated number of redox moieties to be sued in the membrane, therefore suppressing its acute leaching and being compatible with the incorporation of both cation and anion ionophores for the first time. In this sense, assisted transfer of lithium and chloride are shown as proof-of-concept. Here, the peak potential of the associated voltammetric waves shifts according to the Nernst equation, in analogy to potentiometric sensors. Analytical detection of lithium and chloride ions in real samples is additionally presented.

  • 74.
    Cuartero, Maria
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Crespo, Gaston A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    All-solid-state potentiometric sensors: A new wave for in situ aquatic research2018In: Current Opinion in Electrochemistry, ISSN 2451-9103, Vol. 10, p. 98-106Article in journal (Refereed)
    Abstract [en]

    Over the last few years, all-solid-state potentiometric ion-selective sensors have demonstrated a huge potential for environmental water analysis. Beyond the excellent analytical performances exhibited in benchtop conditions for the detection of important targets (e.g. pH, species relevant to the carbon and nitrogen cycles, trace metals), the challenge now lies in bringing those sensors to in situ format and obtaining valuable chemical information directly in the field while minimizing or avoiding the need for sampling. Technically speaking, the instrumentation for potentiometric assessment is extremely simple, low cost and requires minimal space. In addition, the all-solid-state configuration seems ideal to fabricate miniaturized sensors with sufficient analytical performance to detect certain ions in water resources. Herein, we highlight the power of all-solid-state potentiometric sensors applied to environmental water analysis providing a threefold overview: (i) the recent materials used in the fabrication of all-solid-state polymeric membrane electrodes, both the solid contact and ion-selective membrane; (ii) a collection of the main targets explored during the last 5 years; and (iii) examples of the most recent and relevant in situ applications employing submersible equipment. Throughout the review, issues such as ‘What are the real implications of all-solid-state membrane electrodes in the environmental field?’ and ‘To what extent has the effort in developing new sensors over time been well-exploited?’ are addressed. Convincingly, all-solid-state potentiometric sensors are positioning as a unique in situ interface providing real-time data that allow for an understanding of ongoing biogeochemical processes and possible anthropogenic activities implications.

  • 75.
    Cuartero, Maria
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Crespo, Gaston A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Using Potentiometric Electrodes Based on Nonselective Polymeric Membranes as Potential Universal Detectors for Ion Chromatography: Investigating an Original Research Problem from an Inquiry-Based-Learning Perspective2018In: Journal of Chemical Education, ISSN 0021-9584, E-ISSN 1938-1328, Vol. 95, no 12, p. 2172-2181Article in journal (Refereed)
    Abstract [en]

    Because traditional laboratory practices in advanced chemistry education are being replaced by inquiry based approaches, we present herein a new laboratory activity based on a small research project that was designed and executed by students. The laboratory project aims at answering a well-defined research question: how far can potentiometric electrodes based on nonselective polymeric membranes be used as universal detectors in ion chromatography (IC)? Hence, the experiments were designed and conducted to explore the analytical performances of potentiometric electrodes based on different commercial membranes that are typically used in electrodialysis. The nonselective behavior shown by the electrodes permits a critical evaluation of their further implementation as a universal detector of anions in regular IC. Thus, the students were able to integrate a nonselective potentiometric sensor to analyze several anions in flow mode, mimicking the signal that is to be obtained using such electrodes as an IC detector. The proposed practice covers different pedagogical purposes: (i) to develop competence toward "thinking like a scientist" through reflective teaching; (ii) to promote argumentation skills and critical decision making; (iii) to improve students' research-planning and experimental-design skills; (iv) to refresh conceptual knowledge about analytical detectors, which typically goes unnoticed in laboratory practices; and (v) to reinforce students' knowledge about the basis of potentiometry. Furthermore, the present document may serve as an easy guide to develop other laboratory practices based on potentiometric sensors.

  • 76.
    Cánovas, Rocío
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Cuartero, Maria
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Crespo, Gaston A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Modern creatinine (Bio)sensing: Challenges of point-of-care platforms2019In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 130, p. 110-124Article, review/survey (Refereed)
    Abstract [en]

    The importance of knowing creatinine levels in the human body is related to the possible association with renal, muscular and thyroid dysfunction. Thus, the accurate detection of creatinine may indirectly provide information surrounding those functional processes, therefore contributing to the management of the health status of the individual and early diagnosis of acute diseases. The questions at this point are: to what extent is creatinine information clinically relevant?; and do modern creatinine (bio)sensing strategies fulfil the real needs of healthcare applications? The present review addresses these questions by means of a deep analysis of the creatinine sensors reported in the literature over the last five years. There is a wide range of techniques for detecting creatinine, most of them based on optical readouts (20 of the 33 papers collected in this review). However, the use of electrochemical techniques (13 of the 33 papers) is recently emerging in alignment with the search for a definitive and trustworthy creatinine detection at the point-of-care level. In this sense, biosensors (7 of the 33 papers) are being established as the most promising alternative over the years. While creatinine levels in the blood seem to provide better information about patient status, none of the reported sensors display adequate selectivity in such a complex matrix. In contrast, the analysis of other types of biological samples (e.g., saliva and urine) seems to be more viable in terms of simplicity, cross-selectivity and (bio)fouling, besides the fact that its extraction does not disturb individual's well-being. Consequently, simple tests may likely be used for the initial check of the individual in routine analysis, and then, more accurate blood detection of creatinine could be necessary to provide a more genuine diagnosis and/or support the corresponding decision-making by the physician. Herein, we provide a critical discussion of the advantages of current methods of (bio)sensing of creatinine, as well as an overview of the drawbacks that impede their definitive point-of-care establishment.

  • 77.
    Dahlgren, Björn
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Dispenza, Clelia
    Jonsson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Numerical Simulation of the Kinetics of Radical Decay in Single-Pulse High-Energy Electron-Irradiated Polymer Aqueous Solutions2019In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 123, no 24, p. 5043-5050Article in journal (Refereed)
    Abstract [en]

    A new method for the numerical simulation of the radiation chemistry of aqueous polymer solutions is introduced. The method makes use of a deterministic approach combining the conventional homogeneous radiation chemistry of water with the chemistry of polymer radicals and other macromolecular species. The method is applied on single-pulse irradiations of aqueous polymer solutions. The speciation of macromolecular species accounts for the variations in the number of alkyl radicals per chain, molecular weight, and number of internal loops (as a consequence of an intramolecular radical-radical combination). In the simulations, the initial polymer molecular weight, polymer concentration, and dose per pulse (function of pulse length and dose rate during the pulse) were systematically varied. In total, 54 different conditions were simulated. The results are well in line with the available experimental data for similar systems. At a low polymer concentration and a high dose per pulse, the kinetics of radical decay is quite complex for the competition between intra- and intermolecular radical-radical reactions, whereas at a low dose per pulse the kinetics is purely second-order. The simulations demonstrate the limitations of the polymer in scavenging all the radicals generated by water radiolysis when irradiated at a low polymer concentration and a high dose per pulse. They also show that the radical decay of lower-molecular-weight chains is faster and to a larger extent dominated by intermolecular radical-radical reactions, thus explaining the mechanism behind the experimentally observed narrowing of molecular weight distributions.

  • 78.
    Dahlgren, Björn
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Sabatino, Maria Antonietta
    Univ Palermo, Dipartimento Ingn, Viale Sci 6, I-90128 Palermo, Italy..
    Dispenza, Clelia
    Univ Palermo, Dipartimento Ingn, Viale Sci 6, I-90128 Palermo, Italy.;CNR, Ist Biofis IBF, Via U La Malfa 153, I-90146 Palermo, Italy..
    Jonsson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Numerical Simulations of Nanogel Synthesis Using Pulsed Electron Beam2019In: Macromolecular Theory and Simulations, ISSN 1022-1344, E-ISSN 1521-3919, article id 1900046Article in journal (Refereed)
    Abstract [en]

    In this work, a new method for numerical simulation of the radiation chemistry of aqueous polymer solutions exposed to a sequence of electron pulses is presented. The numerical simulations are based on a deterministic approach encompassing the conventional homogeneous radiation chemistry of water as well as the chemistry of polymer radicals. The multitude of possible reactions in the macromolecular system is handled by allowing for a large number of macromolecular species. The speciation of macromolecular species is done to account for variations in molecular weight, number of alkyl radicals per chain, number of peroxyl radicals per chain, number of oxyl radicals per chain, and number of internal loops. As benchmarking, previously published results from a series of experiments on pulsed irradiation of aqueous poly(N-vinylpyrrolidone) (PVP) solutions are used. The numerical simulations clearly show that the pulsed nature of the radiation must be accounted for. The simulations qualitatively reproduce the experimentally observed impact of initial gas saturation (air and N2O) and polymer concentration on the molecular chain length upon irradiation. The formation of double bonds as a function of dose as well as the impact of effective dose rate on the final chain length are also qualitatively reproduced in the simulations.

  • 79.
    Dai, Jing
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Ferreira Fernandes, Ricardo Manuel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. Univ Porto, CIQUP, Dept Chem & Biochem, Fac Sci, P-4169007 Porto, Portugal..
    Regev, Oren
    Ben Gurion Univ Negev, Dept Chem Engn, IL-84105 Beer Sheva, Israel.;Ben Gurion Univ Negev, Ilse Katz Inst Nanotechnol, IL-84105 Beer Sheva, Israel..
    Marques, Eduardo F.
    Univ Porto, CIQUP, Dept Chem & Biochem, Fac Sci, P-4169007 Porto, Portugal..
    Furo, Istvan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Dispersing Carbon Nanotubes in Water with Amphiphiles: Dispersant Adsorption, Kinetics, and Bundle Size Distribution as Defining Factors2018In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, no 42, p. 24386-24393Article in journal (Refereed)
    Abstract [en]

    Debundling and dispersing single-walled carbon nanotubes (SWNTs) is essential for applications, but the process is not well understood. In this work, aqueous SWNT dispersions were produced by sonicating pristine SWNT powder in the presence of an amphiphilic triblock copolymer (Pluronic F127) as dispersant. Upon centrifugation, one obtains a supernatant with suspended individual tubes and thin bundles and a precipitate with large bundles (and impurities). In the supernatant, that constitutes the final dispersion, we determined the dispersed SWNT concentration by thermogravi-metric analysis (TGA) and UV-vis spectroscopy, and the dispersant concentration by NMR The fraction of dispersant adsorbed at the SWNT surface was obtained by H-1 diffusion NMR Sigmoidal dispersion curves recording the concentration of dispersed SWNTs as a function of supernatant dispersant concentration were obtained at different SWNT loadings and sonication times. As SWNT bundles are debundled into smaller and smaller ones, the essential role of the dispersant is to sufficiently quickly cover the freshly exposed surfaces created by shear forces induced during sonication. Primarily kinetic reasons are behind the need for dispersant concentrations required to reach a substantial SWNT concentration. Centrifugation sets the size threshold below which SWNT particles are retained in the dispersion and consequently determines the SWNT concentration as a function of sonication time.

  • 80.
    Dai, Jing
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Kharkov, Boris B.
    St Petersburg State Univ, Lab Biomol NMR, St Petersburg 199034, Russia..
    Dvinskikh, Sergey V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Molecular and Segmental Orientational Order in a Smectic Mesophase of a Thermotropic Ionic Liquid Crystal2019In: Crystals, ISSN 2073-4352, Vol. 9, no 1, article id 18Article in journal (Refereed)
    Abstract [en]

    We investigate conformational dynamics in the smectic A phase formed by the mesogenic ionic liquid 1-tetradecyl-3-methylimidazolium nitrate. Solid-state high-resolution C-13 nuclear magnetic resonance (NMR) spectra are recorded in the sample with the mesophase director aligned in the magnetic field of the NMR spectrometer. The applied NMR method, proton encoded local field spectroscopy, delivers heteronuclear dipolar couplings of each C-13 spin to its H-1 neighbours. From the analysis of the dipolar couplings, orientational order parameters of the C-H bonds along the hydrocarbon chain were determined. The estimated value of the molecular order parameter S is significantly lower compared to that in smectic phases of conventional non-ionic liquid crystals.

  • 81.
    Dai, Jing
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Majhi, Debashis
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Kharkov, Boris B.
    St Petersburg State Univ, Lab Biomol NMR, St Petersburg 199034, Russia..
    Dvinskikh, Sergey, V
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. St Petersburg 199034, Russia..
    NMR Spectroscopic Study of Orientational Order in Imidazolium-Based Ionic Liquid Crystals2019In: Crystals, ISSN 2073-4352, Vol. 9, no 10, article id 495Article in journal (Refereed)
    Abstract [en]

    We report on molecular and local orientational order of a series of imidazolium-based ionic liquid crystals exhibiting layered smectic A mesophase. Materials constituting of 1-dodecyl-3-methylimidazolium cation, and different counter-ions, were investigated. We apply two-dimensional C-13-H-1 dipolar NMR spectroscopy to quantify orientational order of C-H bonds of the organic cation. The experimental data supported the structural model of the interdigitated chains aligned with the smectic layer normal. Molecular order parameter S was found to increase in the anion sequence BF4- < I- < Br- < Cl-. This trend correlates well with ionic radius, negative charge delocalization, and hydrogen-bonding properties of the anions.

  • 82.
    Daniel, Quentin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Duan, Lele
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Timmer, Brian J. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Chen, Hong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Luo, Xiaodan
    Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China..
    Ambre, Ram
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Wang, Ying
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Zhang, Peili
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Wang, Lei
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Li, Fusheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Junliang
    Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China..
    Ahlquist, Mårten S. G.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Water Oxidation Initiated by In Situ Dimerization of the Molecular Ru(pdc) Catalyst2018In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 8, no 5, p. 4375-4382Article in journal (Refereed)
    Abstract [en]

    The mononuclear ruthenium complex [Ru(pdc)L-3] (H(2)pdc = 2,6-pyridinedicarboxylic acid, L = N-heterocycles such as 4-picoline) has previously shown promising catalytic efficiency toward water oxidation, both in homogeneous solutions and anchored on electrode surfaces. However, the detailed water oxidation mechanism catalyzed by this type of complex has remained unclear. In order to deepen understanding of this type of catalyst, in the present study, [Ru(pdc)(py)(3)] (py = pyridine) has been synthesized, and the detailed catalytic mechanism has been studied by electrochemistry, UV-vis, NMR, MS, and X-ray crystallography. Interestingly, it was found that once having reached the Ru-IV state, this complex promptly formed a stable ruthenium dimer [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(2)](+). Further investigations suggested that the present dimer, after one pyridine ligand exchange with water to form [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(H2O)](+), was the true active species to catalyze water oxidation in homogeneous solutions.

  • 83.
    Danielsson, Marie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Zhao, Tao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Department of Science and Technology, Örebro University, Örebro, Sweden.
    Borg-Karlson, Anna-Karin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Arthropod infestation sites and induced defence can be traced by emission from single spruce needles2019In: Arthropod-Plant Interactions, ISSN 1872-8855, E-ISSN 1872-8847, Vol. 13, no 2, p. 253-259Article in journal (Refereed)
    Abstract [en]

    Emissions of defence chemicals from Norway spruce seedlings can be induced by feeding arthropods or by exogenous hormonal application. Some defence chemicals may attract or repel associated arthropods. The aim of this study was to show that it is possible to detect and collect stress-induced volatiles from micro sites, such as at the scale of a single needle, in vivo by using SPME. Methyl jasmonate application on the stem of Norway spruce seedlings induced emission of (E)-beta-farnesene only from the needles closest to the application site. Emissions of (E)-beta-farnesene, (E,E)-alpha-farnesene and (E)-alpha-bisabolene were only detected from needles infested by the spider mite Oligonychus ununguis. The total volatile amount detected by SPME-GC-MS reached a considerable mass of 14 ng/needle/24 h, suggesting that emission from damaged and stressed conifers might have a larger impact on the macro climate than previously estimated.

  • 84.
    de Jesus, Liana Inara
    et al.
    Univ Fed Parana, Dept Biochem & Mol Biol, CP 19046, Curitiba, PR, Brazil..
    Smiderle, Fhernanda R.
    Univ Fed Parana, Dept Biochem & Mol Biol, CP 19046, Curitiba, PR, Brazil..
    Ruthes, Andrea C.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Dal'Lin, Fernando Tonholi
    Univ Fed Parana, Dept Pharmacol, CP 19046, Curitiba, PR, Brazil..
    Maria-Ferreira, Daniele
    Univ Fed Parana, Dept Biochem & Mol Biol, CP 19046, Curitiba, PR, Brazil.;Univ Fed Parana, Dept Pharmacol, CP 19046, Curitiba, PR, Brazil..
    Werner, Maria Fernanda
    Univ Fed Parana, Dept Pharmacol, CP 19046, Curitiba, PR, Brazil..
    Van Griensven, Leo J. L. D.
    Wageningen Univ & Res, Plant Res Int, Bomsesteeg 1, NL-6708 PD Wageningen, Netherlands..
    Iacomini, Marcello
    Univ Fed Parana, Dept Biochem & Mol Biol, CP 19046, Curitiba, PR, Brazil..
    Chemical characterization and wound healing property of a beta-D-glucan from edible mushroom Piptoporus betulinus2018In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 117, p. 1361-1366Article in journal (Refereed)
    Abstract [en]

    A water-soluble beta-D-glucan was obtained from fruiting bodies of Piptoporus betulinus, by hot aqueous extraction followed by freeze-thawing procedure and dialysis. Its molar mass distribution and conformational behavior in solution was assessed by size-exclusion chromatography coupled with multiangle laser light scattering, showing a polysaccharide with an average molecular weight of 2.5 x 10(5) Da with a random coil conformation for molecular weights below 1 x 10(6) Da. Typical signals of beta-(1 -> 3)-linkages were observed in NMR spectrum (delta 102.7/4.76; 102.8/4.74; 102.9/4.52; and delta 85.1/3.78; 85.0/3.77) and also signals of O-6 substitution at delta 69.2/4.22 and 69.2/3.87. The analysis of partially O-methylated alditol acetates corroborates the NMR results, indicating the presence of a beta-D-glucan with a main chain (1 -> 3)-linked, substituted at O-6 by single-units of glucose. The beta-D-glucan showed no toxicity on human colon carcinoma cell line (Caco-2) up to 1000 mu g mL(-1) and promoted cell migration on in vitro scratch assay, demonstrating a potential wound healing capacity.

  • 85.
    de Jong, Jasper M. A.
    et al.
    Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Stockholm, Sweden.;Yale Sch Med, Dept Comparat Med, New Haven, CT USA..
    Sun, Wenfei
    Eidgenoss Tech Hsch Zurich, Inst Food Nutr & Hlth, Schwerzenbach, Switzerland..
    Pires, Nuno D.
    Frontini, Andrea
    Univ Pavia, Dept Publ Hlth Expt & Forens Med, Pavia, Italy..
    Balaz, Miroslav
    Eidgenoss Tech Hsch Zurich, Inst Food Nutr & Hlth, Schwerzenbach, Switzerland..
    Jespersen, Naja Z.
    Univ Hosp Copenhagen, Ctr Inflammat & Metab, Rigshosp, Copenhagen, Denmark.;Univ Hosp Copenhagen, Ctr Phys Activ Res, Rigshosp, Copenhagen, Denmark.;Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Feizi, Amir
    Novo Nordisk Res Ctr Oxford, Oxford, England..
    Petrovic, Katarina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Fischer, Alexander W.
    Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Stockholm, Sweden.;Univ Med Ctr Hamburg Eppendorf, Dept Biochem & Mol Cell Biol, Hamburg, Germany.;Harvard TH Chan Sch Publ Hlth, Dept Genet & Complex Dis, Boston, MA USA.;Harvard Med Sch, Dept Cell Biol, Boston, MA 02115 USA..
    Bokhari, Muhammad Hamza
    Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Stockholm, Sweden..
    Niemi, Tarja
    Turku Univ Hosp, Dept Surg, Turku, Finland..
    Nuutila, Pirjo
    Cinti, Saverio
    Univ Ancona, Dept Expt & Clin Med, Ancona, Italy..
    Nielsen, Soren
    Scheele, Camilla
    Univ Hosp Copenhagen, Ctr Inflammat & Metab, Rigshosp, Copenhagen, Denmark.;Univ Hosp Copenhagen, Ctr Phys Activ Res, Rigshosp, Copenhagen, Denmark.;Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark..
    Virtanen, Kirsi
    Univ Turku, Turku PET Ctr, Turku, Finland..
    Cannon, Barbara
    Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Stockholm, Sweden..
    Nedergaard, Jan
    Wolfrum, Christian
    Eidgenoss Tech Hsch Zurich, Inst Food Nutr & Hlth, Schwerzenbach, Switzerland..
    Petrovic, Natasa
    Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, Stockholm, Sweden..
    Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice2019In: NATURE METABOLISM, ISSN 2522-5812, Vol. 1, no 8, p. 830-843Article in journal (Refereed)
    Abstract [en]

    Human and rodent brown adipose tissues (BAT) appear morphologically and molecularly different. Here we compare human BAT with both classical brown and brite/beige adipose tissues of 'physiologically humanized' mice: middle-aged mice living under conditions approaching human thermal and nutritional conditions, that is, prolonged exposure to thermoneutral temperature (approximately 30 degrees C) and to an energy-rich (high-fat, high-sugar) diet. We find that the morphological, cellular and molecular characteristics (both marker and adipose-selective gene expression) of classical brown fat, but not of brite/beige fat, of these physiologically humanized mice are notably similar to human BAT. We also demonstrate, both in silico and experimentally, that in physiologically humanized mice only classical BAT possesses a high thermogenic potential. These observations suggest that classical rodent BAT is the tissue of choice for translational studies aimed at recruiting human BAT to counteract the development of obesity and its comorbidities.

  • 86.
    Dedinaite, Andra
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    How synergistic aqueous lubrication is mediated by natural and synthetic molecular aggregates2019In: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing , 2019, no 1Conference paper (Refereed)
    Abstract [en]

    Nature lubricates in aqueous environment, and thus the example of a human synovial joint with its seamless function has been a fascination for scientists since the times of the birth of modern science. Here, inspired by nature, we investigate the mechanistic function of three different types of synergistic molecular aggregates. Firstly, we show how simple phospholipids lubricate hydrophilic model surfaces of silica and how this lubrication is facilitated further by the presence of an anionic polysaccharide, hyaluronan, due to the enhanced surface build-up of lubricant material. Next, we mimic natural polylectrolytesurfactant aggregation by employing a highly positively charged polyelectrolyte and anionic surfactant that strongly associate both in the bulk and at the surfaces by building structured aggregates that lubricate due to hydration lubrication. This occurs despite of the presence of strong attraction between the lubricated surfaces. This is an example of synergistic lubrication due to particular internal structural arrangement of the aggregates. Finally, we investigate the case of synergistic lubrication due to preferential surface ordering of two biological polyelectrolytes, cartilage oligomeric matrix protein and lubricin, that leads to favourable lubrication.

  • 87.
    Di Bucchianico, Sebastiano
    et al.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Gliga, Anda R.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Åkerlund, Emma
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Skoglund, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Odnevall Wallinder, Inger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Fadeel, Bengt
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Karlsson, Hanna L.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Calcium-dependent cyto- and genotoxicity of nickel metal and nickel oxide nanoparticles in human lung cells2018In: Particle and Fibre Toxicology, ISSN 1743-8977, E-ISSN 1743-8977, Vol. 15, article id 32Article in journal (Refereed)
    Abstract [en]

    Background: Genotoxicity is an important toxicological endpoint due to the link to diseases such as cancer. Therefore, an increased understanding regarding genotoxicity and underlying mechanisms is needed for assessing the risk with exposure to nanoparticles (NPs). The aim of this study was to perform an in-depth investigation regarding the genotoxicity of well-characterized Ni and NiO NPs in human bronchial epithelial BEAS-2B cells and to discern possible mechanisms. Comparisons were made with NiCl2 in order to elucidate effects of ionic Ni. Methods: BEAS-2B cells were exposed to Ni and NiO NPs, as well as NiCl2, and uptake and cellular dose were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS). The NPs were characterized in terms of surface composition (X-ray photoelectron spectroscopy), agglomeration (photon cross correlation spectroscopy) and nickel release in cell medium (ICP-MS). Cell death (necrosis/apoptosis) was investigated by Annexin VFITC/PI staining and genotoxicity by cytokinesis-block micronucleus (cytome) assay (OECD 487), chromosomal aberration (OECD 473) and comet assay. The involvement of intracellular reactive oxygen species (ROS) and calcium was explored using the fluorescent probes, DCFH-DA and Fluo-4. Results: NPs were efficiently taken up by the BEAS-2B cells. In contrast, no or minor uptake was observed for ionic Ni from NiCl2. Despite differences in uptake, all exposures (NiO, Ni NPs and NiCl2) caused chromosomal damage. Furthermore, NiO NPs were most potent in causing DNA strand breaks and generating intracellular ROS. An increase in intracellular calcium was observed and modulation of intracellular calcium by using inhibitors and chelators clearly prevented the chromosomal damage. Chelation of iron also protected against induced damage, particularly for NiO and NiCl2. Conclusions: This study has revealed chromosomal damage by Ni and NiO NPs as well as Ni ionic species and provides novel evidence for a calcium-dependent mechanism of cyto- and genotoxicity.

  • 88.
    Dispenza, C.
    et al.
    Univ Palermo, Dipartimento Ingn Chim, Gest, Informat,Meccan, Viale Sci,Edificio 6, I-90128 Palermo, Italy.;Royal Inst Technol KTH, Sch Chem Sci & Engn, S-10044 Stockholm, Sweden..
    Spadaro, G.
    Univ Palermo, Dipartimento Ingn Chim, Gest, Informat,Meccan, Viale Sci,Edificio 6, I-90128 Palermo, Italy..
    Jonsson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Erratum to: Radiation Engineering of Multifunctional Nanogels2016In: TOPICS IN CURRENT CHEMISTRY, ISSN 2365-0869, Vol. 374, no 5, article id 72Article in journal (Refereed)
  • 89. Ditta, L. A.
    et al.
    Dahlgren, Björn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Sabatino, M. A.
    Dispenza, C.
    Jonsson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    The role of molecular oxygen in the formation of radiation-engineered multifunctional nanogels2019In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 114, p. 164-175Article in journal (Refereed)
    Abstract [en]

    Nanogels are very promising biomedical nanodevices. The classic “radiation chemistry-based” approach to synthetize nanogels consists in the irradiation with pulsed electron beams of dilute, N 2 O-saturated, aqueous solutions of water-soluble polymers of the “crosslinking type”. Nanogels with controlled size and properties are produced in a single irradiation step with no recourse to initiators, organic solvents and surfactants. This paper combines experimental syntheses, performed with two e-beam irradiation setups and dose-ranges, starting from poly(N-vinyl pyrrolidone) solutions of various concentrations, both in N 2 O-saturated and air-saturated initial conditions, with the numerical simulations of the radiation chemistry of aqueous solutions of a radical scavanger exposed to the same irradiation conditions used in the experiments. This approach provides a methodology to predict the impact of system and irradiation conditions on the water radiation chemistry, which in turn affect the nanogel features in terms of molecular and physico-chemical properties. In particular, the crucial role of initial and transient concentration of molecular oxygen is revealed. This work also proposes a very simple and effective methodology to quantitatively measure the double bonds formed in the systems from disporportionation and chain scission reactions, competing with inter-/intra-molecular crosslinking.

  • 90.
    Dobryden, Illia
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Ruiz, Maria Cortes
    CUNY City Coll, Dept Chem Engn, Grove Sch Engn, New York, NY 10031 USA..
    Zhang, Xuwei
    Univ Montreal, Dept Chem, CP 6128 Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada..
    Dédinaité, Andra
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Div Biosci & Mat, SE-11486 Stockholm, Sweden..
    Wieland, D. C. Florian
    Helmholtz Zentrum Geesthacht, Inst Mat Res, Max Planck Str 1, D-21502 Geesthacht, Germany..
    Winnik, Francoise M.
    Univ Helsinki, Dept Chem, POB 55, FI-00014 Helsinki, Finland.;NIMS, Int Ctr Mat Nanoarchitecton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan..
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Div Biosci & Mat, SE-11486 Stockholm, Sweden..
    Thermoresponsive Pentablock Copolymer on Silica: Temperature Effects on Adsorption, Surface Forces, and Friction2019In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 35, no 3, p. 653-661Article in journal (Refereed)
    Abstract [en]

    The adsorption of hydrophilic or amphiphilic multiblock copolymers provides a powerful means to produce well-defined "smart" surfaces, especially if one or several blocks are sensitive to external stimuli. We focus here on an A-B-A-B-A copolymer, where A is a cationic poly((3acrylamido-propyl)-trimethylammonium chloride) (PAMPTMA) block containing 15 (end blocks) or 30 (middle block) repeat units and B is a neutral thermosensitive water-soluble poly(2-isopropyl-2-oxazoline) (PIPOZ) block with 50 repeat units. X-ray reflectivity and quartz crystal microbalance with dissipation monitoring were employed to study the adsorption of PAMPTMA(15)-PAMPTMA(30)-PIPOZ(50)-PAMPTMA(15) on silica surfaces. The latter technique was employed at different temperatures up to 50 degrees C. Surface forces and friction between the two silica surfaces across aqueous pentablock copolymer solutions at different temperatures were determined with the atomic force microscopy colloidal probe force and friction measurements. The cationic pentablock copolymer was found to have a high affinity to the negatively charged silica surface, leading to a thin (2 nm) and rigid adsorbed layer. A steric force was encountered at a separation of around 3 nm from hard wall contact. A capillary condensation of a polymer-rich phase was observed at the cloud point of the solution. The friction forces were evaluated using Amontons' rule modified with an adhesion term.

  • 91.
    Dobryden, Illia
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Steponaviciute, Medeina
    Vilnius Univ, Inst Chem, Naugarduko 24, LT-03225 Vilnius, Lithuania..
    Klimkevicius, Vaidas
    Vilnius Univ, Inst Chem, Naugarduko 24, LT-03225 Vilnius, Lithuania..
    Makuska, Ricardas
    Vilnius Univ, Inst Chem, Naugarduko 24, LT-03225 Vilnius, Lithuania..
    Dedinaite, Andra
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry. Division of Bioscience and Materials, RISE Research Institutes of Sweden, Stockholm, SE-114 86, Sweden.
    Liu, Xiaoyan
    Shaanxi Normal Univ, Sch Chem & Chem Engn, Xian 710062, Shaanxi, Peoples R China..
    Corkery, Robert
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Claesson, Per Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Division of Bioscience and Materials, RISE Research Institutes of Sweden, Stockholm, SE-114 86, Sweden.
    Bioinspired Adhesion Polymers: Wear Resistance of Adsorption Layers2019In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 35, no 48, p. 15515-15525Article in journal (Refereed)
    Abstract [en]

    Mussel adhesive polymers owe their ability to strongly bind to a large variety of surfaces under water to their high content of 3,4-dihydroxy-L-phenylalanine (DOPA) groups and high positive charge. In this work, we use a set of statistical copolymers that contain medium-length poly(ethylene oxide) side chains that are anchored to the surface in three different ways: by means of (i) electrostatic forces, (ii) catechol groups (as in DOPA), and (iii) the combination of electrostatic forces and catechol groups. A nanotribological scanning probe method was utilized to evaluate the wear resistance of the formed layers as a function of normal load. It was found that the combined measurement of surface topography and stiffness provided an accurate assessment of the wear resistance of such thin layers. In particular, surface stiffness maps allowed us to identify the initiation of wear before a clear topographical wear scar was developed. Our data demonstrate that the molecular and abrasive wear resistance on silica surfaces depends on the anchoring mode and follows the order catechol groups combined with electrostatic forces > catechol groups alone > electrostatic forces alone. The devised methodology should be generally applicable for evaluating wear resistance or "robustness" of thin adsorbed layers on a variety of surfaces.

  • 92.
    Dong, Yiran
    et al.
    Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA.;China Univ Geosci, Sch Environm Studies, Wuhan, Hubei, Peoples R China..
    Sanford, Robert A.
    Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA.;Univ Illinois, Dept Geol, Urbana, IL USA..
    Inskeep, William P.
    Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA.;Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA..
    Srivastava, Vaibhav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Bulone, Vincent
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. Univ Adelaide, Div Sch Agr Food & Wine, Adelaide, SA, Australia.
    Fields, Christopher J.
    Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL USA..
    Yau, Peter M.
    Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL USA..
    Sivaguru, Mayandi
    Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA.;Univ Illinois, Carl R Woese Inst Genom Biol, Carl Zeiss Labs Locat Partner, Urbana, IL USA..
    Ahren, Dag
    Lund Univ, Dept Biol, Microbial Ecol Grp, Bioinformat Infrastruct Life Sci, Lund, Sweden.;Lund Univ, Pufendorf Inst Adv Sci, Lund, Sweden..
    Fouke, Kyle W.
    Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA..
    Weber, Joseph
    Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA..
    Werth, Charles R.
    Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA.;Univ Texas Austin, Dept Civil Architectural & Environm Engn, Austin, TX 78712 USA..
    Cann, Isaac K.
    Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA.;Univ Illinois, Dept Anim Sci, Urbana, IL USA.;Univ Illinois, Dept Microbiol, Urbana, IL USA..
    Keating, Kathleen M.
    Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL USA..
    Khetani, Radhika S.
    Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL USA..
    Hernandez, Alvaro G.
    Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL USA..
    Wright, Chris
    Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL USA..
    Band, Mark
    Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL USA..
    Imai, Brian S.
    Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL USA..
    Fried, Glenn A.
    Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA.;Univ Illinois, Carl R Woese Inst Genom Biol, Carl Zeiss Labs Locat Partner, Urbana, IL USA..
    Fouke, Bruce W.
    Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA.;Univ Illinois, Dept Geol, Urbana, IL USA.;Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA.;Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL USA.;Univ Illinois, Carl R Woese Inst Genom Biol, Carl Zeiss Labs Locat Partner, Urbana, IL USA.;Lund Univ, Pufendorf Inst Adv Sci, Lund, Sweden.;Bucknell Univ, Dept Geol & Environm Sci, Lewisburg, PA 17837 USA..
    Physiology, Metabolism, and Fossilization of Hot-Spring Filamentous Microbial Mats2019In: Astrobiology, ISSN 1531-1074, E-ISSN 1557-8070, Vol. 19, no 12Article in journal (Refereed)
    Abstract [en]

    The evolutionarily ancient Aquificales bacterium Sulfurihydrogenibium spp. dominates filamentous microbial mat communities in shallow, fast-flowing, and dysoxic hot-spring drainage systems around the world. In the present study, field observations of these fettuccini-like microbial mats at Mammoth Hot Springs in Yellowstone National Park are integrated with geology, geochemistry, hydrology, microscopy, and multi-omic molecular biology analyses. Strategic sampling of living filamentous mats along with the hot-spring CaCO3 (travertine) in which they are actively being entombed and fossilized has permitted the first direct linkage of Sulfurihydrogenibium spp. physiology and metabolism with the formation of distinct travertine streamer microbial biomarkers. Results indicate that, during chemoautotrophy and CO2 carbon fixation, the 87-98% Sulfurihydrogenibium-dominated mats utilize chaperons to facilitate enzyme stability and function. High-abundance transcripts and proteins for type IV pili and extracellular polymeric substances (EPSs) are consistent with their strong mucus-rich filaments tens of centimeters long that withstand hydrodynamic shear as they become encrusted by more than 5mm of travertine per day. Their primary energy source is the oxidation of reduced sulfur (e.g., sulfide, sulfur, or thiosulfate) and the simultaneous uptake of extremely low concentrations of dissolved O-2 facilitated by bd-type cytochromes. The formation of elevated travertine ridges permits the Sulfurihydrogenibium-dominated mats to create a shallow platform from which to access low levels of dissolved oxygen at the virtual exclusion of other microorganisms. These ridged travertine streamer microbial biomarkers are well preserved and create a robust fossil record of microbial physiological and metabolic activities in modern and ancient hot-spring ecosystems.

  • 93.
    Du, Jian
    et al.
    Dalian Univ Technol, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Li, Fei
    Dalian Univ Technol, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Wang, Yong
    Dalian Univ Technol, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Zhu, Yong
    Dalian Univ Technol, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Dalian Univ Technol, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Cu3P/CuO Core-Shell Nanorod Arrays as High-Performance Electrocatalysts for Water Oxidation2018In: Chemelectrochem, ISSN 2196-0216, Vol. 5, no 15, p. 2064-2068Article in journal (Refereed)
    Abstract [en]

    Earth-abundant transition-metal-based oxides are potential candidates to replace the state-of-the-art noble-metal-based oxygen evolution catalysts (OECs) such as IrO2 and RuO2. Despite the low cost and large abundance, copper-based OER catalysts have been less frequently studied, mainly owing to the low electrical conductivity of copper oxides that results in large overpotential and sluggish kinetics for oxygen evolution. We report here the insitu fabrication of semi-metallic Cu3P nanorod arrays on commercial copper foam via a template approach; the resulting self-supported core-shell Cu-Cu3P/CuO electrode has the merits of high electrical conductivity, large active area, and short diffusion paths for electrolyte and evolved oxygen, exhibiting a low overpotential of 315mV and high durability over 50h at a current density of 10mAcm(-2) for OER in 1.0 M KOH. The remarkable OER performance reported here is not only superior to that of analogous Cu-CuO foam electrode, but also outperforms those of copper-based OER electrocatalysts in the literature.

  • 94.
    Du, Jian
    et al.
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Liu, Guoquan
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Li, Fei
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Zhu, Yong
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Iron-Salen Complex and Co2+ Ion-Derived Cobalt-Iron Hydroxide/Carbon Nanohybrid as an Efficient Oxygen Evolution Electrocatalyst2019In: ADVANCED SCIENCE, ISSN 2198-3844, Vol. 6, no 12, article id 1900117Article in journal (Refereed)
    Abstract [en]

    Metal-salen complexes are widely used as catalysts in numerous fundamental organic transformation reactions. Here, CoFe hydroxide/carbon nanohybrid is reported as an efficient oxygen evolution electrocatalyst derived from the in situ formed molecular Fe-salen complexes and Co2+ ions at a low temperature of 160 degrees C. It has been evidenced that Fe-salen as a molecular precursor facilitates the confined-growth of metal hydroxides, while Co2+ plays a critical role in catalyzing the transformation of organic ligand into nanocarbons and constitutes an essential component for CoFe hydroxide. The resulting Co1.2Fe/C hybrid material requires an overpotential of 260 mV at a current density of 10 mA cm(-2) with high durability. The high activity is contributed to uniform distribution of CoFe hydroxides on carbon layer and excellent electron conductivity caused by intimate contact between metal and nanocarbon. Given the diversity of molecular precursors, these results represent a promising approach to high-performance carbon-based water splitting catalysts.

  • 95.
    Du, Jian
    et al.
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Xu, Suxian
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Li, Fei
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Iron carbonate hydroxide templated binary metal-organic frameworks for highly efficient electrochemical water oxidation2019In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 55, no 98, p. 14773-14776Article in journal (Refereed)
    Abstract [en]

    Metal-organic frameworks (MOFs) are promising catalysts for electrochemical reactions. Herein, self-supported NiFe-MOF nanoplates grown on Ni foam (NF) were prepared with iron carbonate hydroxide nanosheets (FeCH NSs) as a semisacrificial template and evaluated for the electrocatalytic oxygen evolution reaction (OER). In this approach, the porous FeCH NSs not only serve as the iron source of NiFe-MOF, but also slow down the leaching of Ni ions from the substrate, thus playing a unique role in regulating the morphology of NiFe-MOF with reduced thickness and sizes, enabling rapid electron transfer and mass transport. The resultant NiFe-MOF/FeCH-NF electrode showed higher activity than FeCH template-free electrodes and superior OER performance over other MOF based binder-free OER electrodes. A current density of 10 mA cm(-2) was obtained at a low overpotential of 200 mV with excellent durability in alkaline solution. Raman and TEM measurements reveal the partial transformation of NiFe-MOF to hydroxide during water oxidation.

  • 96.
    Dvinskikh, Sergey, V
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. St Petersburg State Univ, Lab Biomol NMR, St Petersburg, Russia..
    Nuclear magnetic resonance studies of translational diffusion in thermotropic ionic liquid crystals2019In: Liquid crystals (Print), ISSN 0267-8292, E-ISSN 1366-5855Article in journal (Refereed)
    Abstract [en]

    The NMR methodologies employed for investigating translational diffusion in anisotropic fluids and the results of their applications to ionic liquid crystals are reviewed. Experiments on ionic liquid crystals are preferably performed using oriented samples and require magnetic field gradients in orthogonal directions. Diffusion experiments in anisotropic systems with broad NMR lines are performed using line narrowing techniques and by application of strong static or pulsed field gradients for efficient gradient encoding/decoding of the spatial locations of molecules. Self-diffusion studies on various thermotropic ion-conductive materials exhibiting smectic, cubic, and columnar phases have been reported. Diffusion rates and anisotropy characterise the translational dynamics of ions in nanostructures and reflect the molecular ordering and ion pairing/dissociation processes. Distinct diffusion behaviours were observed for cations and anions. The knowledge of molecular mobility in ionic liquid crystals is important for the understanding their dynamic properties and is, therefore, valuable for the development of anisotropic soft materials for ion transport.

  • 97.
    Dédinaité, Andra
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Chem Surface & Corros Sci, Drottning Kristinas Vag 51, SE-10044 Stockholm, Sweden..
    Wieland, D. C. Florian
    Helmholtz Zentrum Geesthacht, Ctr Mat & Costal Res, Inst Mat Res, Max Planck Str 1, D-21502 Geesthacht, Germany..
    Beldowski, Piotr
    UTP Univ Sci & Technol, Inst Math & Phys, Al Kaliskiego 7, PL-85796 Bydgoszcz, Poland.;Friedrich Alexander Univ Erlangen Nurnberg, Cluster Excellence Engn Adv Mat, Inst Multiscale Simulat, Cauerstr 3, D-91058 Erlangen, Germany..
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Biolubrication synergy: Hyaluronan - Phospholipid interactions at interfaces2019In: Advances in Colloid and Interface Science, ISSN 0001-8686, E-ISSN 1873-3727, Vol. 274, article id UNSP 102050Article in journal (Refereed)
    Abstract [en]

    The manner in which nature has solved lubrication issues has fascinated scientists for centuries, in particular when considering that lubrication is achieved in aqueous media. The most outstanding system in this respect is likely the synovial joint, where close to frictionless motion is realized under different loads and shear rates. This review article focuses on two components present in the synovial area, hyaluronan and phospholipids. We recapitulate what has been learned about their interactions at interfaces from recent experiments, with focus on results obtained using reflectivity techniques at large scale facilities. In parallel, modelling experiments have been carried out and from these efforts new detailed knowledge about how hyaluronan and phospholipids interact has been gained. In this review we combine findings from modelling and experiments to gain deeper insight. Finally, we summarize what has been learned of the lubrication performance of mixtures of phospholipids and hyaluronan.

  • 98.
    Dömstedt, Peter
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Lundberg, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Szakalos, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Corrosion Studies of Low-Alloyed FeCrAl Steels in Liquid Lead at 750 degrees C2019In: Oxidation of Metals, ISSN 0030-770X, E-ISSN 1573-4889, Vol. 91, no 3-4, p. 511-524Article in journal (Refereed)
    Abstract [en]

    New ductile experimental FeCrAl alloys, based on the composition of Fe-10Cr-4Al, were exposed to stagnant liquid lead at 750 degrees C for up to 1970h. Two exposures with different test conditions were performed: one with addition of oxygen (as H2O) to the liquid lead and one without. The experimental alloys showed generally good oxidation and self-healing properties. The exposures showed that this specific category of steels has the potential to operate in liquid lead at very high temperatures with only minor oxidation. With this new material development, new energy technologies such as the CSP plants may be able to utilize liquid lead at very high temperatures as heat transfer fluid, thus achieving increased thermal efficiency.

  • 99. Ekvall, Mikael T.
    et al.
    Hedberg, Jonas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Wallinder, Inger Odnevall
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Hansson, Lars-Anders
    Cedervall, Tommy
    Long-term effects of tungsten carbide (WC) nanoparticles in pelagic and benthic aquatic ecosystems2018In: Nanotoxicology, ISSN 1743-5390, E-ISSN 1743-5404, Vol. 12, no 1, p. 79-89Article in journal (Refereed)
    Abstract [en]

    As the production and usage of nanomaterials are increasing so are the concerns related to the release of the material into nature. Tungsten carbide (WC) is widely used for its hard metal properties, although its use, in for instance tyre studs, may result in nano-sized particles ending up in nature. Here, we evaluate the potential long-term exposure effects of WC nanoparticles on a pelagic (Daphnia magna) and a benthic (Asellus aquaticus) organism. No long-term effects were observed in the benthic system with respect to population dynamics or ecosystem services. However, long-term exposure of D. magna resulted in increased time to first reproduction and, if the particles were resuspended, strong effects on survival and reproductive output. Hence, the considerable differences in acute vs. long-term exposure studies revealed here emphasize the need for more long-term studies if we are to understand the effects of nanoparticles in natural systems.

  • 100. Elawad, M.
    et al.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Mola, G. T.
    Yu, Z.
    Arbab, E. A. A.
    Enhanced performance of perovskite solar cells using p-type doped PFB:F4TCNQ composite as hole transport layer2019In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 771, p. 25-32Article in journal (Refereed)
    Abstract [en]

    Conjugated polymers have been widely used as hole transport materials (HTM) in the preparation of mesoscopic perovskite solar cells (PSCs). In this work, we employed p-type doped conducting polymer known as poly(9,9-dioctylfluorene-co-bis-N,N-(-4-butyl phenyl)-bis-N,N-phenyl-1,4-phenylenediamine) (PFB) as a hole transport material (HTM) in perovskite based solar cell. The effect of dopant concentration on the optical and electrical properties of PEB was investigated to optimize the electrical properties of the material for the best function of the solar cell. The highest power conversion efficiency of mesoscopic perovskite solar cells (PSCs), fabricated in this investigation, was found to be 14.04% which is 57% higher than that of pristine PFB hole transport layer. The UV–Vis absorption and Raman spectroscopy measurements confirm the occurrence of oxidation in a p-type doped PFB hole transport layer. This is attributed to the transfer of electrons from the highest occupied molecular orbital (HOMO) of PEB to the lowest unoccupied molecular orbital (LUMO) of F4TCNQ. The solar cells produced using p-type doped PFB:F4TCNQ composite not only improves device performances but also shows superior long-term stability. The optical, morphological and electrical properties of the doped composite PFB: F4TCNQ and newly fabricated devices are presented and discussed in this paper.

1234567 51 - 100 of 528
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf