Endre søk
Begrens søket
1234567 51 - 100 of 466
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Bretzner, Lars
    et al.
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Lindeberg, Tony
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Qualitative Multi-Scale Feature Hierarchies for Object Tracking2000Inngår i: Journal of Visual Communication and Image Representation, ISSN 1047-3203, E-ISSN 1095-9076, Vol. 11, s. 115-129Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper shows how the performance of feature trackers can be improved by building a view-based object representation consisting of qualitative relations between image structures at different scales. The idea is to track all image features individually, and to use the qualitative feature relations for resolving ambiguous matches and for introducing feature hypotheses whenever image features are mismatched or lost. Compared to more traditional work on view-based object tracking, this methodology has the ability to handle semi-rigid objects and partial occlusions. Compared to trackers based on three-dimensional object models, this approach is much simpler and of a more generic nature. A hands-on example is presented showing how an integrated application system can be constructed from conceptually very simple operations.

  • 52.
    Bretzner, Lars
    et al.
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Lindeberg, Tony
    KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB.
    Qualitative multiscale feature hierarchies for object tracking2000Rapport (Fagfellevurdert)
    Abstract [en]

    This paper shows how the performance of feature trackers can be improved by building a hierarchical view-based object representation consisting of qualitative relations between image structures at different scales. The idea is to track all image features individually and to use the qualitative feature relations for avoiding mismatches, for resolving ambiguous matches, and for introducing feature hypotheses whenever image features are lost. Compared to more traditional work on view-based object tracking, this methodology has the ability to handle semirigid objects and partial occlusions. Compared to trackers based on three-dimensional object models, this approach is much simpler and of a more generic nature. A hands-on example is presented showing how an integrated application system can be constructed from conceptually very simple operations.

  • 53.
    Bretzner, Lars
    et al.
    KTH, Tidigare Institutioner (före 2005), Numerisk analys och datalogi, NADA.
    Lindeberg, Tony
    KTH, Tidigare Institutioner (före 2005), Numerisk analys och datalogi, NADA.
    Qualitative multi-scale feature hierarchies for object tracking1999Inngår i: Proc Scale-Space Theories in Computer Vision Med, Elsevier, 1999, s. 117-128Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper shows how the performance of feature trackers can be improved by building a view-based object representation consisting of qualitative relations between image structures at different scales. The idea is to track all image features individually, and to use the qualitative feature relations for resolving ambiguous matches and for introducing feature hypotheses whenever image features are mismatched or lost. Compared to more traditional work on view-based object tracking, this methodology has the ability to handle semi-rigid objects and partial occlusions. Compared to trackers based on three-dimensional object models, this approach is much simpler and of a more generic nature. A hands-on example is presented showing how an integrated application system can be constructed from conceptually very simple operations.

  • 54.
    Bretzner, Lars
    et al.
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Lindeberg, Tony
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Structure and Motion Estimation using Sparse Point and Line Correspondences in Multiple Affine Views1999Rapport (Annet vitenskapelig)
    Abstract [en]

    This paper addresses the problem of computing three-dimen\-sional structure and motion from an unknown rigid configuration of points and lines viewed by an affine projection model. An algebraic structure, analogous to the trilinear tensor for three perspective cameras, is defined for configurations of three centered affine cameras. This centered affine trifocal tensor contains 12 non-zero coefficients and involves linear relations between point correspondences and trilinear relations between line correspondences. It is shown how the affine trifocal tensor relates to the perspective trilinear tensor, and how three-dimensional motion can be computed from this tensor in a straightforward manner. A factorization approach is developed to handle point features and line features simultaneously in image sequences, and degenerate feature configurations are analysed. This theory is applied to a specific problem in human-computer interaction of capturing three-dimensional rotations from gestures of a human hand. This application to quantitative gesture analyses illustrates the usefulness of the affine trifocal tensor in a situation where sufficient information is not available to compute the perspective trilinear tensor, while the geometry requires point correspondences as well as line correspondences over at least three views.

  • 55.
    Bretzner, Lars
    et al.
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Lindeberg, Tony
    KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB.
    Use your hand as a 3-D mouse or relative orientation from extended sequences of sparse point and line correspondances using the affine trifocal tensor1998Inngår i: Computer Vision — ECCV'98: 5th European Conference on Computer Vision Freiburg, Germany, June, 2–6, 1998 Proceedings, Volume I, Springer Berlin/Heidelberg, 1998, Vol. 1406, s. 141-157Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper addresses the problem of computing three-dimensional structure and motion from an unknown rigid configuration of point and lines viewed by an affine projection model. An algebraic structure, analogous to the trilinear tensor for three perspective cameras, is defined for configurations of three centered affine cameras. This centered affine trifocal tensor contains 12 coefficients and involves linear relations between point correspondences and trilinear relations between line correspondences It is shown how the affine trifocal tensor relates to the perspective trilinear tensor, and how three-dimensional motion can be computed from this tensor in a straightforward manner. A factorization approach is also developed to handle point features and line features simultaneously in image sequences.

    This theory is applied to a specific problem of human-computer interaction of capturing three-dimensional rotations from gestures of a human hand. A qualitative model is presented, in which three fingers are represented by their position and orientation, and it is shown how three point correspondences (blobs at the finger tips) and three line correspondences (ridge features at the fingers) allow the affine trifocal tensor to be determined, from which the rotation is computed. Besides the obvious application, this test problem illustrates the usefulness of the affine trifocal tensor in a situation where sufficient information is not available to compute the perspective trilinear tensor, while the geometry requires point correspondences as well as line correspondences over at least three views.

  • 56.
    Brucker, Manuel
    et al.
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Durner, Maximilian
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Ambrus, Rares
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Marton, Zoltan Csaba
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Wendt, Axel
    Robert Bosch, Corp Res, St Joseph, MI USA.;Robert Bosch, Corp Res, Gerlingen, Germany..
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Arras, Kai O.
    Robert Bosch, Corp Res, St Joseph, MI USA.;Robert Bosch, Corp Res, Gerlingen, Germany..
    Triebel, Rudolph
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany.;Tech Univ Munich, Dep Comp Sci, Munich, Germany..
    Semantic Labeling of Indoor Environments from 3D RGB Maps2018Inngår i: 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE Computer Society, 2018, s. 1871-1878Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We present an approach to automatically assign semantic labels to rooms reconstructed from 3D RGB maps of apartments. Evidence for the room types is generated using state-of-the-art deep-learning techniques for scene classification and object detection based on automatically generated virtual RGB views, as well as from a geometric analysis of the map's 3D structure. The evidence is merged in a conditional random field, using statistics mined from different datasets of indoor environments. We evaluate our approach qualitatively and quantitatively and compare it to related methods.

  • 57.
    Brunnström, Kjell
    et al.
    KTH, Tidigare Institutioner (före 2005), Numerisk analys och datalogi, NADA.
    Eklundh, Jan-Olof
    KTH, Tidigare Institutioner (före 2005), Numerisk analys och datalogi, NADA.
    Lindeberg, Tony
    KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB.
    On Scale and Resolution in the Analysis of Local Image Structure1990Inngår i: Proc. 1st European Conf. on Computer Vision, 1990, Vol. 427, s. 3-12Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Focus-of-attention is extremely important in human visual perception. If computer vision systems are to perform tasks in a complex, dynamic world they will have to be able to control processing in a way that is analogous to visual attention in humans.

    In this paper we will investigate problems in connection with foveation, that is examining selected regions of the world at high resolution. We will especially consider the problem of finding and classifying junctions from this aspect. We will show that foveation as simulated by controlled, active zooming in conjunction with scale-space techniques allows robust detection and classification of junctions.

  • 58.
    Brunnström, Kjell
    et al.
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Eklundh, Jan-Olof
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Lindeberg, Tony
    KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsbiologi, CB.
    Scale and Resolution in Active Analysis of Local Image Structure1990Inngår i: Image and Vision Computing, Vol. 8, s. 289-296Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Focus-of-attention is extremely important in human visual perception. If computer vision systems are to perform tasks in a complex, dynamic world they will have to be able to control processing in a way that is analogous to visual attention in humans. Problems connected to foveation (examination of selected regions of the world at high resolution) are examined. In particular, the problem of finding and classifying junctions from this aspect is considered. It is shown that foveation as simulated by controlled, active zooming in conjunction with scale-space techniques allows for robust detection and classification of junctions.

  • 59.
    Brunnström, Kjell
    et al.
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Lindeberg, Tony
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Eklundh, Jan-Olof
    KTH, Tidigare Institutioner, Numerisk analys och datalogi, NADA.
    Active detection and classification of junctions by foveation with a head-eye system guided by the scale-space primal sketch1992Inngår i: Computer Vision — ECCV'92: Second European Conference on Computer Vision Santa Margherita Ligure, Italy, May 19–22, 1992 Proceedings / [ed] Guilo Sandini, Springer Berlin/Heidelberg, 1992, s. 701-709Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We consider how junction detection and classification can be performed in an active visual system. This is to exemplify that feature detection and classification in general can be done by both simple and robust methods, if the vision system is allowed to look at the world rather than at prerecorded images. We address issues on how to attract the attention to salient local image structures, as well as on how to characterize those.

  • 60.
    Burenius, Magnus
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Human 3D Pose Estimation in the Wild: using Geometrical Models and Pictorial Structures2013Doktoravhandling, med artikler (Annet vitenskapelig)
  • 61.
    Burenius, Magnus
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Sullivan, Josephine
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Motion Capture from Dynamic Orthographic Cameras2011Inngår i: 4DMOD - 1st IEEE Workshop on Dynamic Shape Capture and Analysis, 2011Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We present an extension to the scaled orthographic camera model. It deals with dynamic cameras looking at faraway objects. The camera is allowed to change focal lengthand translate and rotate in 3D. The model we derive saysthat this motion can be treated as scaling, translation androtation in a 2D image plane. It is valid if the camera and itstarget move around in two separate regions that are smallcompared to the distance between them.We show two applications of this model to motion capture applications at large distances, i.e. outside a studio,using the affine factorization algorithm. The model is usedto motivate theoretically why the factorization can be carried out in a single batch step, when having both dynamiccameras and a dynamic object. Furthermore, the model isused to motivate how the position of the object can be reconstructed by measuring the virtual 2D motion of the cameras. For testing we use videos from a real football gameand reconstruct the 3D motion of a footballer as he scoresa goal.

  • 62.
    Burenius, Magnus
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Sullivan, Josephine
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Halvorsen, Kjartan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Human 3D Motion Computation from a varying Number of Cameras2011Inngår i: Image Analysis, Springer Berlin / Heidelberg , 2011, s. 24-35Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper focuses on how the accuracy of marker-less human motion capture is affected by the number of camera views used. Specifically, we compare the 3D reconstructions calculated from single and multiple cameras. We perform our experiments on data consisting of video from multiple cameras synchronized with ground truth 3D motion, obtained from a motion capture session with a professional footballer. The error is compared for the 3D reconstructions, of diverse motions, estimated using the manually located image joint positions from one, two or three cameras. We also present a new bundle adjustment procedure using regression splines to impose weak prior assumptions about human motion, temporal smoothness and joint angle limits, on the 3D reconstruction. The results show that even under close to ideal circumstances the monocular 3D reconstructions contain visual artifacts not present in the multiple view case, indicating accurate and efficient marker-less human motion capture requires multiple cameras.

  • 63.
    Burger, Birgitta
    et al.
    Finnish Centre of Excellence in Interdisciplinary Music Research, Department of Music, University of Jyväskylä.
    Bresin, Roberto
    KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH, Musikakustik.
    Communication of Musical Expression by Means of Mobile Robot Gestures2010Inngår i: Journal on Multimodal User Interfaces, ISSN 1783-7677, E-ISSN 1783-8738, Vol. 3, nr 1, s. 109-118Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We developed a robotic system that can behave in an emotional way. A 3-wheeled simple robot with limited degrees of freedom was designed. Our goal was to make the robot displaying emotions in music performance by performing expressive movements. These movements have been compiled and programmed based on literature about emotion in music, musicians’ movements in expressive performances, and object shapes that convey different emotional intentions. The emotions happiness, anger, and sadness have been implemented in this way. General results from behavioral experiments show that emotional intentions can be synthesized, displayed and communicated by an artificial creature, also in constrained circumstances.

  • 64.
    Butepage, Judith
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Black, Michael J.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Kjellström, Hedvig
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Deep representation learning for human motion prediction and classification2017Inngår i: 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), IEEE, 2017, s. 1591-1599Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Generative models of 3D human motion are often restricted to a small number of activities and can therefore not generalize well to novel movements or applications. In this work we propose a deep learning framework for human motion capture data that learns a generic representation from a large corpus of motion capture data and generalizes well to new, unseen, motions. Using an encoding-decoding network that learns to predict future 3D poses from the most recent past, we extract a feature representation of human motion. Most work on deep learning for sequence prediction focuses on video and speech. Since skeletal data has a different structure, we present and evaluate different network architectures that make different assumptions about time dependencies and limb correlations. To quantify the learned features, we use the output of different layers for action classification and visualize the receptive fields of the network units. Our method outperforms the recent state of the art in skeletal motion prediction even though these use action specific training data. Our results show that deep feedforward networks, trained from a generic mocap database, can successfully be used for feature extraction from human motion data and that this representation can be used as a foundation for classification and prediction.

  • 65.
    Butepage, Judith
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kjellström, Hedvig
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kragic, Danica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Anticipating many futures: Online human motion prediction and generation for human-robot interaction2018Inngår i: 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE COMPUTER SOC , 2018, s. 4563-4570Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Fluent and safe interactions of humans and robots require both partners to anticipate the others' actions. The bottleneck of most methods is the lack of an accurate model of natural human motion. In this work, we present a conditional variational autoencoder that is trained to predict a window of future human motion given a window of past frames. Using skeletal data obtained from RGB depth images, we show how this unsupervised approach can be used for online motion prediction for up to 1660 ms. Additionally, we demonstrate online target prediction within the first 300-500 ms after motion onset without the use of target specific training data. The advantage of our probabilistic approach is the possibility to draw samples of possible future motion patterns. Finally, we investigate how movements and kinematic cues are represented on the learned low dimensional manifold.

  • 66.
    Båberg, Fredrik
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Petter, Ögren
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma systen, CAS.
    Formation Obstacle Avoidance using RRT and Constraint Based Programming2017Inngår i: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), IEEE conference proceedings, 2017, artikkel-id 8088131Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this paper, we propose a new way of doing formation obstacle avoidance using a combination of Constraint Based Programming (CBP) and Rapidly Exploring Random Trees (RRTs). RRT is used to select waypoint nodes, and CBP is used to move the formation between those nodes, reactively rotating and translating the formation to pass the obstacles on the way. Thus, the CBP includes constraints for both formation keeping and obstacle avoidance, while striving to move the formation towards the next waypoint. The proposed approach is compared to a pure RRT approach where the motion between the RRT waypoints is done following linear interpolation trajectories, which are less computationally expensive than the CBP ones. The results of a number of challenging simulations show that the proposed approach is more efficient for scenarios with high obstacle densities.

  • 67.
    Caccamo, Sergio
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Güler, Püren
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kjellström, Hedvig
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Active perception and modeling of deformable surfaces using Gaussian processes and position-based dynamics2016Inngår i: IEEE-RAS International Conference on Humanoid Robots, IEEE, 2016, s. 530-537Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Exploring and modeling heterogeneous elastic surfaces requires multiple interactions with the environment and a complex selection of physical material parameters. The most common approaches model deformable properties from sets of offline observations using computationally expensive force-based simulators. In this work we present an online probabilistic framework for autonomous estimation of a deformability distribution map of heterogeneous elastic surfaces from few physical interactions. The method takes advantage of Gaussian Processes for constructing a model of the environment geometry surrounding a robot. A fast Position-based Dynamics simulator uses focused environmental observations in order to model the elastic behavior of portions of the environment. Gaussian Process Regression maps the local deformability on the whole environment in order to generate a deformability distribution map. We show experimental results using a PrimeSense camera, a Kinova Jaco2 robotic arm and an Optoforce sensor on different deformable surfaces.

  • 68.
    Caccamo, Sergio
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Parasuraman, Ramviyas
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Båberg, Fredrik
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Extending a UGV Teleoperation FLC Interface with Wireless Network Connectivity Information2015Inngår i: 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), IEE , 2015, s. 4305-4312Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Teleoperated Unmanned Ground Vehicles (UGVs) are expected to play an important role in future search and rescue operations. In such tasks, two factors are crucial for a successful mission completion: operator situational awareness and robust network connectivity between operator and UGV. In this paper, we address both these factors by extending a new Free Look Control (FLC) operator interface with a graphical representation of the Radio Signal Strength (RSS) gradient at the UGV location. We also provide a new way of estimating this gradient using multiple receivers with directional antennas. The proposed approach allows the operator to stay focused on the video stream providing the crucial situational awareness, while controlling the UGV to complete the mission without moving into areas with dangerously low wireless connectivity. The approach is implemented on a KUKA youBot using commercial-off-the-shelf components. We provide experimental results showing how the proposed RSS gradient estimation method performs better than a difference approximation using omnidirectional antennas and verify that it is indeed useful for predicting the RSS development along a UGV trajectory. We also evaluate the proposed combined approach in terms of accuracy, precision, sensitivity and specificity.

  • 69.
    Carlsson, Stefan
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Azizpour, Hossein
    KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST).
    Razavian, Ali Sharif
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Sullivan, Josephine
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Smith, Kevin
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Beräkningsvetenskap och beräkningsteknik (CST).
    The Preimage of Rectifier Network Activities2017Inngår i: International Conference on Learning Representations (ICLR), 2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The preimage of the activity at a certain level of a deep network is the set of inputs that result in the same node activity. For fully connected multi layer rectifier networks we demonstrate how to compute the preimages of activities at arbitrary levels from knowledge of the parameters in a deep rectifying network. If the preimage set of a certain activity in the network contains elements from more than one class it means that these classes are irreversibly mixed. This implies that preimage sets which are piecewise linear manifolds are building blocks for describing the input manifolds specific classes, ie all preimages should ideally be from the same class. We believe that the knowledge of how to compute preimages will be valuable in understanding the efficiency displayed by deep learning networks and could potentially be used in designing more efficient training algorithms.

  • 70. Carlsson, Stefan
    et al.
    Azizpour, Hossein
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Sharif Razavian, Ali
    Sullivan, Josephine
    Smith, Kevin
    The preimage of rectifier network activities2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We give a procedure for explicitly computing the complete preimage of activities of a layer in a rectifier network with fully connected layers, from knowledge of the weights in the network. The most general characterisation of preimages is as piecewise linear manifolds in the input space with possibly multiple branches. This work therefore complements previous demonstrations of preimages obtained by heuristic optimisation and regularization algorithms Mahendran & Vedaldi (2015; 2016) We are presently empirically evaluating the procedure and it’s ability to extract complete preimages as well as the general structure of preimage manifolds.

  • 71.
    Carvalho, Joao Frederico
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Vejdemo-Johansson, Mikael
    CUNY College of Staten Island, Mathematics Department, New York, USA.
    Kragic, Danica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Pokorny, Florian T.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Path Clustering with Homology Area2018Inngår i: 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE conference proceedings, 2018, s. 7346-7353Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Path clustering has found many applications in recent years. Common approaches to this problem use aggregates of the distances between points to provide a measure of dissimilarity between paths which do not satisfy the triangle inequality. Furthermore, they do not take into account the topology of the space where the paths are embedded. To tackle this, we extend previous work in path clustering with relative homology, by employing minimum homology area as a measure of distance between homologous paths in a triangulated mesh. Further, we show that the resulting distance satisfies the triangle inequality, and how we can exploit the properties of homology to reduce the amount of pairwise distance calculations necessary to cluster a set of paths. We further compare the output of our algorithm with that of DTW on a toy dataset of paths, as well as on a dataset of real-world paths.

  • 72.
    Castellano, Ginevra
    et al.
    InfoMus Lab, DIST, University of Genova.
    Bresin, Roberto
    KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH, Musikakustik.
    Camurri, Antonio
    InfoMus Lab, DIST, University of Genova.
    Volpe, Gualtiero
    InfoMus Lab, DIST, University of Genova.
    Expressive Control of Music and Visual Media by Full-Body Movement2007Inngår i: Proceedings of the 7th International Conference on New Interfaces for Musical Expression, NIME '07, New York, NY, USA: ACM Press, 2007, s. 390-391Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this paper we describe a system which allows users to use their full-body for controlling in real-time the generation of an expressive audio-visual feedback. The system extracts expressive motion features from the user’s full-body movements and gestures. The values of these motion features are mapped both onto acoustic parameters for the real-time expressive rendering ofa piece of music, and onto real-time generated visual feedback projected on a screen in front of the user.

  • 73. Castellano, Ginevra
    et al.
    Bresin, Roberto
    KTH, Skolan för datavetenskap och kommunikation (CSC), Tal, musik och hörsel, TMH, Musikakustik.
    Camurri, Antonio
    Volpe, Gualtiero
    User-Centered Control of Audio and Visual Expressive Feedback by Full-Body Movements2007Inngår i: Affective Computing and Intelligent Interaction / [ed] Paiva, Ana; Prada, Rui; Picard, Rosalind W., Berlin / Heidelberg: Springer Berlin/Heidelberg, 2007, s. 501-510Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    In this paper we describe a system allowing users to express themselves through their full-body movement and gesture and to control in real-time the generation of an audio-visual feedback. The systems analyses in real-time the user’s full-body movement and gesture, extracts expressive motion features and maps the values of the expressive motion features onto real-time control of acoustic parameters for rendering a music performance. At the same time, a visual feedback generated in real-time is projected on a screen in front of the users with their coloured silhouette, depending on the emotion their movement communicates. Human movement analysis and visual feedback generation were done with the EyesWeb software platform and the music performance rendering with pDM. Evaluation tests were done with human participants to test the usability of the interface and the effectiveness of the design.

  • 74.
    Chang, Yongjun
    et al.
    KTH, Skolan för teknik och hälsa (STH).
    Smedby, Örjan
    KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildbehandling och visualisering.
    Effects of preprocessing in slice-level classification of interstitial lung disease based on deep convolutional networks2018Inngår i: VipIMAGE 2017: Proceedings of the VI ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing Porto, Portugal, October 18-20, 2017, Springer Netherlands, 2018, Vol. 27, s. 624-629Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Several preprocessing methods are applied to the automatic classification of interstitial lung disease (ILD). The proposed methods are used for the inputs to an established convolutional neural network in order to investigate the effect of those preprocessing techniques to slice-level classification accuracy. Experimental results demonstrate that the proposed preprocessing methods and a deep learning approach outperformed the case of the original images input to deep learning without preprocessing.

  • 75.
    Chen, Guang
    et al.
    Tongji Univ, Coll Automot Engn, Shanghai, Peoples R China.;Tech Univ Munich, Chair Robot Artificial Intelligence & Real Time S, Munich, Germany..
    Chen, Jieneng
    Tongji Univ, Coll Elect & Informat Engn, Shanghai, Peoples R China..
    Lienen, Marten
    Tech Univ Munich, Chair Robot Artificial Intelligence & Real Time S, Munich, Germany..
    Conradt, Jörg
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Beräkningsvetenskap och beräkningsteknik (CST).
    Roehrbein, Florian
    Tech Univ Munich, Chair Robot Artificial Intelligence & Real Time S, Munich, Germany..
    Knoll, Alois C.
    Tech Univ Munich, Chair Robot Artificial Intelligence & Real Time S, Munich, Germany..
    FLGR: Fixed Length Gists Representation Learning for RNN-HMM Hybrid-Based Neuromorphic Continuous Gesture Recognition2019Inngår i: Frontiers in Neuroscience, ISSN 1662-4548, E-ISSN 1662-453X, Vol. 13, artikkel-id 73Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A neuromorphic vision sensors is a novel passive sensing modality and frameless sensors with several advantages over conventional cameras. Frame-based cameras have an average frame-rate of 30 fps, causing motion blur when capturing fast motion, e.g., hand gesture. Rather than wastefully sending entire images at a fixed frame rate, neuromorphic vision sensors only transmit the local pixel-level changes induced by the movement in a scene when they occur. This leads to advantageous characteristics, including low energy consumption, high dynamic range, a sparse event stream and low response latency. In this study, a novel representation learning method was proposed: Fixed Length Gists Representation (FLGR) learning for event-based gesture recognition. Previous methods accumulate events into video frames in a time duration (e.g., 30 ms) to make the accumulated image-level representation. However, the accumulated-frame-based representation waives the friendly event-driven paradigm of neuromorphic vision sensor. New representation are urgently needed to fill the gap in non-accumulated-frame-based representation and exploit the further capabilities of neuromorphic vision. The proposed FLGR is a sequence learned from mixture density autoencoder and preserves the nature of event-based data better. FLGR has a data format of fixed length, and it is easy to feed to sequence classifier. Moreover, an RNN-HMM hybrid was proposed to address the continuous gesture recognition problem. Recurrent neural network (RNN) was applied for FLGR sequence classification while hidden Markov model (HMM) is employed for localizing the candidate gesture and improving the result in a continuous sequence. A neuromorphic continuous hand gestures dataset (Neuro ConGD Dataset) was developed with 17 hand gestures classes for the community of the neuromorphic research. Hopefully, FLGR can inspire the study on the event-based highly efficient, high-speed, and high-dynamic-range sequence classification tasks.

  • 76.
    Cheng, Xiaogang
    et al.
    Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China.;Swiss Fed Inst Technol, Comp Vis Lab, CH-8092 Zurich, Switzerland..
    Yang, Bin
    Xian Univ Architecture & Technol, Sch Bldg Serv Sci & Engn, Xian 710055, Shaanxi, Peoples R China.;Umea Univ, Dept Appl Phys & Elect, S-90187 Umea, Sweden..
    Tan, Kaige
    KTH.
    Isaksson, Erik
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Medieteknik och interaktionsdesign, MID.
    Li, Liren
    Nanjing Tech Univ, Sch Comp Sci & Technol, Nanjing 211816, Jiangsu, Peoples R China..
    Hedman, Anders
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Medieteknik och interaktionsdesign, MID.
    Olofsson, Thomas
    Umea Univ, Dept Appl Phys & Elect, S-90187 Umea, Sweden..
    Li, Haibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Medieteknik och interaktionsdesign, MID. Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China.
    A Contactless Measuring Method of Skin Temperature based on the Skin Sensitivity Index and Deep Learning2019Inngår i: Applied Sciences, E-ISSN 2076-3417, Vol. 9, nr 7, artikkel-id 1375Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Featured Application The NISDL method proposed in this paper can be used for real time contactless measuring of human skin temperature, which reflects human body thermal comfort status and can be used for control HVAC devices. Abstract In human-centered intelligent building, real-time measurements of human thermal comfort play critical roles and supply feedback control signals for building heating, ventilation, and air conditioning (HVAC) systems. Due to the challenges of intra- and inter-individual differences and skin subtleness variations, there has not been any satisfactory solution for thermal comfort measurements until now. In this paper, a contactless measuring method based on a skin sensitivity index and deep learning (NISDL) was proposed to measure real-time skin temperature. A new evaluating index, named the skin sensitivity index (SSI), was defined to overcome individual differences and skin subtleness variations. To illustrate the effectiveness of SSI proposed, a two multi-layers deep learning framework (NISDL method I and II) was designed and the DenseNet201 was used for extracting features from skin images. The partly personal saturation temperature (NIPST) algorithm was use for algorithm comparisons. Another deep learning algorithm without SSI (DL) was also generated for algorithm comparisons. Finally, a total of 1.44 million image data was used for algorithm validation. The results show that 55.62% and 52.25% error values (NISDL method I, II) are scattered at (0 degrees C, 0.25 degrees C), and the same error intervals distribution of NIPST is 35.39%.

  • 77.
    Christensen, Henrik I.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk analys, NA (stängd 2012-06-30).
    Session summary2005Inngår i: Robotics Research: The Eleventh International Symposium, Springer Berlin/Heidelberg, 2005, s. 57-59Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    While the current part carries the title “path planning” the contributions in this section cover two topics: mapping and planning. In some sense one might argue that intelligent (autonomous) mapping actually requires path planning. While this is correct the contributions actually have a broader scope as is outlined below. A common theme to all of the presentations in this section is the adoption of hybrid representations to facilitate efficient processing in complex environments. Purely geometric models allow for accurate estimation of position and motion generation, but they scale poorly with environmental complexity while qualitative geometric models have a limited accuracy and are well suited for global estimation of trajectories/locations. Through fusion of qualitative and quantitative models it becomes possible to develop systems that have tractable complexity while maintaining geometric accuracy.

  • 78.
    Christensen, Henrik I.
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk Analys och Datalogi, NADA. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Pacchierotti, Elena
    KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk Analys och Datalogi, NADA. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Embodied social interaction for robots2005Inngår i: AISB'05 Convention: Social Intelligence and Interaction in Animals, Robots and Agents: Proceedings of the Symposium on Robot Companions: Hard Problems and Open Challenges in Robot-Human Interaction, 2005, s. 40-45Konferansepaper (Fagfellevurdert)
    Abstract [en]

    A key aspect of service robotics for everyday use is the motion of systems in close proximity to humans. It is here essential that the robot exhibits a behaviour that signals safe motion and awareness of the other actors in its environment. To facilitate this there is a need to endow the system with facilities for detection and tracking of objects in the vicinity of the platform, and to design a control law that enables motion generation which is considered socially acceptable. We present a system for in-door navigation in which the rules of proxemics are used to define interaction strategies for the platform.

  • 79.
    Chrysostomou, Dimitrios
    et al.
    Production and Management Engineering Dept., Democritus University of Thrace, Greece.
    Nalpantidis, Lazaros
    Production and Management Engineering Dept., Democritus University of Thrace, Greece.
    Gasteratos, Antonios
    Production and Management Engineering Dept., Democritus University of Thrace, Greece.
    Lighting compensating multiview stereo2011Inngår i: 2011 IEEE International Conference on Imaging Systems and Techniques, IST 2011 - Proceedings, 2011, s. 176-179Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this paper, a method that performs 3D object reconstruction from multiple views of the same scene is presented. This reconstruction method initially produces a basic model, based on the space carving algorithm, that is further refined in a subsequent step. The algorithm is fast, computationally simple and produces accurate representations of the input scenes. In addition, compared to previously presented works the proposed algorithm is able to cope with non uniformly lighted scenes due to the characteristics of the used voxel dissimilarity measure. The proposed algorithm is assessed and the experimental results are presented and discussed.

  • 80.
    Chung, Michael Jae-Yoon
    et al.
    University of Washington, Seattle.
    Pronobis, Andrzej
    University of Washington, Seattle.
    Cakmak, Maya
    University of Washington, Seattle.
    Fox, Dieter
    University of Washington, Seattle.
    Rao, Rajesh P. N.
    University of Washington, Seattle.
    Autonomous Question Answering with Mobile Robots in Human-Populated Environments2016Inngår i: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’16), IEEE, 2016Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Autonomous mobile robots will soon become ubiquitous in human-populated environments. Besides their typical applications in fetching, delivery, or escorting, such robots present the opportunity to assist human users in their daily tasks by gathering and reporting up-to-date knowledge about the environment. In this paper, we explore this use case and present an end-to-end framework that enables a mobile robot to answer natural language questions about the state of a large-scale, dynamic environment asked by the inhabitants of that environment. The system parses the question and estimates an initial viewpoint that is likely to contain information for answering the question based on prior environment knowledge. Then, it autonomously navigates towards the viewpoint while dynamically adapting to changes and new information. The output of the system is an image of the most relevant part of the environment that allows the user to obtain an answer to their question. We additionally demonstrate the benefits of a continuously operating information gathering robot by showing how the system can answer retrospective questions about the past state of the world using incidentally recorded sensory data. We evaluate our approach with a custom mobile robot deployed in a university building, with questions collected from occupants of the building. We demonstrate our system's ability to respond to these questions in different environmental conditions.

  • 81.
    Chung, Michael Jae-Yoon
    et al.
    University of Washington, Seattle.
    Pronobis, Andrzej
    University of Washington, Seattle.
    Cakmak, Maya
    University of Washington, Seattle.
    Fox, Dieter
    University of Washington, Seattle.
    Rao, Rajesh P. N.
    University of Washington, Seattle.
    Designing Information Gathering Robots for Human-Populated Environments2015Inngår i: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’15), IEEE, 2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Advances in mobile robotics have enabled robots that can autonomously operate in human-populated environments. Although primary tasks for such robots might be fetching, delivery, or escorting, they present an untapped potential as information gathering agents that can answer questions for the community of co-inhabitants. In this paper, we seek to better understand requirements for such information gathering robots (InfoBots) from the perspective of the user requesting the information. We present findings from two studies: (i) a user survey conducted in two office buildings and (ii) a 4-day long deployment in one of the buildings, during which inhabitants of the building could ask questions to an InfoBot through a web-based interface. These studies allow us to characterize the types of information that InfoBots can provide for their users.

  • 82.
    Chung, Michael Jae-Yoon
    et al.
    University of Washington, Seattle.
    Pronobis, Andrzej
    University of Washington, Seattle.
    Cakmak, Maya
    University of Washington, Seattle.
    Fox, Dieter
    University of Washington, Seattle.
    Rao, Rajesh P. N.
    University of Washington, Seattle.
    Exploring the Potential of Information Gathering Robots2015Inngår i: Proceedings of the 10th Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts (HRI’15), ACM Digital Library, 2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Autonomous mobile robots equipped with a number of sensors will soon be ubiquitous in human populated environments. In this paper we present an initial exploration into the potential of using such robots for information gathering. We present findings from a formative user survey and a 4-day long Wizard-of-Oz deployment of a robot that answers questions such as "Is there free food on the kitchen table?" Our studies allow us to characterize the types of information that InfoBots might be most useful for.

  • 83.
    Colledanchise, Michele
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Murray, R. M.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Synthesis of correct-by-construction behavior trees2017Inngår i: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, Institute of Electrical and Electronics Engineers (IEEE), 2017, s. 6039-6046, artikkel-id 8206502Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this paper we study the problem of synthesizing correct-by-construction Behavior Trees (BTs) controlling agents in adversarial environments. The proposed approach combines the modularity and reactivity of BTs with the formal guarantees of Linear Temporal Logic (LTL) methods. Given a set of admissible environment specifications, an agent model in form of a Finite Transition System and the desired task in form of an LTL formula, we synthesize a BT in polynomial time, that is guaranteed to correctly execute the desired task. To illustrate the approach, we present three examples of increasing complexity.

  • 84.
    Colledanchise, Michele
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    How Behavior Trees Modularize Robustness and Safety in Hybrid Systems2014Inngår i: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2014), IEEE , 2014, s. 1482-1488Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Behavior Trees (BTs) have become a popular framework for designing controllers of in-game opponents in the computer gaming industry. In this paper, we formalize and analyze the reasons behind the success of the BTs using standard tools of robot control theory, focusing on how properties such as robustness and safety are addressed in a modular way. In particular, we show how these key properties can be traced back to the ideas of subsumption and sequential compositions of robot behaviors. Thus BTs can be seen as a recent addition to a long research effort towards increasing modularity, robustness and safety of robot control software. To illustrate the use of BTs, we provide a set of solutions to example problems.

  • 85.
    Cruciani, Silvia
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Smith, Christian
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Integrating Path Planning and Pivoting2018Inngår i: 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) / [ed] Maciejewski, AA Okamura, A Bicchi, A Stachniss, C Song, DZ Lee, DH Chaumette, F Ding, H Li, JS Wen, J Roberts, J Masamune, K Chong, NY Amato, N Tsagwarakis, N Rocco, P Asfour, T Chung, WK Yasuyoshi, Y Sun, Y Maciekeski, T Althoefer, K AndradeCetto, J Chung, WK Demircan, E Dias, J Fraisse, P Gross, R Harada, H Hasegawa, Y Hayashibe, M Kiguchi, K Kim, K Kroeger, T Li, Y Ma, S Mochiyama, H Monje, CA Rekleitis, I Roberts, R Stulp, F Tsai, CHD Zollo, L, IEEE , 2018, s. 6601-6608Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this work we propose a method for integrating motion planning and in-hand manipulation. Commonly addressed as a separate step from the final execution, in-hand manipulation allows the robot to reorient an object within the end-effector for the successful outcome of the goal task. A joint achievement of repositioning the object and moving the manipulator towards its desired final pose saves time in the execution and introduces more flexibility in the system. We address this problem using a pivoting strategy (i.e. in-hand rotation) for repositioning the object and we integrate this strategy with a path planner for the execution of a complex task. This method is applied on a Baxter robot and its efficacy is shown by experimental results.

  • 86.
    Cruciani, Silvia
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Smith, Christian
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Kragic, Danica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Hang, Kaiyu
    Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China.;Hong Kong Univ Sci & Technol, Inst Adv Study, Hong Kong, Peoples R China..
    Dexterous Manipulation Graphs2018Inngår i: 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) / [ed] Maciejewski, AA Okamura, A Bicchi, A Stachniss, C Song, DZ Lee, DH Chaumette, F Ding, H Li, JS Wen, J Roberts, J Masamune, K Chong, NY Amato, N Tsagwarakis, N Rocco, P Asfour, T Chung, WK Yasuyoshi, Y Sun, Y Maciekeski, T Althoefer, K AndradeCetto, J Chung, WK Demircan, E Dias, J Fraisse, P Gross, R Harada, H Hasegawa, Y Hayashibe, M Kiguchi, K Kim, K Kroeger, T Li, Y Ma, S Mochiyama, H Monje, CA Rekleitis, I Roberts, R Stulp, F Tsai, CHD Zollo, L, IEEE , 2018, s. 2040-2047Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We propose the Dexterous Manipulation Graph as a tool to address in-hand manipulation and reposition an object inside a robot's end-effector. This graph is used to plan a sequence of manipulation primitives so to bring the object to the desired end pose. This sequence of primitives is translated into motions of the robot to move the object held by the end-effector. We use a dual arm robot with parallel grippers to test our method on a real system and show successful planning and execution of in-hand manipulation.

  • 87.
    Danielsson, Oscar
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Shape-based Representations and Boosting for Visual Object Class Detection: Models and methods for representaion and detection in single and multiple views2011Doktoravhandling, monografi (Annet vitenskapelig)
    Abstract [en]

    Detection of generic visual object classes (i.e. cars, dogs, mugs or people) in images is a task that humans are able to solve with remarkable ease. Unfortunately this has proven a very challenging task for computer vision. Thereason is that different instances of the same class may look very different, i.e. there is a high intra-class variation. There are several causes for intra-class variation; for example (1) the imaging conditions (e.g. lighting and exposure) may change, (2) different objects of the same class typically differ in shape and appearance, (3) the position of the object relative to the camera (i.e. the viewpoint) may change and (4) some objects are articulate and may change pose. In addition the background class, i.e. everything but the target object class, is very large. It is the combination of very high intra-class variation with a large background class that makes generic object class detection difficult.

    This thesis addresses this challenge within the AdaBoost framework. AdaBoost constructs an ensemble of weak classifiers to solve a given classification task and allows great flexibility in the design of these weak classifiers. This thesis proposes several types of weak classifiers that specifically target some of the causes of high intra-class variation. A multi-local classifier is proposed to capture global shape properties for object classes that lack discriminative local features, projectable classifiers are proposed to handle detection from multiple viewpoints and finally gated classifiers are proposed as a generic way to handle high intra-class variation in combination with a large background class.

    All proposed weak classifiers are evaluated on standard datasets to allow performance comparison to other related methods.

  • 88.
    Danielsson, Oscar
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Carlsson, Stefan
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Projectable Classifiers for Multi-View Object Class Recognition2011Inngår i: 3rd International IEEE Workshop on 3D Representation and Recognition, 2011Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We propose a multi-view object class modeling framework based on a simplified camera model and surfels (defined by a location and normal direction in a normalized 3D coordinate system) that mediate coarse correspondences between different views. Weak classifiers are learnt relative to the reference frames provided by the surfels. We describe a weak classifier that uses contour information when its corresponding surfel projects to a contour element in the image and color information when the face of the surfel is visible in the image. We emphasize that these weak classifiers can possibly take many different forms and use many different image features. Weak classifiers are combined using AdaBoost. We evaluate the method on a public dataset [8], showing promising results on categorization, recognition/detection, pose estimation and image synthesis.

  • 89.
    Danielsson, Oscar Martin
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Category-sensitive hashing and bloom filter based descriptors for online keypoint recognition2015Inngår i: 19th Scandinavian Conference on Image Analysis, SCIA 2015, Springer, 2015, s. 329-340Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this paper we propose a method for learning a categorysensitive hash function (i.e. a hash function that tends to map inputs from the same category to the same hash bucket) and a feature descriptor based on the Bloom filter. Category-sensitive hash functions are robust to intra-category variation. In this paper we use them to produce descriptors that are invariant to transformations caused by for example viewpoint changes, lighting variation and deformation. Since the descriptors are based on Bloom filters, they support a ”union” operation. So descriptors of matched features can be aggregated by taking their union.We thus end up with one descriptor per keypoint instead of one descriptor per feature (By keypoint we refer to a world-space reference point and by feature we refer to an image-space interest point. Features are typically observations of keypoints and matched features are observations of the same keypoint). In short, the proposed descriptor has data-defined invariance properties due to the category-sensitive hashing and is aggregatable due to its Bloom filter inheritance. This is useful whenever we require custom invariance properties (e.g. tracking of deformable objects) and/or when we make multiple observations of each keypoint (e.g. tracking, multi-view stereo or visual SLAM).

  • 90. Darrell, T. J.
    et al.
    Yeh, T.
    Tollmar, Konrad
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Kommunikationssystem, CoS. KTH, Skolan för informations- och kommunikationsteknik (ICT), Centra, KTH Center för Trådlösa System, Wireless@kth.
    Photo-based mobile deixis system and related techniques2004Patent (Annet (populærvitenskap, debatt, mm))
  • 91. Davies, A.
    et al.
    Ek, Carl Henrik
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Dalton, C.
    Campbell, N.
    Generating 3D Morphable Model parameters for facial tracking: Factorising identity and expression2012Inngår i: GRAPP 2012 IVAPP 2012 - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications, 2012, s. 309-318Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The ability to factorise parameters into identity and expression parameters is highly desirable in facial tracking as it requires only the identity parameters to be set in the initial frame leaving the expression parameters to be adjusted in subsequent frames. In this paper we introduce a strategy for creating parameters for a data-driven 3D Morphable Model (3DMM) which are able to separately model the variance due to identity and expression found in the training data. We present three factorisation schemes and evaluate their appropriateness for tracking by comparing the variances between the identity coefficients and expression coefficients when fitted to data of individuals performing different facial expressions.

  • 92.
    De Cubber, Geert
    et al.
    Royal Military Academy, Belgium.
    Doroftei, Daniela
    Royal Military Academy, Belgium.
    Nalpantidis, Lazaros
    Production and Management Engineering Dept., Democritus University of Thrace, Greece.
    Sirakoulis, Georgios Ch.
    Electrical and Computer Engineering Dept., Democritus University of Thrace, Greece.
    Gasteratos, Antonios
    Production and Management Engineering Dept., Democritus University of Thrace, Greece.
    Stereo-based terrain traversability analysis for robot navigation2009Inngår i: IARP/EURON Workshop on Robotics for Risky Interventions and Environmental Surveillance, 2009Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Outdoor mobile robots, which have to navigate autonomously in a totally nstructured environment need to auto-determine the suitability of the terrain around them for traversal. Traversability estimation is a challenging problem, as the traversability is a complex function of both the terrain characteristics, such as slopes, vegetation, rocks, etc and the robot mobility characteristics, i.e. locomotion method, wheel properties, etc. In this paper, we present an approach where a classification of the terrain in the classes “traversable” and “obstacle” is performed using only stereo vision as input data. In a first step, high-quality stereo disparity maps are calculated by a fast and robust algorithm. This stereo algorithm is explained in section 3 of this paper. Using this stereo depth information, the terrain classification is performed, based upon the analysis of the so-called "v-disparity" image which provides a representation of the geometric content of the scene. Using this method, it is possible to detect non-traversable terrain items (obstacles) even in the case of partial occlusion and without any explicit extraction of coherent structures or any a priori knowledge of the environment. The sole algorithm parameter is a single factor which takes into account the robot mobility characteristics. This terrain traversability estimation algorithm is explained in section 4. The stereo disparity mapping and terrain traversability estimation processes are integrated in an autonomous robot control architecture, proving that the algorithms allow real-time robot control. The results of experiments with this robot navigating on rough outdoor terrain are presented in section 5.

  • 93.
    De Cubber, Geert
    et al.
    Royal Military Academy, Belgium.
    Nalpantidis, Lazaros
    Production and Management Engineering Dept., Democritus University of Thrace, Greece.
    Sirakoulis, Georgios Ch.
    Electrical and Computer Engineering Dept., Democritus University of Thrace, Greece.
    Gasteratos, Antonios
    Production and Management Engineering Dept., Democritus University of Thrace, Greece.
    Intelligent robots need intelligent vision: Visual 3D perception2008Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Contemporary autonomous robots are generally equipped with an abundance of sensors like for example GPS, Laser, ultrasound sensors, etc to be able to navigate in an environment. However, this stands in contrast to the ultimate biological example for these robots: us humans. Indeed, humans seem perfectly capable to navigate in a complex, dynamic environment using primarily vision as a sensing modality. This observation inspired us to investigate visually guided intelligent mobile robots. In order to understand and reason about its environment, an intelligent robot needs to be aware of the three-dimensional status of this environment. The problem with vision, though, is that the perceived image is a two-dimensional projection of the 3D world. Recovering 3D-information has been in the focus of attention of the computer vision community for a few decades now, yet no all-satisfying method has been found so far. Most attention in this area has been on stereo-vision based methods, which use the displacement of objects in two (or more) images. Where stereo vision must be seen as a spatial integration of multiple viewpoints to recover depth, it is also possible to perform a temporal integration. The problem arising in this situation is known as the "Structure from Motion" (SfM) problem and deals with extracting 3-dimensional information about the environment from the motion of its projection onto a two-dimensional surface. In this paper, we investigate the possibilities of stereo and structure from motion approaches. It is not the aim to compare both theories of depth reconstruction with the goal of designating a winner and a loser. Both methods are capable of providing sparse as well as dense 3D reconstructions and both approaches have their merits and defects. The thorough, year-long research in the field indicates that accurate depth perception requires a combination of methods rather than a sole one. In fact, cognitive research has shown that the human brain uses no less than 12 different cues to estimate depth. Therefore, we also finally introduce in a following section a methodology to integrate stereo and structure from motion.

  • 94.
    Detry, Renaud
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ek, Carl Henrik
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Madry, Marianna
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Learning a dictionary of prototypical grasp-predicting parts from grasping experience2013Inngår i: 2013 IEEE International Conference on Robotics and Automation (ICRA), New York: IEEE , 2013, s. 601-608Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We present a real-world robotic agent that is capable of transferring grasping strategies across objects that share similar parts. The agent transfers grasps across objects by identifying, from examples provided by a teacher, parts by which objects are often grasped in a similar fashion. It then uses these parts to identify grasping points onto novel objects. We focus our report on the definition of a similarity measure that reflects whether the shapes of two parts resemble each other, and whether their associated grasps are applied near one another. We present an experiment in which our agent extracts five prototypical parts from thirty-two real-world grasp examples, and we demonstrate the applicability of the prototypical parts for grasping novel objects.

  • 95.
    Djikic, Addi
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Segmentation and Depth Estimation of Urban Road Using Monocular Camera and Convolutional Neural Networks2018Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
    Abstract [en]

    Deep learning for safe autonomous transport is rapidly emerging. Fast and robust perception for autonomous vehicles will be crucial for future navigation in urban areas with high traffic and human interplay.

    Previous work focuses on extracting full image depth maps, or finding specific road features such as lanes. However, in urban environments lanes are not always present, and sensors such as LiDAR with 3D point clouds provide a quite sparse depth perception of road with demanding algorithmic approaches.

    In this thesis we derive a novel convolutional neural network that we call AutoNet. It is designed as an encoder-decoder network for pixel-wise depth estimation of an urban drivable free-space road, using only a monocular camera, and handled as a supervised regression problem. AutoNet is also constructed as a classification network to solely classify and segment the drivable free-space in real- time with monocular vision, handled as a supervised classification problem, which shows to be a simpler and more robust solution than the regression approach.

    We also implement the state of the art neural network ENet for comparison, which is designed for fast real-time semantic segmentation and fast inference speed. The evaluation shows that AutoNet outperforms ENet for every performance metrics, but shows to be slower in terms of frame rate. However, optimization techniques are proposed for future work, on how to advance the frame rate of the network while still maintaining the robustness and performance.

    All the training and evaluation is done on the Cityscapes dataset. New ground truth labels for road depth perception are created for training with a novel approach of fusing pre-computed depth maps with semantic labels. Data collection with a Scania vehicle is conducted, mounted with a monocular camera to test the final derived models.

    The proposed AutoNet shows promising state of the art performance in regards to road depth estimation as well as road classification.

  • 96.
    Duberg, Daniel
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    Jensfelt, Patric
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Centrum för autonoma system, CAS.
    The Obstacle-restriction Method for Tele-operation of Unmanned Aerial Vehicles with Restricted Motion2018Inngår i: 2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), IEEE , 2018, s. 266-273Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper presents a collision avoidance method for tele-operated unmanned aerial vehicles (UAVs). The method is designed to assist the operator at all times, such that the operator can focus solely on the main objectives instead of avoiding obstacles. We restrict the altitude to be fixed in a three dimensional environment to simplify the control and operation of the UAV. The method contributes a number of desired properties not found in other collision avoidance systems for tele-operated UAVs. Our method i) can handle situations where there is no input from the user by actively stopping and proceeding to avoid obstacles, ii) allows the operator to slide between prioritizing staying away from objects and getting close to them in a safe way when so required, and iii) provides for intuitive control by not deviating too far from the control input of the operator. We demonstrate the effectiveness of the method in real world experiments with a physical hexacopter in different indoor scenarios. We also present simulation results where we compare controlling the UAV with and without our method activated.

  • 97.
    Dürr, Hans-Bernd
    et al.
    Institute for Systems Theory and Automatic Control, University of Stuttgart.
    Stankovic, Milos S.
    KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre. KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik.
    Johansson, Karl Henrik
    KTH, Skolan för elektro- och systemteknik (EES), Centra, ACCESS Linnaeus Centre. KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik.
    Distributed Positioning of Autonomous Mobile Sensors with Application to Coverage Control2011Inngår i: Proc. American Control Conference (ACC), IEEE , 2011, s. 4822-4827Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We consider problems in multi-agent systems where a network of mobile sensors needs to self-organize such that some global objective function is maximized. To deal with the agents' lack of global information we approach the problem in a game-theoretic framework where agents/players are only able to access local measurements of their own local utility functions whose parameters and detailed analytical forms may be unknown. We then propose a distributed and adaptive algorithm, where each agent applies a local extremum seeking feedback adopted to its specific motion dynamics, and prove its global practical stability, implying that the agents asymptotically reach a configuration that is arbitrary close to the globally optimal one. For the stability analysis we introduce a novel methodology based on a Lie bracket trajectory approximation and combine it with a potential game approach. We apply the proposed algorithm to the sensor coverage problem and solve it in a distributed way where the agents do not need any a priori knowledge about the distribution of the events to be detected and about the detection probabilities of the individual agents. The proposed scheme is illustrated through simulations.

  • 98. Ek, Carl Henrik
    et al.
    Jaeckel, P.
    Campbell, Neill
    Melhuish, Chris
    Shared Gaussian Process Latent Variable Models for Handling Ambiguous Facial Expressions2009Inngår i: INTELLIGENT SYSTEMS AND AUTOMATION / [ed] Beji, L; Otmane, S; Abichou, A, 2009, s. 147-153Konferansepaper (Fagfellevurdert)
  • 99.
    Ek, Carl Henrik
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    The importance of structure2011Konferansepaper (Fagfellevurdert)
  • 100. Ek, Carl Henrik
    et al.
    Rihan, J.
    Torr, P.
    Rogez, G.
    Lawrence, Neil D.
    Ambiguity modeling in latent spaces2008Inngår i: MACHINE LEARNING FOR MULTIMODAL INTERACTION, PROCEEDINGS / [ed] PopescuBelis, A; Stiefelhagen, R, BERLIN: SPRINGER-VERLAG BERLIN , 2008, s. 62-73Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We are interested in the situation where we have two or more representations of an underlying phenomenon. In particular we are interested in the scenario where the representation Lire complementary. This implies that a single individual representation is not sufficient to fully discriminate a specific instance of the underlying phenomenon, it also means that each representation is an ambiguous representation of the other complementary spaces. In this paper we present a latent variable model capable of consolidating multiple complementary representations. Our method extends canonical correlation analysis by introducing additional latent spaces that Lire specific to the different representations, thereby explaining the full variance of the observations. These additional spaces, explaining representation specific variance, separately model the variance in a representation ambiguous to the other. We develop a spectral algorithm for fast computation of the embeddings and a probabilistic model (based on Gaussian processes) for validation and inference. The proposed model has several potential application areas, we demonstrate its use for multi-modal regression on a benchmark human pose estimation data set.

1234567 51 - 100 of 466
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf