Change search
Refine search result
12 51 - 56 of 56
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 51.
    Sanchez, Carmen Cobo
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wåhlander, Martin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Taylor, Nathaniel
    KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
    Fogelström, Linda
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Novel Nanocomposites of Poly(lauryl methacrylate)-Grafted Al2O3 Nanoparticles in LDPE2015In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 7, no 46, p. 25669-25678Article in journal (Refereed)
    Abstract [en]

    Aluminum oxide nanoparticles (NPs) were surface-modified by poly(lauryl methacrylate) (PLMA) using surface-initiated atom-transfer radical polymerization (SI-ATRP) of lauryl methacrylate. Nanocomposites were obtained by mixing the grafted NPs in a low-density polyethylene (LDPE) matrix in different ratios. First, the NPs were silanized with different aminosilanes, (3-aminopropyl)triethoxysilane, and 3-aminopropyl(diethoxy)methylsilane (APDMS). Subsequently, a-BiB, an initiator for SI-ATRP, was attached to the amino groups, showing higher immobilization ratios for APDMS and confirming that fewer self-condensation reactions between silanes took place. In a third step SI-ATRP of LMA at different times was performed to render PLMA-grafted NPs (NP-PLMAs), showing good control of the polymerization. Reactions were conducted for 20 to 60 min, obtaining a range of molecular weights between 23?000 and 83?000 g/mol, as confirmed by size-exclusion chromoatography of the cleaved grafts. Nanocomposites of NP-PLMAs at low loadings in LDPE were prepared by extrusion. At low loadings, 0.5 wt % of inorganic content, the second yield point, storage, and loss moduli increased significantly, suggesting an improved interphase as an effect of the PLMA grafts. These observations were also confirmed by an increase in transparency of the nanocomposite films. At higher loadings, 1 wt % of inorganics, the increasing amount of PLMA gave rise to the formation of small aggregates, which may explain the loss of mechanical properties. Finally, dielectric measurements were performed, showing a decrease in tan d values for LDPE-NP-PLMAs, as compared to the nanocomposites containing unmodified NP, thus indicating an improved interphase between the NPs and LDPE.

  • 52.
    Stamm, Arne
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Biundo, Antonino
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schmidt, Björn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Brücher, Jörg
    Holmen AB, Dev, S-89180 Östersund, Sweden.
    Lundmark, Stefan
    Perstorp AB, Innovat, Perstorp Ind Pk, S-28480 Perstorp, Sweden.
    Olsén, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Fogelström, Linda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Bornscheuer, Uwe T
    Ernst Moritz Arndt Univ Greifswald, Inst Biochem, Dept Biotechnol & Enzyme Catalysis, Felix Hausdorff Str 4, D-17487 Greifswald, Germany.
    Syrén, Per-Olof
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    A retrobiosynthesis-based route to generate pinene-derived polyesters2019In: ChemBioChem (Print), ISSN 1439-4227, E-ISSN 1439-7633, Vol. 20, p. 1664-1671Article in journal (Refereed)
    Abstract [en]

    Significantly increased production of biobased polymers is aprerequisite to replace petroleum-based materials towardsreaching a circular bioeconomy. However, many renewablebuilding blocks from wood and other plant material are notdirectly amenable for polymerization, due to their inert backbonesand/or lack of functional group compatibility with thedesired polymerization type. Based on a retro-biosyntheticanalysis of polyesters, a chemoenzymatic route from (@)-apinenetowards a verbanone-based lactone, which is furtherused in ring-opening polymerization, is presented. Generatedpinene-derived polyesters showed elevated degradation andglass transition temperatures, compared with poly(e-decalactone),which lacks a ring structure in its backbone. Semirationalenzyme engineering of the cyclohexanone monooxygenasefrom Acinetobacter calcoaceticus enabled the biosynthesis ofthe key lactone intermediate for the targeted polyester. As aproof of principle, one enzyme variant identified from screeningin a microtiter plate was used in biocatalytic upscaling,which afforded the bicyclic lactone in 39% conversion in shakeflask scale reactions.

  • 53.
    Stamm, Arne
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tengdelius, Mattias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Schmidt, Björn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Syrén, Per-Olof
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Fogelström, Linda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Chemo- enzymatic pathways toward pinene- based renewable materials2019In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 21, no 10, p. 2720-2731Article in journal (Refereed)
    Abstract [en]

    Sobrerol methacrylate (SobMA) was synthesized and subsequently polymerized using different chemical and enzymatic routes. Sobrerol was enzymatically converted from -pinene in a small model scale by a Cytochrome P450 mutant from Bacillus megaterium. Conversion of sobrerol into SobMA was performed using both classical ester synthesis, i.e., acid chloride-reactions in organic solvents, and a more green approach, the benign lipase catalysis. Sobrerol was successfully esterified, leaving the tertiary alcohol and ene to be used for further chemistry. SobMA was polymerized into PSobMA using different radical polymerization techniques, including free radical (FR), controlled procedures (Reversible Addition Fragmentation chain-Transfer polymerization, (RAFT) and Atom Transfer Radical Polymerization (ATRP)) as well as by enzyme catalysis (horseradish peroxidase-mediated free radical polymerization). The resulting polymers showed high glass-transition temperatures (T-g) around 150 degrees C, and a thermal degradation onset above 200 degrees C. It was demonstrated that the T-g could be tailored by copolymerizing SobMa with appropriate methacrylate monomers and that the Flory-Fox equation could be used to predict the T-g. The versatility of PSobMA was further demonstrated by forming crosslinked thin films, either using the ene'-functionality for photochemically initiated thiol-ene'-chemistry, or reacting the tertiary hydroxyl-group with hexamethoxymethylmelamine, as readily used for thermally curing coatings systems.

  • 54.
    Torron, Susana
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Fogelström, Linda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Hult, Karl
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology.
    Martinelle, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology.
    Telechelic polyesters and polycarbonates prepared by enzymatic catalysis2017In: Handbook of Telechelic Polyesters, Polycarbonates, and Polyethers, Pan Stanford Publishing Pte. Ltd. , 2017, p. 29-64Chapter in book (Other academic)
    Abstract [en]

    The majority of polyesters and polycarbonates are traditionally synthesized through conventional metal-based catalysis. Although effective, due to environmental concerns, their substitution for other more environmentally friendly alternatives has received increasing interest during the last decades. The search for catalytic systems that also allow milder reaction conditions has been intensified, owing to 30the unwanted side reactions, for example, backbone scissoring, that the metal-based catalysts may cause [1]. In this context, enzymes are anticipated as suitable alternatives [2,3,4,5,6,7,-8]. 

  • 55.
    Utsel, Simon
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Bruce, Carl
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Pettersson, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Fogelström, Linda
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malmström, Eva E.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Physical tuning of cellulose/polymer interactions utilizing cationic block copolymers based on poly(ε-caprolactone)Article in journal (Other academic)
  • 56.
    Utsel, Simon
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Bruce, Carl
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Pettersson, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Fogelström, Linda
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Physical tuning of cellulose-polymer interactions utilizing cationic block copolymers based on PCL and quaternized PDMAEMA2012In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 4, no 12, p. 6796-6807Article in journal (Refereed)
    Abstract [en]

    In this work, the objective was to synthesize and evaluate the properties of a compatibilizer based on poly(ε-caprolactone) aimed at tuning the surface properties of cellulose fibers used in fiber-reinforced biocomposites. The compatibilizer is an amphiphilic block copolymer consisting of two different blocks which have different functions. One block is cationic, quaternized poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and can therefore electrostatically attach to anionic reinforcing materials such as cellulose-based fibers/fibrils under mild conditions in water. The other block consists of poly(ε-caprolactone) (PCL) which can decrease the surface energy of a cellulose surface and also has the ability to form physical entanglements with a PCL surface thereby improving the interfacial adhesion. Atom Transfer Radical Polymerization (ATRP) and Ring-Opening Polymerization (ROP) were used to synthesize three block copolymers with the same length of the cationic PDMAEMA block but with different lengths of the PCL blocks. The block copolymers form cationic micelles in water which can adsorb to anionic surfaces such as silicon oxide and cellulose-model surfaces. After heat treatment, the contact angles of water on the treated surfaces increased significantly, and contact angles close to those of pure PCL were obtained for the block copolymers with longer PCL blocks. AFM force measurements showed a clear entangling behavior between the block copolymers and a PCL surface at about 60 C, which is important for the formation of an adhesive interface in the final biocomposites. This demonstrates that this type of amphiphilic block copolymer can be used to improve interactions in biocomposites between anionic reinforcing materials such as cellulose-based fibers/fibrils and less polar matrices such as PCL.

12 51 - 56 of 56
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf