Endre søk
Begrens søket
1234567 51 - 100 of 451
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Borodulin, V. I.
    et al.
    Khristianovich Inst Theoret & Appl Mech, Novosibirsk 630090, Russia..
    Ivanov, A. V.
    Khristianovich Inst Theoret & Appl Mech, Novosibirsk 630090, Russia..
    Kachanov, Y. S.
    Khristianovich Inst Theoret & Appl Mech, Novosibirsk 630090, Russia..
    Mischenko, D. A.
    Khristianovich Inst Theoret & Appl Mech, Novosibirsk 630090, Russia..
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx). KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hein, S.
    DLR, Inst Aerodynam & Flow Technol, D-37073 Gottingen, Germany..
    Experimental and theoretical study of swept-wing boundary-layer instabilities. Three-dimensional Tollmien-Schlichting instability2019Inngår i: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 31, nr 11, artikkel-id 114104Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Extensive combined experimental and theoretical investigations of the linear evolution of three-dimensional (3D) Tollmien-Schlichting (TS) instability modes of 3D boundary layers developing on a swept airfoil section have been carried out. The flow under consideration is the boundary layer over an airfoil at 350 sweep and an angle of attack of +1.5 degrees. At these conditions, TS instability is found to be the predominant one. Perturbations with different frequencies and spanwise wavenumbers are generated in a controlled way using a row of elastic membranes. All experimental results are deeply processed and compared with results of calculations based on theoretical approaches. Very good quantitative agreement of all measured and calculated stability characteristics of swept-wing boundary layers is achieved.

  • 52. Branca, Rui M. M.
    et al.
    Orre, Lukas M.
    Johansson, Henrik J.
    Granholm, Viktor
    Huss, Mikael
    Perez-Bercoff, Åsa
    Forshed, Jenny
    Käll, Lukas
    KTH, Skolan för bioteknologi (BIO), Genteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Lehtiö, Janne
    HiRIEF LC-MSMS enables deep proteome coverage and unbiased proteogenomics2014Inngår i: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 11, nr 1, s. 59-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a liquid chromatography-mass spectrometry (LC-MSMS)-based method permitting unbiased (gene prediction-independent) genome-wide discovery of protein-coding loci in higher eukaryotes. Using high-resolution isoelectric focusing (HiRIEF) at the peptide level in the 3.7-5.0 pH range and accurate peptide isoelectric point (pI) prediction, we probed the six-reading-frame translation of the human and mouse genomes and identified 98 and 52 previously undiscovered protein-coding loci, respectively. The method also enabled deep proteome coverage, identifying 13,078 human and 10,637 mouse proteins.

  • 53.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    The lift-up effect: The linear mechanism behind transition and turbulence in shear flows2014Inngår i: European journal of mechanics. B, Fluids, ISSN 0997-7546, E-ISSN 1873-7390, Vol. 47, s. 80-96Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The formation and amplification of streamwise velocity perturbations induced by cross-stream disturbances is ubiquitous in shear flows. This disturbance growth mechanism, so neatly identified by Ellingsen and Palm in 1975, is a key process in transition to turbulence and self-sustained turbulence. In this review, we first present the original derivation and early studies and then discuss the non-modal growth of streaks, the result of the lift-up process, in transitional and turbulent shear flows. In the second part, the effects on the lift-up process of additives in the fluid and of a second phase are discussed and new results presented with emphasis on particle-laden shear flows. For all cases considered, we see the lift-up process to be a very robust process, always present as a first step in subcritical transition.

  • 54.
    Brandt, L.uca
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Ardekani, Mehdi Niazi
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Picano, F.
    Costa, P.
    Breugem, W. -P
    Numerical study of turbulent channel flow laden with finite-size non-spherical particles2017Inngår i: 10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017, International Symposium on Turbulence and Shear Flow Phenomena, TSFP10 , 2017, Vol. 4Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We present interface-resolved numerical simulations of turbulent channel flow laden with non-spherical rigid and neutrally-buoyant particles. We first focus on the case of oblate particles of aspect ratio 1/3 at volume fractions up to 15% and show that the turbulent drag is decreasing when increasing the particle volume fraction although the effective viscosity of the suspension actually increases. We relate the observed drag reduction to turbulence attenuation and to particle migration away from the near-wall region. Particles tend to align parallel to the wall with rotation rates significantly lower than those reported for spheres. In the second part of the study, we examine the effect of the particle slenderness on the observed drag reduction and show that the drag increases for flatter particles.

  • 55.
    Brethouwer, Geert
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Turbulens. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Duguet, Yohann
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Johansson, Arne V.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Turbulens. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Recurrent Bursts via Linear Processes in Turbulent Environments2014Inngår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 112, nr 14, s. 144502-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Large-scale instabilities occurring in the presence of small-scale turbulent fluctuations are frequently observed in geophysical or astrophysical contexts but are difficult to reproduce in the laboratory. Using extensive numerical simulations, we report here on intense recurrent bursts of turbulence in plane Poiseuille flow rotating about a spanwise axis. A simple model based on the linear instability of the mean flow can predict the structure and time scale of the nearly periodic and self-sustained burst cycles. Poiseuille flow is suggested as a prototype for future studies of low-dimensional dynamics embedded in strongly turbulent environments.

  • 56.
    Brockmann, Philipp
    et al.
    Tech Univ Darmstadt, Inst Fluid Mech & Aerodynam, Flughafenstr 19, D-64347 Griesheim, Germany..
    Kazerooni, Hamid Tabaei
    Tech Univ Ilmenau, Inst Thermodynam & Fluid Mech, D-98693 Ilmenau, Germany..
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hussong, Jeanette
    Tech Univ Darmstadt, Inst Fluid Mech & Aerodynam, Flughafenstr 19, D-64347 Griesheim, Germany..
    Utilizing the ball lens effect for astigmatism particle tracking velocimetry2020Inngår i: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, Vol. 61, nr 2Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the present study, a simple method is developed to apply astigmatism particle tracking velocimetry (APTV) to transparent particles utilizing backlight illumination. Here, a particle acts as ball lens and bundles the light to a focal point, which is used to determine the particle's out-of-plane position. Due to the distance between focal point and particle, additional features have to be considered in ball lens astigmatism particle tracking velocimetry (BLAPTV) compared to conventional APTV. We describe required calibration steps and perform parameter studies to show how the autocorrelation coefficient and the light exposure affect the accuracy of the method. It is found that the accuracy and robustness of the Euclidean calibration approach as also used in conventional APTV (Cierpka et al. in Meas Sci Technol 22(1):015401, 2010a) can be increased if an additional calibration curve for the light intensity of the particle's focal point is considered. In addition, we study the influence of the particle diameter and the refractive index jump between liquid and particles on the calibration curves and the accuracy. In this way, particles of the same size, but different material, can be distinguished by their calibration curve. Furthermore, an approach is presented to account for shape changes of the calibration curve along the depth of the measurement volume. Overall, BLAPTV provides high out-of-plane particle reconstruction accuracies with respect to the particle diameter. In test cases, position uncertainties down to 1.8% of the particle diameter are achieved for particles of dp=124 mu m. The measurement technique is validated for a laminar flow in a straight rectangular channel with a cross-sectional area of 2.3x30 mm2. Uncertainties of 0.75% for the in-plane and 2.29% for out-of-plane velocity with respect to the maximum streamwise velocity are achieved.Graphic abstract [Figure not available: see fulltext.]

  • 57.
    Brynjell-Rahkola, Mattias
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Studies on instability and optimal forcing of incompressible flows2017Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    This thesis considers the hydrodynamic instability and optimal forcing of a number of incompressible flow cases. In the first part, the instabilities of three problems that are of great interest in energy and aerospace applications are studied, namely a Blasius boundary layer subject to localized wall-suction, a Falkner–Skan–Cooke boundary layer with a localized surface roughness, and a pair of helical vortices. The two boundary layer flows are studied through spectral element simulations and eigenvalue computations, which enable their long-term behavior as well as the mechanisms causing transition to be determined. The emergence of transition in these cases is found to originate from a linear flow instability, but whereas the onset of this instability in the Blasius flow can be associated with a localized region in the vicinity of the suction orifice, the instability in the Falkner–Skan–Cooke flow involves the entire flow field. Due to this difference, the results of the eigenvalue analysis in the former case are found to be robust with respect to numerical parameters and domain size, whereas the results in the latter case exhibit an extreme sensitivity that prevents domain independent critical parameters from being determined. The instability of the two helices is primarily addressed through experiments and analytic theory. It is shown that the well known pairing instability of neighboring vortex filaments is responsible for transition, and careful measurements enable growth rates of the instabilities to be obtained that are in close agreement with theoretical predictions. Using the experimental baseflow data, a successful attempt is subsequently also made to reproduce this experiment numerically.

    In the second part of the thesis, a novel method for computing the optimal forcing of a dynamical system is developed. The method is based on an application of the inverse power method preconditioned by the Laplace preconditioner to the direct and adjoint resolvent operators. The method is analyzed for the Ginzburg–Landau equation and afterwards the Navier–Stokes equations, where it is implemented in the spectral element method and validated on the two-dimensional lid-driven cavity flow and the flow around a cylinder.

  • 58.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Barman, Emelie
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    On the stability of a Blasius boundary layer subject to localized suction2017Rapport (Annet vitenskapelig)
    Abstract [en]

    In this work the problem of premature transition in boundary layers due to localized suction is revisited. A thorough study involving nonlinear direct numerical simulations, a three-dimensional linear stability analysis, a sensitivity study and a Koopman analysis is presented. The ensemble of these different techniques enables the origins of oversuction to be studied in great detail and provides new insight into the transition process of the flow. The configuration considered consists of an infinite row of widely separated suction pipes that are mounted to the plate at right angles. For the parameter range investigated, the flow inside the pipe is seen to bifurcate at a lower suction ratio than the boundary layer and thus act as an oscillator that forces the external flow over the plate. At low levels of suction, this forcing is not enough to cause transition in the boundary layer, but as the suction level is increased beyond criticality, modes originating from the pipe and extending into the boundary layer are seen to destabilize as well. These modes enable the perturbations forced in the pipe to also amplify in the boundary layer, which leads to a rapid breakdown to turbulence in the wake of the suction hole.

  • 59.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    A note on the numerical realization of helical vortices: application to vortex instability2017Rapport (Annet vitenskapelig)
    Abstract [en]

    The need to numerically represent a free vortex system arises frequently in fundamental and applied research. Many possible techniques for realizing this vortex system exist but most tend to prioritize accuracy either inside or outside of the vortex core, which therefore makes them unsuitable to for a stability analysis considering the entire flow field. In this article, a simple method is presented that is shown to yield an accurate representation of the flow inside and outside of the vortex core. The method is readily implemented in any incompressible Navier–Stokes solver using primitive variables and Cartesian coordinates. It can potentially be used to model a wide range of vortices but is here applied to reproduce a recent experiment by Quaranta et al. (2017) considering two helices. A three-dimensional stability analysis is performed and yields an eigenvalue spectrum that features both long- and short-wave instabilities.

  • 60.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Numerical realization of helical vortices: application to vortex instability2019Inngår i: Theoretical and Computational Fluid Dynamics, ISSN 0935-4964, E-ISSN 1432-2250Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The need to numerically represent a free vortex system arises frequently in fundamental and applied research. Many possible techniques for realizing this vortex system exist but most tend to prioritize accuracy either inside or outside of the vortex core, which therefore makes them unsuitable for a stability analysis considering the entire flow field. In this article, a simple method is presented that is shown to yield an accurate representation of the flow inside and outside of the vortex core. The method is readily implemented in any incompressible Navier–Stokes solver using primitive variables and Cartesian coordinates. It can potentially be used to model a wide range of vortices but is here applied to the case of two helices, which is of renewed interest due to its relevance for wind turbines and helicopters. Three-dimensional stability analysis is performed in both a rotating and a translating frame of reference, which yield eigenvalue spectra that feature both mutual inductance and elliptic instabilities. Comparison of these spectra with available theoretical predictions is used to validate the proposed baseflow model, and new insights into the elliptic instability of curved Batchelor vortices are presented. Furthermore, it is shown that the instabilities in the rotating and the translating reference frames have the same structure and growth rate, but different frequency. A relation between these frequencies is provided.

  • 61.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Mekanik, Processteknisk strömningsmekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Modal analysis of roughness-induced crossflow vortices in a Falkner-Skan-Cooke boundary layer2013Inngår i: International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2013, TSFP-8 , 2013Konferansepaper (Fagfellevurdert)
    Abstract [en]

    A three-dimensional global stability analysis using high-order direct numerical simulations is performed to investigate the effect of surface roughness with Reynolds number (based on roughness height) Rek above and below the critical value for transition, on the eigenmodes of a Falkner-Skan-Cooke boundary layer. The surface roughness is introduced with the immersed boundary method and the eigenvalues and eigenfunctions are solved using an iterative time-stepper method. The study reveals a global instability for the case with higher Reynolds number that causes the flow in the non-linear simulations to break down to turbulence shortly downstream of the roughness. Examination of the unstable linear global modes show that these are the same modes that are observed in experiments immediately before breakdown due to secondary instability, which emphasizes the importance of these modes in transition.

  • 62.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Shahriari, Nima
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Hanifi, Ardeshir
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Stability and sensitivity of a cross-flow-dominated Falkner-Skan-Cooke boundary layer with discrete surface roughness2017Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 826, s. 830-850Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    With the motivation of determining the critical roughness size, a global stability and sensitivity analysis of a three-dimensional Falkner-Skan-Cooke (FSC) boundary layer with a cylindrical surface roughness is performed. The roughness size is chosen such that breakdown to turbulence is initiated by a global version of traditional secondary instabilities of the cross-flow (CF) vortices instead of an immediate flow tripping at the roughness. The resulting global eigenvalue spectra of the systems are found to be very sensitive to numerical parameters and domain size. This sensitivity to numerical parameters is quantified using the epsilon-pseudospectrum, and the dependency on the domain is analysed through an impulse response, structural sensitivity analysis and an energy budget. It is shown that while the frequencies remain relatively unchanged, the growth rates increase with domain size, which originates from the inclusion of stronger CF vortices in the baseflow. This is reflected in a change in the rate of advective energy transport by the baseflow. It is concluded that the onset of global instability in a FSC boundary layer as the roughness height is increased does not correspond to an immediate flow tripping behind the roughness, but occurs for lower roughness heights if sufficiently long domains are considered. However, the great sensitivity results in an inability to accurately pinpoint the exact parameter values for the bifurcation, and the large spatial growth of the disturbances in the long domains eventually becomes larger than can be resolved using finite-precision arithmetic.

  • 63.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Shahriari, Nima
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. Swedish Defence Research Agency, Sweden.
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Stability and sensitivity of a crossflow-dominated Falkner–Skan–Cooke boundary layer with discrete surface roughness2016Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    With the motivation of determining the critical roughness size, a global stability and sensitivity analysis of a three-dimensional Falkner–Skan–Cooke (FSC) boundary layer with a cylindrical surface roughness is performed. The roughness size is chosen such that breakdown to turbulence is initiated by a global version of traditional secondary instabilities of the crossflow (CF) vortices, instead of an immediate flow tripping at the roughness. The resulting global eigenvalue spectra of the systems are found to be very sensitive to numerical parameters and domain size. This sensitivity to numerical parameters is quantified using the "-pseudospectrum, and the dependency on the domain is analysed through an impulse response and an energy budget. It is shown that the growth rates increase with domain size, which originates from the inclusion of stronger CF vortices in the baseflow. This is reflected in a change in the rate of advective energy transport by the baseflow. It is concluded that the onset of global instability in a FSC boundary layer as the roughness height is increased does not correspond to an immediate flow tripping behind the roughness, but occurs for lower roughness heights if su ciently long domains are considered. However, the great sensitivity results in an inability to accurately pinpoint the exact parameter values for the bifurcation, and the large spatial growth of the disturbances in the long domains eventually becomes larger than what can be resolved using finite precision arithmetics. 

  • 64.
    Brynjell-Rahkola, Mattias
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Tuckerman, L. S.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Computing Optimal Forcing Using Laplace Preconditioning2017Inngår i: Communications in Computational Physics, ISSN 1815-2406, E-ISSN 1991-7120, Vol. 22, nr 5, s. 1508-1532Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    For problems governed by a non-normal operator, the leading eigenvalue of the operator is of limited interest and a more relevant measure of the stability is obtained by considering the harmonic forcing causing the largest system response. Various methods for determining this so-called optimal forcing exist, but they all suffer from great computational expense and are hence not practical for large-scale problems. In the present paper a new method is presented, which is applicable to problems of arbitrary size. The method does not rely on timestepping, but on the solution of linear systems, in which the inverse Laplacian acts as a preconditioner. By formulating the search for the optimal forcing as an eigenvalue problem based on the resolvent operator, repeated system solves amount to power iterations, in which the dominant eigenvalue is seen to correspond to the energy amplification in a system for a given frequency, and the eigenfunction to the corresponding forcing function. Implementation of the method requires only minor modifications of an existing timestepping code, and is applicable to any partial differential equation containing the Laplacian, such as the Navier-Stokes equations. We discuss the method, first, in the context of the linear Ginzburg-Landau equation and then, the two-dimensional lid-driven cavity flow governed by the Navier-Stokes equations. Most importantly, we demonstrate that for the lid-driven cavity, the optimal forcing can be computed using a factor of up to 500 times fewer operator evaluations than the standard method based on exponential timestepping.

  • 65.
    Bäbler, Matthäus
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Energiprocesser.
    Biferale, Luca
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Feudel, Ulrike
    Guseva, Ksenia
    Lanotte, Alessandra S.
    Marchioli, Cristian
    Picano, Francesco
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. University of Padua, Italy.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Soldati, Alfredo
    Toschi, Federico
    Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows2015Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 766Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress sigma similar to epsilon(1/2), with epsilon being the energy dissipation at the position of the aggregate, overcomes a given threshold sigma(cr), which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.

  • 66.
    Canton, Jacopo
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx). KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Linear stability of the flow in a toroidal pipe2015Inngår i: 9th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2015, TSFP-9 , 2015Konferansepaper (Fagfellevurdert)
    Abstract [en]

    While hydrodynamic stability and transition to turbulence in straight pipes - being one of the most fundamental problems in fluid mechanics - has been studied extensively, the stability of curved pipes has received less attention. In the present work, the first (linear) instability of the canonical flow inside a toroidal pipe is investigated as a first step in the study of the related laminar-turbulent transition process. The impact of the curvature of the pipe, in the range 8 e [0.002,1], on the stability properties of the flow is studied in the framework of linear stability analysis. Results show that the flow is indeed modally unstable for all curvatures investigated and that the wave number corresponding to the critical mode depends on the curvature, as do several other features of this problem. The critical modes are mainly located in the region of the Dean vortices, and are characterised by oscillations which are symmetric or antisymmetric as a function of the curvature. The neutral curve associated with the first bifurcation is the result of a complex interaction between isolated modes and branches composed by several modes characterised by a common structure. This behaviour is in obvious contrast to that of straight pipes, which are linearly stable for all Reynolds numbers.

  • 67.
    Canton, Jacopo
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Modal instability of the flow in a toroidal pipe2016Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 792, s. 894-909Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The modal instability encountered by the incompressible flow inside a toroidal pipe is studied, for the first time, by means of linear stability analysis and direct numerical simulation (DNS). In addition to the unquestionable aesthetic appeal, the torus represents the smallest departure from the canonical straight pipe flow, at least for low curvatures. The flow is governed by only two parameters: the Reynolds number (Formula presented.) and the curvature of the torus (Formula presented.), i.e. the ratio between pipe radius and torus radius. The absence of additional features, such as torsion in the case of a helical pipe, allows us to isolate the effect that the curvature has on the onset of the instability. Results show that the flow is linearly unstable for all curvatures investigated between 0.002 and unity, and undergoes a Hopf bifurcation at (Formula presented.) of about 4000. The bifurcation is followed by the onset of a periodic regime, characterised by travelling waves with wavelength (Formula presented.) pipe diameters. The neutral curve associated with the instability is traced in parameter space by means of a novel continuation algorithm. Tracking the bifurcation provides a complete description of the modal onset of instability as a function of the two governing parameters, and allows a precise calculation of the critical values of (Formula presented.) and (Formula presented.). Several different modes are found, with differing properties and eigenfunction shapes. Some eigenmodes are observed to belong to groups with a set of common characteristics, deemed ‘families’, while others appear as ‘isolated’. Comparison with nonlinear DNS shows excellent agreement, confirming every aspect of the linear analysis, its accuracy, and proving its significance for the nonlinear flow. Experimental data from the literature are also shown to be in considerable agreement with the present results.

  • 68.
    Canton, Jacopo
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Chin, Cheng
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Reynolds number dependence of large-scale friction control in turbulent channel flow2016Inngår i: Physical Review Fluids, E-ISSN 2469-990X, Vol. 1, nr 8, artikkel-id 081501Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The present work investigates the effectiveness of the control strategy introduced by Schoppa and Hussain [Phys. Fluids 10, 1049 (1998)] as a function of Reynolds number (Re). The skin-friction drag reduction method proposed by these authors, consisting of streamwise-invariant, counter-rotating vortices, was analyzed by Canton et al. [Flow, Turbul. Combust. 97, 811 (2016)] in turbulent channel flows for friction Reynolds numbers (Re t) corresponding to the value of the original study (i.e., 104) and 180. For these Re, a slightly modified version of the method proved to be successful and was capable of providing a drag reduction of up to 18%. The present study analyzes the Reynolds number dependence of this drag-reducing strategy by performing two sets of direct numerical simulations (DNS) for Re-tau = 360 and 550. A detailed analysis of the method as a function of the control parameters (amplitude and wavelength) and Re confirms, on the one hand, the effectiveness of the large-scale vortices at low Re and, on the other hand, the decreasing and finally vanishing effectiveness of this method for higher Re. In particular, no drag reduction can be achieved for Re t = 550 for any combination of the parameters controlling the vortices. For low Reynolds numbers, the large-scale vortices are able to affect the near-wall cycle and alter the wall-shear-stress distribution to cause an overall drag reduction effect, in accordance with most control strategies. For higher Re, instead, the present method fails to penetrate the near-wall region and cannot induce the spanwise velocity variation observed in other more established control strategies, which focus on the near-wall cycle. Despite the negative outcome, the present results demonstrate the shortcomings of the control strategy and show that future focus should be on methods that directly target the near-wall region or other suitable alternatives.

  • 69.
    Canton, Jacopo
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Characterisation of the steady, laminar incompressible flow in toroidal pipes covering the entire curvature range2017Inngår i: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 66, s. 95-107Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This work is concerned with a detailed investigation of the steady (laminar), incompressible flow inside bent pipes. In particular, a toroidal pipe is considered in an effort to isolate the effect of the curvature, δ, on the flow features, and to compare the present results to available correlations in the literature. More than 110 000 numerical solutions are computed, without any approximation, spanning the entire curvature range, 0 ≤ δ ≤ 1, and for bulk Reynolds numbers Re up to 7 000, where the flow is known to be unsteady. Results show that the Dean number De provides a meaningful non-dimensional group only below very strict limits on the curvature and the Dean number itself. For δ>10−6 and De > 10, in fact, not a single flow feature is found to scale well with the Dean number. These considerations are also valid for quantities, such as the Fanning friction factor, that were previously considered Dean-number dependent only. The flow is therefore studied as a function of two equally important, independent parameters: the curvature of the pipe and the Reynolds number. The analysis shows that by increasing the curvature the flow is fundamentally changed. Moderate to high curvatures are not only quantitatively, but also qualitatively different from low δ cases. A complete description of some of the most relevant flow quantities is provided. Most notably the friction factor f for laminar flow in curved pipes by Ito [J. Basic Eng. 81:123–134 (1959)] is reproduced, the influence of the curvature on f is quantified and the scaling is discussed. A complete database including all the computed solutions is available at www.flow.kth.se.

  • 70. Capuccini, Marco
    et al.
    Ahmed, Laeeq
    KTH, Skolan för datavetenskap och kommunikation (CSC), High Performance Computing and Visualization (HPCViz).
    Schaal, Wesley
    Laure, Erwin
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Parallelldatorcentrum, PDC. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för datavetenskap och kommunikation (CSC), High Performance Computing and Visualization (HPCViz). KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST).
    Spjuth, Ola
    Large-scale virtual screening on public cloud resources with Apache Spark2017Inngår i: Journal of Cheminformatics, ISSN 1758-2946, E-ISSN 1758-2946, Vol. 9, artikkel-id 15Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Structure-based virtual screening is an in-silico method to screen a target receptor against a virtual molecular library. Applying docking-based screening to large molecular libraries can be computationally expensive, however it constitutes a trivially parallelizable task. Most of the available parallel implementations are based on message passing interface, relying on low failure rate hardware and fast network connection. Google's MapReduce revolutionized large-scale analysis, enabling the processing of massive datasets on commodity hardware and cloud resources, providing transparent scalability and fault tolerance at the software level. Open source implementations of MapReduce include Apache Hadoop and the more recent Apache Spark. Results: We developed a method to run existing docking-based screening software on distributed cloud resources, utilizing the MapReduce approach. We benchmarked our method, which is implemented in Apache Spark, docking a publicly available target receptor against similar to 2.2 M compounds. The performance experiments show a good parallel efficiency (87%) when running in a public cloud environment. Conclusion: Our method enables parallel Structure-based virtual screening on public cloud resources or commodity computer clusters. The degree of scalability that we achieve allows for trying out our method on relatively small libraries first and then to scale to larger libraries.

  • 71. Cedervall, Johan
    et al.
    Andersson, Mikael Svante
    Sarkar, Tapati
    Delczeg-Czirjak, Erna K.
    Bergqvist, Lars
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hansen, Thomas C.
    Beran, Premysl
    Nordblad, Per
    Sahlberg, Martin
    Magnetic structure of the magnetocaloric compound AlFe2B22016Inngår i: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 664, s. 784-791Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The crystal and magnetic structures of AlFe2B2 have been studied with a combination of X-ray and neutron diffraction and electronic structure calculations. The magnetic and magnetocaloric properties have been investigated by magnetisation measurements. The samples have been produced using high temperature synthesis and subsequent heat treatments. The compound crystallises in the orthorhombic crystal system Cmmm and it orders ferromagnetically at 285 K through a second order phase transition. At temperatures below the magnetic transition the magnetic moments align along the crystallographic a-axis. The magnetic entropy change from 0 to 800 kA/m was found to be - 1.3 J/K kg at the magnetic transition temperature.

  • 72.
    Chaparian, Emad
    et al.
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik.
    Izbassarov, Daulet
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    De Vita, Francesco
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik. Royal Inst Technol KTH, Mech Dept, SERC, Stockholm, Sweden..
    Brandt, Luca
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik. Royal Inst Technol KTH, Mech Dept, SERC, Stockholm, Sweden..
    Tammisola, Outi
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik.
    Yield-stress fluids in porous media: a comparison of viscoplastic and elastoviscoplastic flows2020Inngår i: Meccanica (Milano. Print), ISSN 0025-6455, E-ISSN 1572-9648, Vol. 55, nr 2, s. 331-342Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A numerical and theoretical study of yield-stress fluid flows in two types of model porous media is presented. We focus on viscoplastic and elastoviscoplastic flows to reveal some differences and similarities between these two classes of flows. Small elastic effects increase the pressure drop and also the size of unyielded regions in the flow which is the consequence of different stress solutions compare to viscoplastic flows. Yet, the velocity fields in the viscoplastic and elastoviscoplastic flows are comparable for small elastic effects. By increasing the yield stress, the difference in the pressure drops between the two classes of flows becomes smaller and smaller for both considered geometries. When the elastic effects increase, the elastoviscoplastic flow becomes time-dependent and some oscillations in the flow can be observed. Focusing on the regime of very large yield stress effects in the viscoplastic flow, we address in detail the interesting limit of 'flow/no flow': yield-stress fluids can resist small imposed pressure gradients and remain quiescent. The critical pressure gradient which should be exceeded to guarantee a continuous flow in the porous media will be reported. Finally, we propose a theoretical framework for studying the 'yield limit' in the porous media.

  • 73.
    Chaparian, Emad
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Tammisola, Outi
    An adaptive finite element method for elastoviscoplastic fluid flows2019Inngår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 271, artikkel-id UNSP 104148Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Elastoviscoplastic fluids are a class of yield-stress fluids that behave like neoHookean (or viscoelastic) solids when the imposed stress is less than the yield stress whereas after yielding, their behaviour is described by a viscoplastic fluid with an additional elastic history. This exceptional behaviour has been recently observed by many yield stress fluids in rheometric tests such as waxy crude oil, Carbopol gel, etc. Moreover, interesting phenomena have been evidenced experimentally such as the presence of a negative wake and a loss of fore-aft symmetry about a settling particle which are predominantly related to the elastic behaviour of yield-stress fluids (i.e., coupling of elasticity and plasticity). Here, we present a numerical scheme based on the so-called augmented Lagrangian method for numerical simulation of elastoviscoplastic fluid flows. The method is benchmarked by two rheometric flows: Poiseuille and circular Couette flows for which analytical solutions are derived. Moreover, anisotropic adaptive mesh procedure (which was previously introduced for viscoplastic fluid flows by Saramito and Roquet, Comput. Meth. Appl. Mech. Eng., vol. 190, 2001, pp. 5391-5412) is coupled to obtain a fine resolution of the yield surfaces. Finally, the presented method is applied to study more complex flows: elastoviscoplastic fluid flow in a wavy channel.

  • 74.
    Chaparian, Emad
    et al.
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Tammisola, Outi
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Stability of particles inside yield-stress fluid Poiseuille flows2020Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 885, artikkel-id A45Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The stability of neutrally and non-neutrally buoyant particles immersed in a plane Poiseuille flow of a yield-stress fluid (Bingham fluid) is addressed numerically. Particles being carried by the yield-stress fluid can behave in different ways: they might (i) migrate inside the yielded regions or (ii) be transported without any relative motion inside the unyielded region if the yield stress is large enough compared to the buoyancy stress and the other stresses acting on the particles. Knowing the static stability of particles inside a bath of quiescent yield-stress fluid (Chaparian & Frigaard, J. Fluid Mech., vol. 819, 2017, pp. 311-351), we analyse the latter behaviour when the yield-stress fluid Poiseuille flow is host to two-dimensional particles. Numerical experiments reveal that particles lose their stability (i.e. break the unyielded plug and sediment/migrate) with smaller buoyancy compared to the sedimentation inside a bath of quiescent yield-stress fluid, because of the inherent shear stress in the Poiseuille flow. The key parameter in interpreting the present results is the position of the particle relative to the position of the yield surface in the undisturbed flow (in the absence of any particle): the larger the portion of a particle located inside the undisturbed sheared regions, the more likely is the particle to be unstable. Yet, we find that the core unyielded plug can grow locally to some extent to contain the particles. This picture holds even for neutrally buoyant particles, although they are strictly stable when they are located wholly inside the undisturbed plug. We propose scalings for all cases.

  • 75.
    Chattopadhyaya, Mausumi
    et al.
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Murugan, N. Arul
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Rinkevicius, Zilvinas
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Origin of the Absorption Band of Bromophenol Blue in Acidic and Basic pH: Insight from a Combined Molecular Dynamics and TD-DFT/MM Study2016Inngår i: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 120, nr 36, s. 7175-7182Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study the linear and nonlinear optical properties of a well-known acid base indicator, bromophenol blue (BPB), in aqueous solution by employing static and integrated approaches. In the static approach, optical properties have been calculated using time-dependent density functional theory (TD-DFT) on the fully relaxed geometries of the neutral and different unprotonated forms of BPB. Moreover, both closed and open forms of BPB were considered. In the integrated approach, the optical properties have been computed over many snapshots extracted from molecular dynamics simulation using a hybrid time-dependent density functional theory/molecular mechanics approach. The static approach suggests closed neutral double right arrow anionic interconversion as the dominant mechanism for the red shift in the absorption spectra of BPB due to a change from acidic to basic pH. It is found by employing an integrated approach that the two interconversions, namely open neutral double right arrow anionic and open neutral double right arrow dianionic, can contribute to the pH- dependent shift in the absorption spectra of BPB. Even though both static and integrated approaches reproduce the pH-dependent red shift in the absorption spectra of BPB, the latter one is suitable to determine both the spectra and spectral broadening. Finally, the computed static first hyperpolarizability for various protonated and deprotonated forms of BPB reveals that this molecule can be used as a nonlinear optical probe for pH sensing in addition to its highly exploited use as an optical probe.

  • 76.
    Chauvat, Guillaume
    et al.
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI).
    Peplinski, Adam
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik.
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI). KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, Skolan för teknikvetenskap (SCI). KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Global linear analysis of a jet in cross-flow at low velocity ratios2020Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 889, artikkel-id A12Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The stability of the jet in cross-flow is investigated using a complete set-up including the flow inside the pipe. First, direct simulations were performed to find the critical velocity ratio as a function of the Reynolds number, keeping the boundary-layer displacement thickness fixed. At all Reynolds numbers investigated, there exists a steady regime at low velocity ratios. As the velocity ratio is increased, a bifurcation to a limit cycle composed of hairpin vortices is observed. The critical bulk velocity ratio is found at approximately for the Reynolds number , above which a global mode of the system becomes unstable. An impulse response analysis was performed and characteristics of the generated wave packets were analysed, which confirmed results of our global mode analysis. In order to study the sensitivity of this flow, we performed transient growth computations and also computed the optimal periodic forcing and its response. Even well below this stability limit, at , large transient growth ( in energy amplification) is possible and the resolvent norm of the linearized Navier-Stokes operator peaks above . This is accompanied with an extreme sensitivity of the spectrum to numerical details, making the computation of a few tens of eigenvalues close to the limit of what can be achieved with double precision arithmetic. We demonstrate that including the meshing of the jet pipe in the simulations does not change qualitatively the dynamics of the flow when compared to the simple Dirichlet boundary condition representing the jet velocity profile. This is in agreement with the recent experimental results of Klotz et al. (J. Fluid Mech., vol. 863, 2019, pp. 386-406) and in contrast to previous studies of Cambonie & Aider (Phys. Fluids, vol. 26, 2014, 084101). Our simulations also show that a small amount of noise at subcritical velocity ratios may trigger the shedding of hairpin vortices.

  • 77. Chen, Yuxi
    et al.
    Toth, Gabor
    Cassak, Paul
    Jia, Xianzhe
    Gombosi, Tamas I.
    Slavin, James A.
    Markidis, Stefano
    KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Peng, Ivy Bo
    KTH.
    Jordanova, Vania K.
    Henderson, Michael G.
    Global Three-Dimensional Simulation of Earth's Dayside Reconnection Using a Two-Way Coupled Magnetohydrodynamics With Embedded Particle-in-Cell Model: Initial Results2017Inngår i: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, nr 10, s. 10318-10335Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We perform a three-dimensional (3-D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model. During the 1 h long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We find that the magnetic field signature of FTEs at their early formation stage is similar to a "crater FTE," which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomes an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. The LHDI electric field is about 8 mV/m, and its dominant wavelength relative to the electron gyroradius agrees reasonably with Magnetospheric Multiscale (MMS) observations.

  • 78. Citro, Vincenzo
    et al.
    Giannetti, Flavio
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Luchini, Paolo
    Linear three-dimensional global and asymptotic stability analysis of incompressible open cavity flow2015Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 768Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The viscous and inviscid linear stability of the incompressible flow past a square open cavity is studied numerically. The analysis shows that the flow first undergoes a steady three-dimensional bifurcation at a critical Reynolds number of 1370. The critical mode is localized inside the cavity and has a flat roll structure with a spanwise wavelength of about 0.47 cavity depths. The adjoint global mode reveals that the instability is most efficiently triggered in the thin region close to the upstream tip of the cavity. The structural sensitivity analysis identifies the wavemaker as the region located inside the cavity and spatially concentrated around a closed orbit. As the flow outside the cavity plays no role in the generation mechanisms leading to the bifurcation, we confirm that an appropriate parameter to describe the critical conditions in open cavity flows is the Reynolds number based on the average velocity between the two upper edges. Stabilization is achieved by a decrease of the total momentum inside the shear layer that drives the core vortex within the cavity. The mechanism of instability is then studied by means of a short-wavelength approximation considering pressureless inviscid modes. The closed streamline related to the maximum inviscid growth rate is found to be the same as that around which the global wavemaker is concentrated. The structural sensitivity field based on direct and adjoint eigenmodes, computed at a Reynolds number far higher than that of the base flow, can predict the critical orbit on which the main instabilities inside the cavity arise. Further, we show that the sub-leading unstable time-dependent modes emerging at supercritical conditions are characterized by a period that is a multiple of the revolution time of Lagrangian particles along the orbit of maximum growth rate. The eigenfrequencies of these modes, computed by global stability analysis, are in very good agreement with the asymptotic results.

  • 79.
    Costa, Pedro
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. Univ Iceland, Fac Ind Engn Mech Engn & Comp Sci, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland..
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Picano, Francesco
    Univ Padua, Dept Ind Engn, Via Venezia 1, I-35131 Padua, Italy..
    Interface-resolved simulations of small inertial particles in turbulent channel flow2020Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 883, artikkel-id A54Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a direct comparison between interface-resolved and one-way-coupled point-particle direct numerical simulations (DNS) of gravity-free turbulent channel flow laden with small inertial particles, with high particle-to-fluid density ratio and diameter of approximately three viscous units. The most dilute flow considered, solid volume fraction O(10(-5)), shows the particle feedback on the flow to be negligible, whereas differences with respect to the unladen case, notably a drag increase of approximately 10 %, are found for a volume fraction O(10(-4)). This is attributed to a dense layer of particles at the wall, caused by turbophoresis, flowing with large particle-to-fluid apparent slip velocity. The most dilute case is therefore taken as the benchmark for assessing the validity of a widely used point-particle model, where the particle dynamics results only from inertial and nonlinear drag forces. In the bulk of the channel, the first- and second-order moments of the particle velocity from the point-particle DNS agree well with those from the interface-resolved DNS. Close to the wall, however, most of the statistics show major qualitative differences. We show that this difference originates from the strong shear-induced lift force acting on the particles in the near-wall region. This mechanism is well captured by the lift force model due to Saffman (J. Fluid Mech., vol. 22 (2), 1965, pp. 385-400), while other widely used, more elaborate, approaches aiming at extending the lift model for a wider range of particle Reynolds numbers can actually underpredict the magnitude of the near-wall particle velocity fluctuations for the cases analysed here.

  • 80.
    Costa, Pedro
    et al.
    Delft Univ Technol, Proc & Energy Dept Multiphase Syst, Leeghwaterstr 21, NL-2621 CA Delft, Netherlands..
    Picano, Francesco
    Univ Padua, Dept Ind Engn, Via Venezia 1, I-35131 Padua, Italy..
    Brandt, L.uca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Breugem, Wim-Paul
    Delft Univ Technol, Proc & Energy Dept Multiphase Syst, Leeghwaterstr 21, NL-2621 CA Delft, Netherlands..
    Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions2018Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 843, s. 450-478Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We use interface-resolved numerical simulations to study finite-size effects in turbulent channel flow of neutrally buoyant spheres. Two cases with particle sizes differing by a factor of two, at the same solid volume fraction of 20% and bulk Reynolds number are considered. These are complemented with two reference single-phase flows: the unladen case, and the flow of a Newtonian fluid with the effective suspension viscosity of the same mixture in the laminar regime. As recently highlighted in Costa etal. (Phys. Rev. Lett., vol.117, 2016, 134501), a particle-wall layer is responsible for deviations of the mesoscale-averaged statistics from what is observed in the continuum limit where the suspension is modelled as a Newtonian fluid with (higher) effective viscosity. Here we investigate in detail the fluid and particle dynamics inside this layer and in the bulk. In the particle-wall layer, the near-wall inhomogeneity has an influence on the suspension microstructure over a distance proportional to the particle size. In this layer, particles have a significant (apparent) slip velocity that is reflected in the distribution of wall shear stresses. This is characterized by extreme events (both much higher and much lower than the mean). Based on these observations we provide a scaling for the particle-to-fluid apparent slip velocity as a function of the flow parameters. We also extend the scaling laws in Costa etal. (Phys. Rev. Lett., vol.117, 2016, 134501) to second-order Eulerian statistics in the homogeneous suspension region away from the wall. The results show that finite-size effects in the bulk of the channel become important for larger particles, while negligible for lower-order statistics and smaller particles. Finally, we study the particle dynamics along the wall-normal direction. Our results suggest that single-point dispersion is dominated by particle-turbulence (and not particle-particle) interactions, while differences in two-point dispersion and collisional dynamics are consistent with a picture of shear-driven interactions.

  • 81. Costa, Pedro
    et al.
    Picano, Francesco
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Breugem, Wim-Paul
    Universal Scaling Laws for Dense Particle Suspensions in Turbulent Wall-Bounded Flows2016Inngår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 117, nr 13, artikkel-id 134501Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The macroscopic behavior of dense suspensions of neutrally buoyant spheres in turbulent plane channel flow is examined. We show that particles larger than the smallest turbulence scales cause the suspension to deviate from the continuum limit in which its dynamics is well described by an effective suspension viscosity. This deviation is caused by the formation of a particle layer close to the wall with significant slip velocity. By assuming two distinct transport mechanisms in the near-wall layer and the turbulence in the bulk, we define an effective wall location such that the flow in the bulk can still be accurately described by an effective suspension viscosity. We thus propose scaling laws for the mean velocity profile of the suspension flow, together with a master equation able to predict the increase in drag as a function of the particle size and volume fraction.

  • 82.
    Dadfar, Reza
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hanifi, Ardeshir
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Control of instabilities in an unswept wing boundary layer2018Inngår i: AIAA Journal, ISSN 0001-1452, E-ISSN 1533-385X, Vol. 56, nr 5, s. 1750-1759Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Linear control theory is used to construct an output feedback controller to attenuate the amplitude of the Tollmien–Schlichting waves inside the boundary layer developing over an unswept wing. The analysis is based on direct numerical simulations. The studied scenario includes the impulse response of the system to a generic disturbance in the freestream, which triggers a Tollmien–Schlichting wave packet inside the boundary layer. The performance of a linear quadratic Gaussian controller is analyzed to suppress the amplitude of the Tollmien–Schlichting wave packet using a row of sensors and plasma actuators localized at the wall. The target of the controller is chosen as a subset of proper orthogonal decomposition modes describing the dynamics of the unstable disturbances. The plasma actuators are implemented as volume forcing. To account for the limitations of the plasma actuators concerning a unidirectional forcing, several strategies are implemented in the linear quadratic Gaussian framework. Their performances are compared with that for classical linear quadratic Gaussian controller. These controllers successfully reduced the amplitude of the wave packet.

  • 83. De Aguiar Quintanilha Junior, H. R.
    et al.
    Kataras, P. B.
    Theofilis, V.
    Hanifi, Ardeshir
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Marcus Wallenberg Laboratoriet.
    Nonmodal stability analysis of the HIFiRE-5 elliptic cone model flow in different flight altitudes2018Inngår i: 58th Israel Annual Conference on Aerospace Sciences, IACAS 2018, Israel Annual Conference on Aerospace Sciences , 2018, s. 1543-1555Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Nonmodal instability analysis is carried out for a 2:1 elliptic cone with base flow conditions selected for a Ma=7 and two different ight altitudes, namely 33km and 21km with unit Reynolds number Re′ = 1.89 x 106 m-1 and Re′ = 1.015 x 107 m-1, respectively. The aim is to analyze the effects of transiently growing optimal disturbances and their possible relation to instability mechanisms that have been confirmed to exist in previous modal crossow. Local linear stability results obtained at several streamwise locations on the cone surface indicate that transient growth in the crossow region may be correlated to streamwise oriented structures having spanwise spacing of the same order of magnitude as which have long been known to exist in this flow.

  • 84.
    De Vita, Francesco
    et al.
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Rosti, Marco E.
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Caserta, Sergio
    Univ Naples Federico II, Dept Chem Mat & Ind Prod Engn, Piazzale V Tecchio 80, I-80125 Naples, Italy..
    Brandt, Luca
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik, Strömningsmekanik och Teknisk Akustik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    On the effect of coalescence on the rheology of emulsions2019Inngår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 880, s. 969-991Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a numerical study of the rheology of a two-fluid emulsion in dilute and semidilute conditions. The analysis is performed for different capillary numbers, volume fractions and viscosity ratios under the assumption of negligible inertia and zero buoyancy force. The effective viscosity of the system increases for low values of the volume fraction and decreases for higher values, with a maximum for approximately 20% concentration of the disperse phase. When the dispersed fluid has lower viscosity, the normalised effective viscosity becomes smaller than 1 for high enough volume fractions. To single out the effect of droplet coalescence on the rheology of the emulsion we introduce an Eulerian force which prevents merging, effectively modelling the presence of surfactants in the system. When the coalescence is inhibited the effective viscosity is always greater than 1 and the curvature of the function representing the emulsion effective viscosity versus the volume fraction becomes positive, resembling the behaviour of suspensions of deformable particles. The reduction of the effective viscosity in the presence of coalescence is associated with the reduction of the total surface of the disperse phase when the droplets merge, which leads to a reduction of the interface tension contribution to the total shear stress. The probability density function of the flow topology parameter shows that the flow is mostly a shear flow in the matrix phase, with regions of extensional flow when the coalescence is prohibited. The flow in the disperse phase, instead, always shows rotational components. The first normal stress difference is positive, except for the smallest viscosity ratio considered, whereas the second normal difference is negative, with their ratio being constant with the volume fraction. Our results clearly show that the coalescence efficiency strongly affects the system rheology and that neglecting droplet merging can lead to erroneous predictions.

  • 85.
    De Vita, Francesco
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Rosti, Marco E.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Izbassarov, Daulet
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Duffo, L.
    Tammisola, Outi
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hormozi, S.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Elastoviscoplastic flows in porous media2018Inngår i: Journal of Non-Newtonian Fluid Mechanics, ISSN 0377-0257, E-ISSN 1873-2631, Vol. 258, s. 10-21Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier–Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution [1]. In this model, the material behaves as a viscoelastic solid when unyielded, and as a viscoelastic Oldroyd-B fluid for stresses higher than the yield stress. The porous media is made of a symmetric array of cylinders, and we solve the flow in one periodic cell. We find that the solution is time-dependent even at low Reynolds numbers as we observe oscillations in time of the unyielded region especially at high Bingham numbers. The volume of the unyielded region slightly decreases with the Reynolds number and strongly increases with the Bingham number; up to 70% of the total volume is unyielded for the highest Bingham numbers considered here. The flow is mainly shear dominated in the yielded region, while shear and elongational flow are equally distributed in the unyielded region. We compute the relation between the pressure drop and the flow rate in the porous medium and present an empirical closure as function of the Bingham and Reynolds numbers. The apparent permeability, normalized with the case of Newtonian fluids, is shown to be greater than 1 at low Bingham numbers, corresponding to lower pressure drops due to the flow elasticity, and smaller than 1 for high Bingham numbers, indicating larger dissipation in the flow owing to the presence of the yielded regions. Finally we investigate the effect of the Weissenberg number on the distribution of the unyielded regions and on the pressure gradient.

  • 86. Delczeg-Czirjak, E. K.
    et al.
    Pereiro, M.
    Bergqvist, Lars
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Kvashnin, Y. O.
    Di Marco, I
    Li, Guijiang
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik.
    Vitos, Levente
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. Uppsala Univ, Div Mat Theory, Dept Phys & Astron, Sweden.
    Eriksson, O.
    Origin of the magnetostructural coupling in FeMnP0.75Si0.252014Inngår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 90, nr 21, s. 214436-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The strong coupling between the crystal structure and magnetic state (ferromagnetic or helical antiferromagnetic) of FeMnP0.75Si0.25 is investigated using density functional theory in combination with atomistic spin dynamics. We find many competing energy minima for drastically different ferromagnetic and noncollinear magnetic configurations. We also find that the appearance of a helical spin-spiral magnetic structure at finite temperature is strongly related to one of the crystal structures reported for this material. Shorter Fe-Fe distances are found to lead to a destabilized ferromagnetic coupling, while out-of-plane Mn-Mn exchange interactions become negative with the shortening of the interatomic distances along the c axis, implying an antiferromagnetic coupling for the nearest-neighbor Mn-Mn interactions. The impact of the local dynamical correlations is also discussed.

  • 87. Di, Yana
    et al.
    Popovic, Jelena
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA.
    Runborg, Olof
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    AN ADAPTIVE FAST INTERFACE TRACKING METHOD2015Inngår i: Journal of Computational Mathematics, ISSN 0254-9409, E-ISSN 1991-7139, Vol. 33, nr 6, s. 576-586Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An adaptive numerical scheme is developed for the propagation of an interface in a velocity field based on the fast interface tracking method proposed in [2]. A multiresolution stategy to represent the interface instead of point values, allows local grid refinement while controlling the approximation error on the interface. For time integration, we use an explicit Runge-Kutta scheme of second-order with a multiscale time step, which takes longer time steps for finer spatial scales. The implementation of the algorithm uses a dynamic tree data structure to represent data in the computer memory. We briefly review first the main algorithm, describe the essential data structures, highlight the adaptive scheme, and illustrate the computational efficiency by some numerical examples.

  • 88.
    Duan, Sai
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Teoretisk kemi och biologi. Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China..
    Rinkevicius, Zilvinas
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Teoretisk kemi och biologi. KTH, Centra, SeRC - Swedish e-Science Research Centre. Kaunas Univ Technol, Dept Phys, LT-51368 Kaunas, Lithuania..
    Tian, Guangjun
    Yanshan Univ, Sch Sci, Key Lab Microstruct Mat Phys Hebei Prov, Qinhuangdao 066004, Hebei, Peoples R China..
    Luo, Yi
    Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China..
    Optomagnetic Effect Induced by Magnetized Nanocavity Plasmon2019Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 141, nr 35, s. 13795-13798Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We propose a new type of optomagnetic effect induced by a highly confined plasmonic field in a nanocavity. It is shown that a very large dynamic magnetic field can be generated as the result of the inhomogeneity of nanocavity plasmons, which can directly activate spin-forbidden transitions in molecules. The dynamic optomagnetic effects on optical transitions between states of different spin multiplicities are illustrated by first-principles calculations for C-60. Remarkably, the intensity of spin forbidden singlet-to-triplet transitions can even be stronger than that of singlet-to-singlet transitions when the spatial distribution of plasmon is comparable with the molecular size. This approach not only offers a powerful optomagnetic means to rationally fabricate molecular excited states with different multiplicities but also provides a groundbreaking concept of the light-matter interaction that could lead to the observation of new physical phenomena and the development of new techniques.

  • 89. Duguet, Yohann
    et al.
    Monokrousos, Antonios
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Minimal transition thresholds in plane Couette flow2013Inngår i: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 25, nr 8, s. 084103-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Subcritical transition to turbulence requires finite-amplitude perturbations. Using a nonlinear optimisation technique in a periodic computational domain, we identify the perturbations of plane Couette flow transitioning with least initial kinetic energy for Re <= 3000. We suggest a new scaling law E-c = O(Re-2.7) for the energy threshold vs. the Reynolds number, in quantitative agreement with experimental estimates for pipe flow. The route to turbulence associated with such spatially localised perturbations is analysed in detail for Re = 1500. Several known mechanisms are found to occur one after the other: Orr mechanism, oblique wave interaction, lift-up, streak bending, streak breakdown, and spanwise spreading. The phenomenon of streak breakdown is analysed in terms of leading finite-time Lyapunov exponents of the associated edge trajectory.

  • 90. Durrenfeld, P.
    et al.
    Gerhard, F.
    Chico, J.
    Dumas, R. K.
    Ranjbar, M.
    Bergman, A.
    Bergqvist, Lars
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Delin, Anna
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF. KTH, Centra, SeRC - Swedish e-Science Research Centre. Uppsala University, Sweden.
    Gould, C.
    Molenkamp, L. W.
    Åkerman, Johan
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF. University of Gothenburg, Sweden; NanOsc AB, Sweden.
    Tunable damping, saturation magnetization, and exchange stiffness of half-Heusler NiMnSb thin films2015Inngår i: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, nr 21, artikkel-id 214424Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The half-metallic half-Heusler alloy NiMnSb is a promising candidate for applications in spintronic devices due to its low magnetic damping and its rich anisotropies. Here we use ferromagnetic resonance (FMR) measurements and calculations from first principles to investigate how the composition of the epitaxially grown NiMnSb influences the magnetodynamic properties of saturation magnetization M-S, Gilbert damping alpha, and exchange stiffness A. M-S and A are shown to have a maximum for stoichiometric composition, while the Gilbert damping is minimum. We find excellent quantitative agreement between theory and experiment for M-S and alpha. The calculated A shows the same trend as the experimental data but has a larger magnitude. In addition to the unique in-plane anisotropy of the material, these tunabilities of the magnetodynamic properties can be taken advantage of when employing NiMnSb films in magnonic devices.

  • 91. Dörr, P. C.
    et al.
    Kloker, M. J.
    Hanifi, Ardeshir
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Effect of upstream flow deformation using plasma actuators on crossflow transition induced by unsteady vortical free-stream disturbances2017Inngår i: 47th AIAA Fluid Dynamics Conference, 2017, American Institute of Aeronautics and Astronautics, 2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Upstream flow deformation (UFD) has been shown to be an effective technique to delay roughness induced laminar-turbulent transition at low free-stream turbulence level in three-dimensional boundary-layer flows. Beneficial steady crossflow vortex (CFV) control modes are excited and the resulting nonlinear CFVs induce a useful mean-flow distortion. We recently showed by direct numerical simulations that plasma actuators, modeled by localized steady volume forcing, can be employed to excite the UFD control modes. In the current work we investigate the same actuator set-ups to control transition caused by traveling CFVs that are excited by single unsteady vortical free-stream disturbances (FSDs) impinging on the boundary layer. FSDs of various wavenumbers and frequencies are imposed either upstream or downstream, or at the position of the actuators to also scrutinize if the volume forcing has a direct unfavorable effect on the receptivity to the FSDs that adds to the stabilization by the UFD. For all investigated cases we show that a significant transition delay is achieved.

  • 92.
    Eitel-Amor, Georg
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Strömningsfysik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Simulation and validation of a spatially evolving turbulent boundary layer up to Reθ = 83002014Inngår i: International Journal of Heat and Fluid Flow, ISSN 0142-727X, E-ISSN 1879-2278, Vol. 47, s. 57-69Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Results of a finely resolved large-eddy simulation (LES) of a spatially developing zero-pressure-gradient turbulent boundary layer up to a Reynolds number of Reθ = 8300 are presented. The very long computational domain provides substantial assessment for suggested high Reynolds number (Re) trends. Statistics, integral quantities and spectral data are validated using high quality direct numerical simulation (DNS) ranging up to Reθ = 4300 and hot-wire measurements covering the remaining Re-range. The mean velocity, turbulent fluctuations, skin friction, and shape factor show excellent agreement with the reference data. Through utilisation of filtered DNS, subtle differences between the LES and DNS could to a large extent be explained by the reduced spanwise resolution of the LES. Spectra and correlations for the streamwise velocity and the wall-shear stress evidence a clear scale-separation and a footprint of large outer scales on the near-wall small scales. While the inner peak decreases in importance and reduces to 4% of the total energy at the end of the domain, the energy of the outer peak scales in outer units. In the near-wall region a clear k - 1 region emerges. Consideration of the two-dimensional spectra in time and spanwise space reveals that an outer time scale λt ≈ 10δ99 / U∞, with the boundary layer thickness δ99 and free-stream velocity U∞, is the correct scale throughout the boundary layer rather than the transformed streamwise wavelength multiplied by a (scale independent) convection velocity. Maps for the covariance of small scale energy and large scale motions exhibit a stronger linear Re dependence for the amplitude of the off-diagonal peak compared to the diagonal one, thereby indicating that the strength of the amplitude modulation can only qualitatively be assessed through the diagonal peak. In addition, the magnitude of the wall-pressure fluctuations confirms mixed scaling, and pressure spectra at the highest Re give a first indication of a -7/3 wave number dependence. © 2014 Elsevier Inc.

  • 93.
    Eitel-Amor, Georg
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Örlü, Ramis
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Flores, O.
    Hairpin vortices in turbulent boundary layers2015Inngår i: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 27, nr 2, artikkel-id 025108Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The present work presents a number of parallel and spatially developing simulations of boundary layers to address the question of whether hairpin vortices are a dominant feature of near-wall turbulence, and which role they play during transition. In the first part, the parent-offspring regeneration mechanism is investigated in parallel (temporal) simulations of a single hairpin vortex introduced in a mean shear flow corresponding to either turbulent channels or boundary layers (Re-tau less than or similar to 590). The effect of a turbulent background superimposed on the mean flow is considered by using an eddy viscosity computed from resolved simulations. Tracking the vortical structure downstream, it is found that secondary hairpins are only created shortly after initialization, with all rotational structures decaying for later times. For hairpins in a clean (laminar) environment, the decay is relatively slow, while hairpins in weak turbulent environments (10% of nu(t)) dissipate after a couple of eddy turnover times. In the second part, the role of hairpin vortices in laminar-turbulent transition is studied using simulations of spatial boundary layers tripped by hairpin vortices. These vortices are generated by means of specific volumetric forces representing an ejection event, creating a synthetic turbulent boundary layer initially dominated by hairpin-like vortices. These hairpins are advected towards the wake region of the boundary layer, while a sinusoidal instability of the streaks near the wall results in rapid development of a turbulent boundary layer. For Re-theta > 400, the boundary layer is fully developed, with no evidence of hairpin vortices reaching into the wall region. The results from both the parallel and spatial simulations strongly suggest that the regeneration process is rather short-lived and may not sustain once a turbulent background is developed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former direct numerical simulation studies is reminiscent of the transitional boundary layer and may not be connected to some aspects of the dynamics of the fully developed wall-bounded turbulence.

  • 94.
    El Khoury, George K.
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Noorani, Azad
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Fischer, Paul F.
    Brethouwer, Geert
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Turbulens. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Johansson, Arne V.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Turbulens. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers2013Inngår i: Flow Turbulence and Combustion, ISSN 1386-6184, E-ISSN 1573-1987, Vol. 91, nr 3, s. 475-495Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Fully resolved direct numerical simulations (DNSs) have been performed with a high-order spectral element method to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Re (tau) = 180, 360, 550 and . The new set of data is put into perspective with other simulation data sets, obtained in pipe, channel and boundary layer geometry. In particular, differences between different pipe DNS are highlighted. It turns out that the pressure is the variable which differs the most between pipes, channels and boundary layers, leading to significantly different mean and pressure fluctuations, potentially linked to a stronger wake region. In the buffer layer, the variation with Reynolds number of the inner peak of axial velocity fluctuation intensity is similar between channel and boundary layer flows, but lower for the pipe, while the inner peak of the pressure fluctuations show negligible differences between pipe and channel flows but is clearly lower than that for the boundary layer, which is the same behaviour as for the fluctuating wall shear stress. Finally, turbulent kinetic energy budgets are almost indistinguishable between the canonical flows close to the wall (up to y (+) a parts per thousand aEuro parts per thousand 100), while substantial differences are observed in production and dissipation in the outer layer. A clear Reynolds number dependency is documented for the three flow configurations.

  • 95.
    Elgammal, Karim
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Materialfysik, MF.
    Delin, Anna
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. KTH, Tidigare Institutioner (före 2005), Materialvetenskap. KTH, Centra, SeRC - Swedish e-Science Research Centre. Uppsala University.
    Adsorption of carbon dioxide and water molecules on graphene on top of silica substrates: dispersion corrected density functional calculationsManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    We report on systematic computational studies of carbon dioxide and water molecule adsorption on graphene, with the graphene layer deposited on top of a substrate. Specifically, we address the influence of cristobalite and quartz substrates, i.e. two different types of silicon dioxide. The computations are based on density functional theory (DFT), with a nonempirical nonlocal van der Waals density functional included to account for dispersion forces.We calculate the binding energies and equilibrium positions of the molecules, as well as charge transfer and how the charge density of the graphene layer changes due to the interactions with the substrate and the molecules. The molecule-graphene bonding distances are found to be in the range 3.3-3.4 Å, and the graphene-substrate bonding distances around 3.6 Å. These values are slightly larger than what we have found previously, using an empirical expression for the van der Waals density functional. At the same time, the values for the binding energies are increased, compared to what we have obtained in a previous study. We find, in all cases, a net electron transfer from the adsorbed molecule to the graphene+substrate system. For quartz, the total charge transfer is between 0.1 and 0.2 electrons per adsorbed molecule. For cristobalite, it is only about a tenth of that. Our findings are consistent with earlier calculations as well as experimental data.

  • 96.
    Elgammal, Karim
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Materialfysik, MF.
    Delin, Anna
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. KTH, Tidigare Institutioner (före 2005), Materialvetenskap. KTH, Centra, SeRC - Swedish e-Science Research Centre. Uppsala University.
    Graphene adhesion on surfaces: a van der Waals density functional studyManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    We present a van der Waals density functional (vdW-DF) calculations study of graphene adhesion to different types of substrates with different surface conditions. The study expands to both metal and semiconductor substrates with different surface endings. All substrate surfaces were the 111 surfaces where they have hexagonal lattice parameters perfectly matching with the graphene's. Adsorption geometries, energies, bader charges, dipole moments and electronic structure in terms of density of states are investigated. The results are showing a general agrement with both experimental results as well as theoritical findings done with similar setup. The results reveal that the degree of adhesive of graphene to different surfaces can affect the electronic structure of graphene ending in having different applications when designing graphene in building nano-electronic devices.

  • 97.
    Elgammal, Karim
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hugosson, Håkan W.
    Smith, Anderson D.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Elektronik, Integrerade komponenter och kretsar. Chalmers Institute of Technology, Sweden.
    Råsander, Mikael
    Bergqvist, Lars
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Delin, Anna
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik. KTH, Centra, SeRC - Swedish e-Science Research Centre. Uppsala University, Sweden.
    Density functional calculations of graphene-based humidity and carbon dioxide sensors: effect of silica and sapphire substrates2017Inngår i: Surface Science, ISSN 0039-6028, E-ISSN 1879-2758, Vol. 663, s. 23-30Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present dispersion-corrected density functional calculations of water and carbon dioxide molecules adsorption on graphene residing on silica and sapphire substrates. The equilibrium positions and bonding distances for the molecules are determined. Water is found to prefer the hollow site in the center of the graphene hexagon, whereas carbon dioxide prefers sites bridging carbon-carbon bonds as well as sites directly on top of carbon atoms. The energy differences between different sites are however minute - typically just a few tenths of a millielectronvolt. Overall, the molecule-graphene bonding distances are found to be in the range 3.1-3.3 (A) over circle. The carbon dioxide binding energy to graphene is found to be almost twice that of the water binding energy (around 0.17 eV compared to around 0.09 eV). The present results compare well with previous calculations, where available. Using charge density differences, we also qualitatively illustrate the effect of the different substrates and molecules on the electronic structure of the graphene sheet.

  • 98.
    Elgammal, Karim
    et al.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Hugosson, Håkan W.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF.
    Smith, Anderson D.
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Integrerade komponenter och kretsar.
    Råsander, Mikael
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF.
    Bergqvist, Lars
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Delin, Anna
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik, Materialfysik, MF. KTH, Centra, SeRC - Swedish e-Science Research Centre. Uppsala University.
    Density functional theory calculations of graphene-based humidity and carbon dioxide sensors: effect of silica and sapphire substratesManuskript (preprint) (Annet vitenskapelig)
  • 99.
    Elofsson, Arne
    et al.
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Solna, Sweden..
    Hess, Berk
    KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Lindahl, Erik
    KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Onufriev, Alexey
    Virginia Tech, Dept Comp Sci, Ctr Soft Matter & Biol Phys, Blacksburg, VA USA.;Virginia Tech, Dept Phys, Ctr Soft Matter & Biol Phys, Blacksburg, VA USA..
    van der Spoel, David
    Uppsala Univ, Dept Cell & Mol Biol, Sci Life Lab, Uppsala Ctr Computat Chem, Uppsala, Sweden..
    Wallqvist, Anders
    US Army Med Res & Mat Command, Dept Def Biotechnol High Performance Comp Softwar, Telemed & Adv Technol Res Ctr, Ft Detrick, MD USA..
    Ten simple rules on how to create open access and reproducible molecular simulations of biological systems2019Inngår i: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 15, nr 1, artikkel-id e1006649Artikkel i tidsskrift (Annet vitenskapelig)
  • 100. Engquist, Björn
    et al.
    Runborg, Olof
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Numerisk analys, NA. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Tsai, Y. -HR.
    Preface2012Inngår i: Workshop on Numerical Analysis and Multiscale Computations, 2009, Springer Verlag , 2012Konferansepaper (Fagfellevurdert)
1234567 51 - 100 of 451
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf