Change search
Refine search result
12 51 - 85 of 85
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Pang, Zhibo
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    A Pervasive and Preventive Healthcare Solution for Medication Noncompliance and Daily Monitoring2009In: 2009 2ND INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES (ISABEL 2009), NEW YORK: IEEE , 2009, p. 315-320Conference paper (Refereed)
    Abstract [en]

    Pervasive healthcare solution for medication noncompliance problem would help to save $177 billion annually in the United States. And the rapidly increasing demanding of daily monitoring with onsite diagnosis and prognosis is driving homecare solutions to integrate more and more sensing and data processing capacities. So a powerful system is needed not only to address the medication noncompliance but also to be used as a Pervasive Healthcare Station in home. In this paper, a pervasive and preventive healthcare solution for medication noncompliance and daily monitoring is proposed using an intelligent package sealed by Controlled Delamination Material (CDM) and controlled by Radio Frequency Identification (RFID). Onsite diagnosis and prognosis capacities for kinds of health parameters are supported due to scalable and intensive computing capacitance of the 2D-Mesh-NoC based multi-core architecture. Additionally, friendly human-machine interface is emphasized to make it usable for the elderly, disabled and patients due to enhanced multimedia performance. Experimental results of an implemented prototype confirmed the necessity of the multi-core architecture and approved the feasibility of the proposed intelligent package.

  • 52.
    Pang, Zhibo
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Content-extraction-based compression of acceleration data for mobile wireless sensors2012In: Sensors, 2012 IEEE, IEEE , 2012, p. 1244-1247Conference paper (Refereed)
    Abstract [en]

    A content-extraction based acceleration data compression algorithm is proposed for real-time transport quality monitoring in critical logistics applications. It splits the original data into three components, Tilt, Shock and Vibration, and compresses them separately by making use of the specific characteristics. Outstanding performances as well as low complexity and good scalability are achieved, which are essential for resource-constrained mobile wireless sensors. The algorithm has been proven by 46-day field test data. The compression ratio is up to 3.75 in loss-less mode, and up to 142 in lossy mode with 28.9dB SNR.

  • 53.
    Pang, Zhibo
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Scenario-based Design of Wireless Sensor System for Food Chain Visibility and Safety2011In: 2011 International Conference on Computer, Communication, Control and Automation, 3CA 2011, Springer Publishing Company, 2011, p. 541-548Conference paper (Refereed)
    Abstract [en]

    Food chain visibility and safety problems have caused huge loss of money and threat to public food safety. The blooming Wireless Sensor Network (WSN) technology has been highlighted as a promising solution to resolve these problems. Because nowadays food chains has become highly distributed, heterogeneous, cooperative, and globalized, a comprehensive system-picture is needed in design practices to meet the extremely diverse requirements. In this paper, a universal WSN platform is designed for food chain monitoring applications based on a scenario-based method. It classifies the complicated real food chains into five typical scenarios (Produce, Store, Transport, Sell, and Consume). All scenarios are supported by convergence of all the necessary technical requirements. And corresponding operation models, networking protocols, hardware, and software are implemented. Comparing to existing researches, this paper provides a more comprehensive system-picture and its technical feasibility is approved by practical implementation as well as field experiments.

  • 54.
    Pang, Zhibo
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Dubrova, Elena
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    An in-home medication management solution based on intelligent packaging and ubiquitous sensing2013In: Int. Conf. Adv. Commun. Technol. ICACT, 2013, p. 545-550Conference paper (Refereed)
    Abstract [en]

    A healthcare solution for medication noncompliance problem would help to save 177 billion annually in the United States. In addition, an in-home healthcare station (IHHS) is needed to meet the rapidly increasing demands for daily monitoring with on-site diagnosis and prognosis. In this paper, an intelligent medication management system is proposed based on intelligent package and ubiquitous sensing technologies. Preventive medication management is enabled by an intelligent package sealed by Controlled Delamination Material (CDM) and controlled by RFID link. Various vital parameters are collected by wearable biomedical sensors through the short range wireless link. Onsite diagnosis and prognosis based on these health parameters are supported by the scalable architecture. Additionally, friendly human-machine interface is emphasized to make it convenient for the elderly or disabled patients. A prototype system including the hardware, embedded software, user interface, database and some intelligent packages is implemented to verify the concepts.

  • 55.
    Pang, Zhibo
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. Corporate Research, ABB AB.
    Qiang, Chen
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Weili, Han
    Fudan University.
    Lirong, Zheng
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. School of Information Science and Technology, Fudan University, No. 220.
    Value-Centric Design of the Internet-of-Things Solution for Food Supply Chain: Value Creation, Sensor Portfolio and Information Fusion2013In: Information Systems Frontiers, ISSN 1387-3326, E-ISSN 1572-9419, Vol. 17, no 2, p. 289-319Article in journal (Refereed)
    Abstract [en]

    The revolution of Internet-of-Things (IoT) is reshaping the modern food supply chains with promising business prospects. To be successful in practice, the IoT solutions should create “income-centric” values beyond the conventional “traceability-centric” values. To accomplish what we promised to users, sensor portfolios and information fusion must correspond to the new requirements introduced by this income-centric value creation. In this paper, we propose a value-centric business-technology joint design framework. Based on it the income-centric added-values including shelf life prediction, sales premium, precision agriculture, and reduction of assurance cost are identified and assessed. Then corresponding sensor portfolios are developed and implemented. Three-tier information fusion architecture is proposed as well as examples about acceleration data processing, self-learning shelf life prediction and real-time supply chain re-planning. The feasibilities of the proposed design framework and solution have been confirmed by the field trials and an implemented prototype system.

  • 56.
    Pang, Zhibo
    et al.
    ABB Corporate Research, Sweden.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Tian, Junzhe
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Kao-Walter, Sharon
    Dubrova, Elena
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Design of a terminal solution for integration of in-home health care devices and services towards the Internet-of-Things2015In: Enterprise Information Systems, ISSN 1751-7575, E-ISSN 1751-7583, Vol. 9, no 1, p. 86-116Article in journal (Refereed)
    Abstract [en]

    In-home health care services based on the Internet-of-Things are promising to resolve the challenges caused by the ageing of population. But the existing research is rather scattered and shows lack of interoperability. In this article, a business-technology co-design methodology is proposed for cross-boundary integration of in-home health care devices and services. In this framework, three key elements of a solution (business model, device and service integration architecture and information system integration architecture) are organically integrated and aligned. In particular, a cooperative Health-IoT ecosystem is formulated, and information systems of all stakeholders are integrated in a cooperative health cloud as well as extended to patients' home through the in-home health care station (IHHS). Design principles of the IHHS includes the reuse of 3C platform, certification of the Health Extension, interoperability and extendibility, convenient and trusted software distribution, standardised and secured electrical health care record handling, effective service composition and efficient data fusion. These principles are applied to the design of an IHHS solution called iMedBox. Detailed device and service integration architecture and hardware and software architecture are presented and verified by an implemented prototype. The quantitative performance analysis and field trials have confirmed the feasibility of the proposed design methodology and solution.

  • 57.
    Sarmiento M., David
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Pang, Zhibo
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Tenhunen, H.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Mobile wireless sensor system for tracking and environmental supervision2010In: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), IEEE conference proceedings, 2010, p. 470-477Conference paper (Refereed)
    Abstract [en]

    In this paper a system level analysis andimplementation of two-layer mobile wireless sensor networkarchitecture is proposed for tracking and environmentalsupervision applications. It uses a mobile Master Sensor Node(MSN) that collects information inside a Sensor Area Network(SAN) where many semi-passive Slave Sensor Nodes (SSN) aredeployed. The collected information is sent through a WirelessWide Area Network (WWAN) infrastructure to a central server viaTCP/UDP. The communication interface between the user and theMSN is established through out mobile communication services orinternet mail services. The communication between the MSN andthe SSN is through asymmetric-link Radio FrequencyIdentification (RFID) based architecture. An MSN prototype hasbeen implemented and tested under real conditions forenvironmental supervision during the perishable goodstransportation.

  • 58.
    Shao, Botao
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Liu, Ran
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Directly Printed Packaging-Paper-Based Chipless RFID Tag With Coplanar LC Resonator2013In: IEEE Antennas and Wireless Propagation Letters, ISSN 1536-1225, E-ISSN 1548-5757, Vol. 12, p. 325-328Article in journal (Refereed)
    Abstract [en]

    This letter presents the design, simulation, fabrication, and characterization of an LC-resonator-based chipless RFID tag. The ID-generating circuit is designed based on a reconfigurable LC resonance circuit. Phase position modulation (PPM) coding is used for the enhancement of the coding capacity. The tag has been realized on packaging paper using all printing technique. In fabrication, overprinting process has been investigated as an effective pathway for the improvement of the conductivities. The tag with 4.25-bit coding capacity has been examined using a sweeping frequency signal transmitted from a vector network analyzer, and experimental results confirm the feasibility of the proposed chipless tag. With further optimizations, the tag can be used in the item-level tracking and identification applications, especially for the management of paper tickets and banknotes.

  • 59.
    Shao, Botao
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Hållstedt, Julius
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Liu, Ran
    Fudan University.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Process-dependence of inkjet printed folded dipole antenna for 2.45 GHZ RFID tags2009In: 2009 3RD EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, VOLS 1-6, NEW YORK: IEEE , 2009, p. 2336-2339Conference paper (Refereed)
    Abstract [en]

    This paper focuses on the process dependence of an inkjet printed folded dipole antenna based on practical parameters in a typical inkjet printing process. We present the effect of width variations and number of overprinting times on the antenna properties such as gain, radiation efficiency and input impedance. Furthermore we investigate the read range degradation of the tag on which the antenna is attached, due to width or thickness variations. In addition, an comparison between an inkjet printed antenna on a regular paper substrate and a copper antenna on Printed Circuit Board (PCB) was made, manifesting the strong competitiveness of the printed silver antenna as a low cost solution.

  • 60.
    Shao, Botao
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Liu, Ran
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chipless RFID tags fabricated by fully printing of metallic inks2013In: Annales des télécommunications, ISSN 0003-4347, E-ISSN 1958-9395, Vol. 68, no 7-8, p. 401-413Article in journal (Refereed)
    Abstract [en]

    This paper reviews recent advances in fully printed chipless radio frequency identification (RFID) technology with special concern on the discussion of coding theories, ID generating circuits, and tag antennas. Two types of chipless tags, one based on time-domain reflections and the other based on frequency domain signatures, are introduced. To enable a fully printed encoding circuit, linearly tapering technique is adopted in the first type of tags to cope with parasitic resistances of printed conductors. Both simulation and measurement efforts are made to verify the feasibility of the eight-bit fully printed paper-based tag. In the second type of tags, a group of LC tanks are exploited for encoding data in frequency domain with their resonances. The field measurements of the proof-of-concept of the tag produced by toner-transferring process and flexible printed circuit boards are provided to validate the practicability of the reconfigurable ten-bit chipless RFID tag. Furthermore, a novel RFID tag antenna design adopting linearly tapering technique is introduced. It shows 40 % save of conductive ink materials while keeping the same performance for conventional half-wave dipole antennas and meander line antennas. Finally, the paper discusses the future trends of chipless RFID tags in terms of fabrication cost, coding capacity, size, and reconfigurability. We see that, coupled with revolutionary design of low-cost tag antennas, fabrication/reconfiguration by printing techniques, moving to higher frequencies to shrink tag sizes and reduce manufacturing cost, as well as innovation in ID generating circuits to increase coding capacities, will be important research topics towards item-level tracking applications of chipless RFID tags.

  • 61.
    Shao, Botao
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Amin, Yasar
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Sarmiento Mendoza, David
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Liu, Ran
    Fudan University.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    An ultra-low-cost RFID tag with 1.67 Gbps data rate by ink-jet printing on paper substrate2010In: 2010 6th IEEE Asian Solid-State Circuits Conference, A-SSCC 2010, 2010, p. 109-112Conference paper (Other academic)
    Abstract [en]

    A fully metallic ink-jet printed passive chipless RFID tag on paper substrate is presented. The tag consists of an ultra-wide-band antenna, a microstrip transmission line with distributed shunt capacitors as information coding element which is reconfigurable by ink-jet printing process. Tapered microstrip line is employed to overcome the limitations of low conductivity and thin film thickness of ink-jet printed metal tracks. Measurement results show that the tag features a robust readability over 80 cm reading distance and a high data rate of 1.67 Gb/s.

  • 62.
    Shao, Botao
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Liu, Ran
    Fudan University.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    A reconfigurable chipless RFID tag based on sympathetic oscillation for liquid-bearing applications2011In: 2011 5th IEEE International Conference on RFID, RFID 2011, 2011, p. 170-175Conference paper (Other academic)
    Abstract [en]

    This paper reports on the development of a 10-bit chipless RFID tag on flexible plastic substrate. This tag is based on sympathetic oscillations of a group of LC circuits with different resonant frequencies. Sophisticated designs including the placement of capacitors involved in each LC circuit, and various LC combinations are examined for the trade-off of the readability and the tag sizes. Moreover, the antennas for detecting the proposed tags are presented. The measurement results show that the proposed tag possesses remarkable readability for a read range up to 21 cm and more importantly, it is suited for tagging liquid-bearing containers, which are widely used in food and medical industries. In addition, this tag is reconfigurable on circuit level, enabling a potential pathway towards the realization of low cost RFID tags for HF/VHF band applications.

  • 63.
    Shao, Botao
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Liu, Ran
    Fudan University.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    CONFIGURABLE INK-JET-PRINTED RFID TAG ON PAPER SUBSTRATE FOR LOW COST AND GREEN APPLICATIONS2011In: Microwave and optical technology letters (Print), ISSN 0895-2477, E-ISSN 1098-2760, Vol. 53, no 12, p. 2781-2786Article in journal (Refereed)
    Abstract [en]

    The letter presents the design, fabrication, and measurement of a configurable radio frequency identification (RFID) tag based on time-domain reflections. The tag circuit contains a microstrip line (ML) that propagates radio frequency (RF) signals, and a group of capacitors that introduce impedance discontinuities to encode binary codes. The configurability of the tag circuit is allowed by connecting the nearby-placed capacitors with the ML. Ink-jet printing technology is employed to implement the layout of the proposed tag on paper substrate. To overcome the limitations of printed metallic tracks, a linearly tapering technique is proposed. With this technique, a four-bit configurable passive chipless RFID tag is realized. Both time-domain reflectometry (TDR) measurements and ultrawideband (UWB) characterizations were conducted for the proposed tag, and the results are in good consistence with the simulation ones from the circuit simulator advanced design system (ADS). Owing to its low cost fabrication and environmentally friendly nature, the proposed tag has great potential to be widely employed in low-end RFID applications. (C) 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53: 2781-2786, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26412

  • 64.
    Shao, Botao
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Liu, Ran
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Design of fully printable and configurable chipless RFID tag on flexible substrate2012In: Microwave and optical technology letters (Print), ISSN 0895-2477, E-ISSN 1098-2760, Vol. 54, no 1, p. 226-230Article in journal (Refereed)
    Abstract [en]

    This article presents the design and implementation of a chipless radio frequency identification (RFID) tag on flexible substrate.The tag is designed based on the sympathetic oscillations of multiple LC (inductor–capacitor) circuits that possess distinct resonant frequencies. Information is encoded by controlling placement of these resonant frequencies. To trade off the readability and size of the tag, the optimizations including capacitor placements and different LC combinations are studied. The tag is then realized onto flexible polyimide substrate using toner-transferring process. The detection system is also constructed and used to measure the proposed tag. The measurement results show that the tag can provide an excellent readability more than 20 cm reading range. In addition, this tag is fully printable and configurable, hence making it more feasible and considerably cheaper to be used. This tag can provide a meaningful approach toward the realization of ultralow-cost RFID tags attached onto low-value items.

  • 65.
    Shao, Botao
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Liu, Ran
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Linearly-tapered RFID tag antenna with 40% material reduction for ultra-low-cost applications2011In: 2011 IEEE International Conference on RFID, 2011, p. 45-49Conference paper (Other academic)
    Abstract [en]

    The development of RFID technology are requiring high performance and low cost tag antennas than ever before. To meet these demands, linear tapering technique is firstly proposed in the design of planar tag antennas. With this strategy, the current distribution along antenna arms is effectively assigned by varying the antenna line width. Compared with conventional ones, the tapered antennas can reduce the material cost by over 40% not only for PCB (Printed Circuit Board) processed, but also for ink-jet printing produced dipole and meander line antennas, while they still maintain comparable performance. With an identical volume of conducting material, the tapered antennas can achieve better radiation performance than non-tapered ones on antenna gains and radiation efficiencies. The method has been successfully verified by applying it onto 869 MHz and 2.45 GHz antennas. The influence of the tapering technique on antenna bandwidth is also investigated.

  • 66. Sun, X.
    et al.
    Dai, W.
    Yan, W.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Gao, H.
    Analytical electro-thermal model for RF-LDMOSFET2010In: Guti Dianzixue Yanjiu Yu Jinzhan/Research and Progress of Solid State Electronics, ISSN 1000-3819, Vol. 30, no 3, p. 370-376+424Article in journal (Refereed)
    Abstract [en]

    This paper presents the model development of Agere eletro-thermal transistor, an electro-thermal large signal nonlinear RF-LDMOSFET model used in radio frequency (RF) power amplifiers (PAs). We first describe our model schematics, then the iso-thermal and pulsed device characterization systems used in the parametrization of the model are described. The extracted model is implemented in Agilent's Advanced Design System (ADS) for the development of several PAs. Finally, the model accuracy is measured by comparing several experimental verifications of physical chips against those of EDA designs.

  • 67.
    Wan, Qiansu
    et al.
    KTH, School of Information and Communication Technology (ICT).
    Kanth, Rajeev Kumar
    Yang, Geng
    KTH.
    Chen, Qiang
    Zheng, Li-Rong
    Environmental Impacts Analysis for Inkjet Printed Paper-based Bio-patch2015In: Journal of Multidisciplinary Engineering Science and Technology, ISSN 2458-9403, p. 837-847Article in journal (Refereed)
    Abstract [en]

    This paper presents comparative environment impact evaluation and assessment between inkjet printing technology based Electrocardiography (ECG) Bio-patch and traditional Printed Circuit Board (PCB) based ECG Holters. Due to the complexity of electronic systems and the consistent lack of solid data about a product’s life cycles, a limited comparison has been carried out to qualify the input and output of raw material resources, energy resources used in manufacturing phases and environmental emissions in end-of-life phases. Based on the GaBi’s balance calculation methodology, a case study is described to illustrated the possibility of environmental potential benefits from above mentioned technologies.

  • 68.
    Wan, Qiansu
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Yang, Geng
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Electrical performance of inkjet printed flexible cable for ECG monitoring2011Conference paper (Refereed)
    Abstract [en]

    This paper presents electrical performance of paper based inkjet printed flexible cable for wearable electrocardiogram (ECG) monitoring. The cable is fabricated by inkjet printing of nano-silver wires on paper which connect bio electric electrodes with wireless transmission of ECG signals to the central medical device. The cable consists of printed metal traces and a shielding line in the middle. The experiment results show that a reliable performance with high quality ECG data can be transmitted on the inkjet printed flexible cable.

  • 69.
    Xie, Li
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mantysalo, Matti
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Integration of f-MWCNT Sensor and Printed Circuits on Paper Substrate2013In: IEEE Sensors Journal, ISSN 1530-437X, E-ISSN 1558-1748, Vol. 13, no 10, p. 3948-3956Article in journal (Refereed)
    Abstract [en]

    The integration of sensors endows the packages with intelligence and interactivity. This paper is considered the most suitable substrate of smart packages because it is cost-effective, light, flexible, and recyclable. However, common concern exists regarding the reliability of paper-based system against bending and folding. In this paper, inkjet-printing of silver nanoparticles is used to form circuit pattern as well as interconnections for system integration on paper substrate. A humidity sensor made by functionalized multiwalled carbon nanotubes is fabricated on the same substrate. We evaluate the electrical performance of paper electronics and the reliability against bending and folding. The results reveal the capability and the limitation of paper electronics in terms of flexibility. The concept of a paper-based smart electronic system and the manufacture process are demonstrated by an interactive humidity sensor card prototype.

  • 70.
    Xie, Li
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Feng, Yi
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Yang, Geng
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    RF Interconnections for Paper Electronics2015In: IEEE Microwave and Wireless Components Letters, ISSN 1531-1309, E-ISSN 1558-1764, Vol. 25, no 10, p. 684-686Article in journal (Refereed)
    Abstract [en]

    Low temperature and the fragility features of paper substrate require novel approach for the heterogeneous integration of silicon chip and printed components. In this letter, RF interconnection via capacitive coupling is proposed for printed paper electronics. Capacitive coupling combined with the printed transmission line is used as the signal channel and realizes chip-to-chip communication. Modulation such as orthogonal frequency-division multiplexing is used for multiple chips to share the same transmission channel and increase the data rate. The channel response of the RF interconnection is studied and the feasibility is evaluated.

  • 71.
    Xie, Li
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Yang, Geng
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Xu, Linlin
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Seoane, Fernando
    KTH, School of Technology and Health (STH), Medical Engineering, Medical sensors, signals and systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. State Key Laboratory of ASICs and Systems, Fudan University, 200433, Shanghai, China .
    Characterization of dry biopotential electrodes2013In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2013, p. 1478-1481Conference paper (Refereed)
    Abstract [en]

    Driven by the increased interest in wearable long-term healthcare monitoring systems, varieties of dry electrodes are proposed based on different materials with different patterns and structures. Most of the studies reported in the literature focus on proposing new electrodes and comparing its performance with commercial electrodes. Few papers are about detailed comparison among different dry electrodes. In this paper, printed metal-plate electrodes, textile based electrodes, and spiked electrodes are for the first time evaluated and compared under the same experimental setup. The contact impedance and noise characterization are measured. The in-vivo electrocardiogram (ECG) measurement is applied to evaluate the overall performance of different electrodes. Textile electrodes and printed electrodes gain comparable high-quality ECG signals. The ECG signal obtained by spiked electrodes is noisier. However, a clear ECG envelope can be observed and the signal quality can be easily improved by backend signal processing. The features of each type of electrodes are analyzed and the suitable application scenario is addressed.

  • 72. Xu, Shaohui
    et al.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Zhu, Yiping
    Wang, Lianwei
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chu, Paul K.
    Modeling and Optimization of Thermoelements by a Combined Analytical and Numerical Method2014In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 43, no 2, p. 404-413Article in journal (Refereed)
    Abstract [en]

    A combined analytical and numerical process has been developed to model and optimize thermoelements. In this way, the performance of commercial n- and p-type thermoelectric materials can be optimized to deliver the maximum output power and conversion efficiency. The validity of the method is demonstrated using a silicon germanium unicouple.

  • 73.
    Yang, Geng
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Xie, Li
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mantysalo, Matti
    Zhou, Xiaolin
    Pang, Zhibo
    Xu, Li Da
    Kao-Walter, Sharon
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    A Health-IoT Platform Based on the Integration of Intelligent Packaging, Unobtrusive Bio-Sensor, and Intelligent Medicine Box2014In: IEEE Transactions on Industrial Informatics, ISSN 1551-3203, E-ISSN 1941-0050, Vol. 10, no 4, p. 2180-2191Article in journal (Refereed)
    Abstract [en]

    In-home healthcare services based on the Internet-of-Things (IoT) have great business potential; however, a comprehensive platform is still missing. In this paper, an intelligent home-based platform, the iHome Health-IoT, is proposed and implemented. In particular, the platform involves an open-platform-based intelligent medicine box (iMedBox) with enhanced connectivity and interchangeability for the integration of devices and services; intelligent pharmaceutical packaging (iMedPack) with communication capability enabled by passive radio-frequency identification (RFID) and actuation capability enabled by functional materials; and a flexible and wearable bio-medical sensor device (Bio-Patch) enabled by the state-of-the-art inkjet printing technology and system-on-chip. The proposed platform seamlessly fuses IoT devices (e. g., wearable sensors and intelligent medicine packages) with in-home healthcare services (e. g., telemedicine) for an improved user experience and service efficiency. The feasibility of the implemented iHome Health-IoT platform has been proven in field trials.

  • 74.
    Zhai, Chuanying
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zou, Zhuo
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zhou, Qin
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mao, Jia
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Xu, L.
    A 2.4-GHz ISM RF and UWB hybrid RFID real-time locating system for industrial enterprise Internet of Things2016In: Enterprise Information Systems, ISSN 1751-7575, E-ISSN 1751-7583, p. 1-18Article in journal (Refereed)
    Abstract [en]

    This paper presents a 2.4-GHz radio frequency (RF) and ultra-wide bandwidth (UWB) hybrid real-time locating system (RTLS) for industrial enterprise Internet of Things (IoT). It employs asymmetric wireless link, that is, UWB radio is utilised for accurate positioning up to 10 cm in critical sites, whereas 2.4-GHz RF is used for tag control and coarse positioning in non-critical sites. The specified communication protocol and the adaptive tag synchronisation rate ensure reliable and deterministic access with a scalable system capacity and avoid unpredictable latency and additional energy consumption of retransmissions due to collisions. The tag, consisting of a commercial 2.4-GHz transceiver and a customised application-specific integrated circuit (ASIC) UWB transmitter (Tx), is able to achieve up to 3 years’ battery life at 1600 tags per position update second with 1000 mAh battery in one cluster. The time difference of arrival (TDoA)–based positioning experiment at UWB radio is performed on the designed software-defined radio (SDR) platform.

  • 75.
    Zhang, Zhi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Bergarp, T.
    Norman, Per
    Billerud AB, 16927 Solna, Stockholm, Sweden.
    Wikström, Magnus
    Billerud AB, 16927 Solna, Stockholm, Sweden.
    Yan, Xiaolang
    Institute of VLSI Design, Zhejiang University, Hangzhou, China.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Wireless sensor networks for logistics and retail2009In: INSS2009 - 6th International Conference on Networked Sensing Systems, Pittsburgh, PA, 2009, p. 98-101Conference paper (Other academic)
    Abstract [en]

    Internet of Things technologies makes it possible to trace when and where the excellent food or wine is spoiled or loses perfect taste in logistics and retail. This paper describes a system using a two-layered wireless sensor network to monitor the supply chain from manufacturer to consumer, including the network topology, application software on server, and sensor node hardware. It employs GSM/GPRS as the high layer network and semi impulse ultra-wideband radio (IR-UWB) for the low layer communication. We propose GSM Cell-ID location technology for tracking the goods transportation, and time-of-arrival method for local positioning. Finally, the first version of the system implementation and future work are presented. ©2009 IEEE.

  • 76.
    Zhang, Zhi
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Lu, Zhonghai
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Yan, Xiaolang
    Design and Optimization of a CDMA-based Multi-Reader Passive UHF RFID System for Dense Scenarios2012In: IEICE transactions on communications, ISSN 0916-8516, E-ISSN 1745-1345, Vol. E95B, no 1, p. 206-216Article in journal (Refereed)
    Abstract [en]

    In dense passive radio frequency identification (RFID) systems, code division multiple access (CDMA) techniques can be used to alleviate severe collisions and thus enhance the system performance. However, conventional CDMA techniques are challenging to implement, especially for passive tags due to cost and power constraints. In this paper, we design a CDMA-based multi-reader passive ultra high frequency (UHF) RFID system in which a reader detects only the strongest tag signal and a tag uses Gold codes only on the preamble and the data bits of RN16 without increasing its clock frequency. We present a new communication procedure based on dynamic framed slotted ALOHA (DFSA). In order to optimize the system, we theoretically analyze the system performance in terms of slot capacity and identification rate, and formally show how the code length and the number of readers affect the identification rate. Furthermore, we propose an effective method for tag estimation and frame size adjustment, and validate it via simulations. Through an example, we demonstrate how the analysis-based technique can be used to optimize the system configurations with respect to the number of readers and the number and length of Gold codes.

  • 77.
    Zhang, Zhi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Lu, Zhonghai
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Yan, Xiaolang
    Institute of VLSI Design, Zhejiang University, Hangzhou, China.
    Zheng, Li-Rong
    A high performance multi-reader passive RFID system for Internet-of-ThingsIn: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248Article in journal (Other academic)
  • 78.
    Zhang, Zhi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Lu, Zhonghai
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Yan, Xiaolang
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Code division multiple access/pulse position modulation ultra-wideband radio frequency identification for Internet of Things: concept and analysis2012In: International Journal of Communication Systems, ISSN 1074-5351, E-ISSN 1099-1131, Vol. 25, no 9, p. 1103-1121Article in journal (Refereed)
    Abstract [en]

    Radio frequency identification (RFID) is a compelling technology for Internet of Things (IoT). Ultra-wideband (UWB) technology is one promising wireless technique for future RFID, especially for high-throughput sensing applications. On-off keying UWB RFID system provides high pulse rate but suffers severe collisions that limit the system throughput. This paper proposes to utilize low pulse rate code division multiple access/pulse position modulation UWB in the tag-to-reader link to provide multiple tag access capability and build a high-throughput RFID system for IoT. We analyze asynchronous matched filter receiver and decorrelating receiver for multi-tag detection and design an effective medium access control scheme to optimize the network throughput. We propose an effective dynamic frame size adjustment algorithm on the basis of theoretical analysis and determine the preferable length of Gold codes. With a similar data rate, the throughput of the proposed system using the decorrelating receiver is 8.6 times higher than that of the electronic product code class 1 generation 2 system. Only using 1/10 pulse rate and 1/15 data rate, the proposed system outperforms the on-off keying UWB RFID system 1.4 times in terms of throughput.

  • 79.
    Zhang, Zhi
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Lu, Zhonghai
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Yan, Xiaolang
    Institute of VLSI Design, Zhejiang University, Hangzhou, China.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    COSMO: CO-simulation with MATLAB and OMNeT++ for indoor wireless networks2010In: 2010 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE GLOBECOM 2010, 2010Conference paper (Refereed)
    Abstract [en]

    Simulations are widely used to design and evaluate new protocols and applications of indoor wireless networks. However, the available network simulation tools face the challenges of providing accurate indoor channel models, three-dimensional (3-D) models, model portability, and effective validation. In order to overcome these challenges, this paper presents a new CO-Simulation framework based on MATLAB and OMNeT++ (COSMO) to rapidly build credible simulations for indoor wireless networks. A hierarchical ad hoc passive RFID network for indoor tag locating is described as a case study, demonstrating the significance and efficiency of COSMO compared with other network simulators. COSMO surpasses other network simulators in terms of workload and validity.

  • 80.
    Zhang, Zhi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Lu, Zhonghai
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Pang, Zhibo
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Yan, Xiaolang
    Institute of VLSI Design, Zhejiang University, Hangzhou, China.
    A low delay multiple reader passive RFID system using orthogonal TH-PPM IR-UWB2010In: Proceedings - International Conference on Computer Communications and Networks, ICCCN, Zurich, 2010Conference paper (Refereed)
    Abstract [en]

    Current passive RFID systems face the challenges to locate mobile objects in real time in indoor environments, including the realization of low delay as well as effective cooperation among readers and accurate ranging ability in the physical layer. In order to overcome these challenges, this paper presents a low delay multi-reader passive RFID system using ultra high frequency (UHF) radio as the forward link from readers to tags and orthogonal time hopping pulse-position modulation (TH-PPM) impulse ultra-wideband radio (IR-UWB) over the dynamic framed slotted ALOHA algorithm as the backward link from tags to readers. The asymmetric radio links overlap parts of the forward and backward transmission and avoid reader-tag collisions. Readers cooperate via network synchronization by a server and a contention-based update strategy to acknowledge tags. An optimal system configured with 4 readers using 16 orthogonal TH sequences is suggested and operates 3 times faster than the theoretical potential of EPC Class-1 Generation-2 protocol with the listen-before-talk scheme. 

  • 81.
    Zhang, Zhi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Lu, Zhonghai
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Saakian, Vardan
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Yan, Xiaolang
    Institute of VLSI Design, Zhejiang University.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems.
    Item-Level Indoor Localization With Passive UHF RFID Based on Tag Interaction Analysis2013In: IEEE transactions on industrial electronics (1982. Print), ISSN 0278-0046, E-ISSN 1557-9948, Vol. 61, no 4, p. 2122-2135Article in journal (Refereed)
    Abstract [en]

    Radio-frequency identification (RFID) with a received signal strength indicator (RSSI) is a low-cost and low-complexity approach for item-level indoor localization. Although RSSI-based algorithms suffer from multipath effect and other environmental factors, reference tags and RSSI changes can be utilized to further improve the localization accuracy. However, the current algorithms lack deep analysis of the influence of tag interaction on localization accuracy and faces the challenge of simultaneously locating multiple close targets. In this paper, we propose an analysis method about how tag interaction affects a tag antenna radiation pattern and an RSSI change. The tag interaction analysis guides us to improve the design of RSSI-based localization algorithms. We take the k-nearest neighbor (k-NN) algorithm and the Simplex algorithm as two examples. The experimental results show that the revised k-NN and the revised Simplex algorithms are robust to different numbers, spacing, and materials of target objects, and they are superior to other RFID localization schemes, considering cost, capability of simultaneous localization of multiple targets, and location estimation errors.

  • 82.
    Zhang, Zhi
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Pang, Zhibo
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Chen, Jun
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK. KTH, School of Information and Communication Technology (ICT), Electronic, Computer and Software Systems, ECS.
    Yan, Xiaolang
    Institute of VLSI Design, Zhejiang University, Hangzhou, China.
    Two-layered wireless sensor networks for warehouses and supermarkets2009Conference paper (Other academic)
    Abstract [en]

    The rapid development of wireless sensor network and RFID technologies offers a wide range of novel applications and services. In this paper, we present a two-layered wireless network for warehouses and supermarkets to monitor goods storage and sale, and assist for quality management and market analysis. The hierarchical architecture uses IEEE 802.15.4a impulse ultra-wideband radio (IR-UWB) communication protocol between slave sensor nodes and master sensor nodes, and IEEE 802.11b/g between master sensor nodes and server. The performance of our proposal is evaluated based on the widely used OMNeT++ simulation environment. Simulation results are presented and discussed according to different sampling rates and traffic loads for specific scenarios requirements. © 2009 IEEE.

  • 83.
    Zhou, Qin
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zou, Zhuo
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Industrial and Medical Electronics. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Low complexity burst packet detection for wireless-powered UWB RFID systems2015In: 2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), 2015, p. 1-5Conference paper (Refereed)
    Abstract [en]

    This paper addresses the issue of UWB signal acquisition in the context of wireless powered UWB RFID systems. In this scenario, the data transmission is based on short packet so as to meet the micro-power budget of autonomous power harvesting. The burst short packet transmission as well as the low duty cycling UWB pulse modulation places a stringent challenge at the UWB receiver for timing acquisition and packet detection. Besides, in a positioning enabled RFID system where variable signal-to-noise ratio (SNR) due to the variable link distance and noise background is unavoidable, conventional packet detection schemes rely on predefined threshold can hardly achieve good performance. In this study, we propose a low complexity method for burst packet detection. It is performed by sensing the preamble signal characteristic instead of the received signal strength, and thus bypassing the necessity of detection threshold. The validity of the proposed approach and its adaptivity to SNR variations is demonstrated by simulation results as well as field test with a UWB software defined radio (SDR) platform.

  • 84.
    Zhou, Qin
    et al.
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zou, Zhuo
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Tenhunen, Hannu
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Li-Rong
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Noise-reducing architecture of compressed sensing receiver for IR-UWB ranging systems2016Conference paper (Refereed)
    Abstract [en]

    A compressed sensing (CS) based impulse radio ultra-wideband (IR-UWB) receiver with two-path noise-reducing RF front-end architecture is proposed. By adding an identicalinput path (antenna and gain stage) together with a mixer, the noise in the received signal before feeding into the CS sampling block is alleviated comparing with the conventional CS receiver. Moreover, the mixing stage shifts the signal frequency spectrum to the lower band which eases the CS sampling hardware as well as the complexity of back-end signal reconstruction. Simulation results for a ranging system validate that the proposed CS receiver significantly outperforms the conventional one in both additive white Gaussian noise (AWGN) channel and IEEE802.15.4a multi-path channel.

  • 85.
    Zou, Zhuo
    et al.
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Shao, Botao
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zhou, Qin
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zhai, Chuanying
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Mao, Jia
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Baghaei-Nejad, Majid
    KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Chen, Qiang
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Zheng, Lirong
    KTH, School of Information and Communication Technology (ICT), Electronic Systems. KTH, School of Information and Communication Technology (ICT), Centres, VinnExcellence Center for Intelligence in Paper and Packaging, iPACK.
    Design and demonstration of passive UWB RFIDs: Chipless versus chip solutions2012In: RFID-Technologies and Applications (RFID-TA), 2012 IEEE International Conference on, IEEE , 2012, p. 6-11Conference paper (Refereed)
    Abstract [en]

    This paper reviews recent research on Ultra-Wideband (UWB) techniques for the next generation Radio Frequency IDentification (RFID) towards the Internet-of-Things (IoT), conducted by Vinn iPack Center at KTH, Sweden. First, we introduce an inkjet printed chipless UWB RFID for ultra-low cost applications such as item-level tracking. The identification number is coded by variations of the impedance over the transmission line, resulting in the OOK modulated data by means of pulse reflections in time domain. Prototypes were fabricated and measured for 4-bit tag and 8-bit tag, respectively. Thanks to the employment of fully printing process and paper substrates, the tag is potentially ultra-low cost in volume production. Second, a wirelessly powered RFID tag with an active UWB transmitter is studied for advanced applications such as wireless positioning and sensing. The tag is powered by UHF continuous waves, whereas it uses an UWB pulse generator to transmit data to the reader. It ensures the improved coverage and accurate positioning over traditional backscattering UHF tags. UWB readers, positioning, and sensing are also discussed in a system perspective. The two solutions reveal that UWB is a viable alternative to existing passive RFIDs adapting both low-cost applications and high-performance sensing and positioning applications.

12 51 - 85 of 85
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf