Change search
Refine search result
12 51 - 55 of 55
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Okoli, Chuka
    et al.
    KTH, School of Biotechnology (BIO), Environmental Microbiology. KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Sanchez-Dominguez, Margarita
    Boutonnet, Magali
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Järås, Sven
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Civera, Concepción
    Solans, Conxita
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Comparison and Functionalization Study of Microemulsion-Prepared Magnetic Iron Oxide Nanoparticles2012In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 28, no 22, p. 8479-8485Article in journal (Refereed)
    Abstract [en]

    Magnetic iron oxide nanoparticles (MION) for protein binding and separation were obtained from water-in-oil (w/o) and oil-in-water (o/w) microemulsions. Characterization of the prepared nanoparticles have been performed by TEM, XRD, SQUID magnetometry, and BET. Microemulsion-prepared magnetic iron oxide nanoparticles (ME-MION) with sizes ranging from 2 to 10 rim were obtained. Study on the magnetic properties at 300 K shows a large increase of the magnetization similar to 35 emu/g for w/o-ME-MION with superparamagnetic behavior and nanoscale dimensions in comparison with o/w-ME-MION (10 emu/g) due to larger particle size and anisotropic property. Moringa oleifera coagulation protein (MOCP) bound w/o- and o/w-ME-MION showed an enhanced performance in terms of coagulation activity. A significant interaction between the magnetic nanoparticles and the protein can be described by changes in fluorescence emission spectra. Adsorbed protein from MOCP is still retaining its functionality even after binding to the nanoparticles, thus implying the extension of this technique for various applications.

  • 52.
    Okoli, Chuka
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Sengottiyan, Selvaraj
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Natarajan Arul, Murugan
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Pavankumar, Asalapuram Ramachand
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    In silico modeling and experimental evidence of coagulant protein interaction with precursors for nanoparticle functionalization2013In: Journal of Biomolecular Structure and Dynamics, ISSN 0739-1102, E-ISSN 1538-0254, Vol. 31, no 10, p. 1182-1190Article in journal (Refereed)
    Abstract [en]

    The design of novel protein-nanoparticle hybrid systems has applications in many fields of science ranging from biomedicine, catalysis, water treatment, etc. The main barrier in devising such tool is lack of adequate information or poor understanding of protein-ligand chemistry. Here, we establish a new strategy based on computational modeling for protein and precursor linkers that can decorate the nanoparticles. Moringa oleifera (MO2.1) seed protein that has coagulation and antimicrobial properties was used. Superparamagnetic nanoparticles (SPION) with precursor ligands were used for the protein-ligand interaction studies. The molecular docking studies reveal that there are two binding sites, one is located at the core binding site; tetraethoxysilane (TEOS) or 3-aminopropyl trimethoxysilane (APTES) binds to this site while the other one is located at the side chain residues where trisodium citrate (TSC) or Si-60 binds to this site. The protein-ligand distance profile analysis explains the differences in functional activity of the decorated SPION. Experimentally, TSC-coated nanoparticles showed higher coagulation activity as compared to TEOS- and APTES-coated SPION. To our knowledge, this is the first report on in vitro experimental data, which endorses the computational modeling studies as a powerful tool to design novel precursors for functionalization of nanomaterials; and develop interface hybrid systems for various applications.

  • 53.
    Pavankumar, Asalapuram R.
    et al.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Kayathri, Rajarathinam
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Murugan, Natarajan Arul
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Zhang, Qiong
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Srivastava, Vaibhav
    KTH, School of Biotechnology (BIO), Glycoscience.
    Okoli, Chuka
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience.
    Rajarao, Gunaratna K.
    KTH, School of Biotechnology (BIO), Industrial Biotechnology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Dimerization of a flocculent protein from Moringa oleifera: experimental evidence and in silico interpretation2014In: Journal of Biomolecular Structure and Dynamics, ISSN 0739-1102, E-ISSN 1538-0254, Vol. 32, no 3, p. 406-415Article in journal (Refereed)
    Abstract [en]

    Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein-protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.

  • 54.
    Pavankumar, Asalapuram Ramachand
    et al.
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    kayathri, Rajarathinam
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Murugan, Natarajan Arul
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Zhang, Qiong
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Okoli, Chuka
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Kuttuva Rajarao, Gunaratna
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Dimerization of flocculent protein from Moringa oleifera: experimental evidence and in silico interpretationArticle in journal (Refereed)
    Abstract [en]

    Many proteins exist in dimeric and other oligomeric forms to gain stability and functional advantages. In this study, the dimerization property of a coagulant protein (MO2.1) from Moringa oleifera seeds was addressed through laboratory experiments, protein-protein docking studies and binding free energy calculations. The structure of MO2.1 was predicted by homology modelling, while binding free energy and residues-distance profile analyses provided insight into the energetics and structural factors for dimer formation. Since the coagulation activities of the monomeric and dimeric forms of MO2.1 were comparable, it was concluded that oligomerization does not affect the biological activity of the protein.

  • 55.
    Singh, Lakhvinder
    et al.
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Pavankumar, Asalapuram Ramachandran
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Lakshmanan, Ramnath
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Rajarao, Gunaratna Kuttuva
    KTH, School of Biotechnology (BIO), Environmental Microbiology.
    Effective removal of Cu2+ ions from aqueous medium using alginate as biosorbent2012In: Ecological Engineering: The Journal of Ecotechnology, ISSN 0925-8574, E-ISSN 1872-6992, Vol. 38, no 1, p. 119-124Article in journal (Refereed)
    Abstract [en]

    Removal of heavy metals present in the environment is always of high importance in order to balance ecology with healthy life forms. Biosorption of Cu2+ ions from simulated aqueous medium were studied using calcium alginate beads. Experiments were designed and performed according to Box-Behnken matrix of response surface methodology. The effects of four vital operating variables on the metal-ion sorption characteristics of calcium alginate beads were studied: alginate dosage, initial copper concentrations, pH and agitation time. A high regression coefficient between the variables and response (R-2 = 0.9974) supported excellent evaluation of experimental data by second order polynomial regression model. Maximum removal of Cu2+ ions from aqueous medium was observed at pH 5.5, alginate dosage 2.5% and initial copper concentration of 275 mg l(-1) with an agitation time of 50 min. Thus, the experimental data obtained has been fitted well with Langmuir and Freundlich isotherm models and also exhibited very high correlation coefficients which confirmed suitability of the model and biosorption process. The study revealed that the alginate beads could be used as an ideal material for the removal of Cu2+ ions about 85.3% from aqueous medium and it would be applicable in the process development to treat industrial effluents.

12 51 - 55 of 55
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf