Ändra sökning
Avgränsa sökresultatet
1234567 51 - 100 av 782
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 51.
    Al-Naamani, Laila
    et al.
    Sultan Qaboos Univ, Dept Marine Sci & Fisheries, POB 34, Muscat 123, Oman.;Minist Municipal & Water Resources, Muscat 112, Oman..
    Dutta, Joydeep
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Dobretsov, Sergey
    Sultan Qaboos Univ, Dept Marine Sci & Fisheries, POB 34, Muscat 123, Oman.;Sultan Qaboos Univ, Ctr Excellence Marine Biotechnol, POB 50, Muscat 123, Oman..
    Nanocomposite Zinc Oxide-Chitosan Coatings on Polyethylene Films for Extending Storage Life of Okra (Abelmoschus esculentus)2018Ingår i: NANOMATERIALS, ISSN 2079-4991, Vol. 8, nr 7, artikel-id 479Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Efficiency of nanocomposite zinc oxide-chitosan antimicrobial polyethylene packaging films for the preservation of quality of vegetables was studied using okra Abelmoschus esculentus. Low density polyethylene films (LDPE) coated with chitosan-ZnO nanocomposites were used for packaging of okra samples stored at room temperature (25 degrees C). Compared to the control sample (no coating), the total bacterial concentrations in the case of chitosan and nanocomposite coatings were reduced by 53% and 63%, respectively. The nanocomposite coating showed a 2-fold reduction in total fungal concentrations in comparison to the chitosan treated samples. Results demonstrate the effectiveness of the nanocomposite coatings for the reduction of fungal and bacterial growth in the okra samples after 12 storage days. The nanocomposite coatings did not affect the quality attributes of the okra, such as pH, total soluble solids, moisture content, and weight loss. This work demonstrates that the chitosan-ZnO nanocomposite coatings not only maintains the quality of the packed okra but also retards microbial and fungal growth. Thus, chitosan-ZnO nanocomposite coating can be used as a potential coating material for active food packaging applications.

  • 52. Amer, Wael A.
    et al.
    Wang, Li
    Amin, Abid M.
    Yu, Haojie
    Zhang, Lei
    Li, Chao
    Wang, Yang
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Liquid-crystalline azobenzene-containing ferrocene-based polymers: study on synthesis and properties of main-chain ferrocene-based polyesters with azobenzene in the side chain2013Ingår i: Polymers for Advanced Technologies, ISSN 1042-7147, E-ISSN 1099-1581, Vol. 24, nr 2, s. 181-190Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ferrocene-based polymers are characterized by their electrochemical activity, good redox properties, thermal, photochemical stability, and liquid crystallinity, and thus they have various applications in different fields. A comprehensive investigation on the synthesis and properties of three novel main-chain ferrocene-based polyesters with azobenzene in the side chain (MFPAS) was carried out. The main-chain ferrocene-based polyester, poly(N-phenyldiethanolamine 1,1'-ferrocene dicarboxylate (PPFD), was synthesized via the solution polycondensation reaction of 1,1'-ferrocenedicarbonyl chloride with phenyldiethanolamine (PDE). The novel MFPAS were synthesized via the post-polymerization azo-coupling reaction of PPFD with three different 4-substituted anilines including 4-nitroaniline, 4-aminobenzoic acid, and 4-aminobenzonitrile to produce 4-nitrophenylazo-functionalized-PPFD (PPFD-NT), 4-carboxyphenylazo-functionalized-PPFD (PPFD-CA), and 4-cyanophenylazo-functionalized-PPFD (PPFD-CN), respectively. All the synthesized polymers were characterized by 1H NMR spectroscopy, Fourier transform infrared spectroscopy, and UVvisible spectroscopy. In addition, powder X-ray diffraction patterns were measured for the synthesized polymers. The photoisomerization of the MFPAS was studied. The thermal properties of the MFPAS were studied using thermogravimetric analysis and differential scanning calorimetry. PPFD-CA and PPFD-CN were found to be more thermally stable than PPFD-NT. Finally, the liquid-crystalline properties of PPFD and the MFPAS were examined using polarized optical microscope. It was found that all the polymers possessed nematic phases and exhibited textures with schlieren disclinations.

  • 53. Amer, Wael A.
    et al.
    Wang, Li
    Yu, Haojie
    Amin, Abid M.
    Wang, Yang
    KTH, Skolan för informations- och kommunikationsteknik (ICT).
    Synthesis and Properties of a Ferrocene-based Metallomesogenic Polymer Containing Bis(4-hydroxyoctoxyphenyl)sulfone2012Ingår i: Journal of Inorganic and Organometallic Polymers and Materials, ISSN 1574-1443, Vol. 22, nr 6, s. 1229-1239Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly[bis(4-hydroxyoctoxyphenyl)sulfone 1,1'-ferrocene dicarboxylate] (PHOSFD) was synthesized by solution polycondensation reaction of bis(4-hydroxyoctoxyphenyl)sulfone with 1,1'-ferrocenyl chloride. The synthesized polymer was characterized via the measurement of its H-1 NMR spectrum, UV-Vis spectrum and FTIR spectrum. X-ray diffraction pattern was measured to investigate the crystallinity of the synthesized polymer and it was found that the polymer is mostly amorphous. The molecular weight of the polymer was determined by gel permeation chromatography. In addition, the electrochemical, the thermal, and the liquid crystalline properties of the synthesized polymer were examined and compared with the properties of poly(diethyleneglycol 1,1'-ferrocene dicarboxylate) (PDEFD) that was synthesized in our earlier study. The electrochemical processes of PHOSFD in CH2Cl2 were confirmed neither to be totally reversible nor completely irreversible. Generally, the electrochemical properties of PHOSFD and PDEFD were found to be similar to each other. PHOSFD was found to be thermally stable but its thermal stability is lower than that of PDEFD. Both of PHOSFD and PDEFD showed liquid crystalline properties and they possessed nematic phase textures with schlieren disclinations during heating and cooling.

  • 54.
    Aminlashgari, Nina
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    LDI-MS strategies for analysis of polymer degradation products, additives and drugs2014Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    The advancement of mass spectrometry (MS) has been and continues to be a prominent analytical technique for highly accurate determination of analytes. The goal of this thesis was to develop new laser desorption ionization-mass spectrometric (LDI-MS) methods for analysis of polymer degradation products, additives and drugs. Modifications in the sample preparation were evaluated in the presence and absence of surface assisting materials. Various nanoparticles were evaluated as effective absorbents for energy transfer in the LDI procedure of the small molecules.

    In paper I and II, LDI-MS methods were developed for following the progression of chemical reactions. First, the procedure to optimize microwave assisted hydrothermal degradation products of cellulose were analyzed; second, the synthesis of glucose hexanoate ester plasticizers was monitored as a function of reaction time. The LDI-MS method provided rapid detection for the elucidation of the chemical products and their relative ratios. In contrast, the electrospray ionization-mass spectrometry (ESI-MS) analysis produced a noisy spectrum primarily containing peaks from salt clusters. A surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) method was developed in paper III enabling the identification of poly(e-caprolactone) and its degradation products by using nanoparticles as the substrate. Similar analysis by matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) was not as successful due to convolution of the analyte peaks with clusters released from the matrix. ESI-MS analysis verified the SALDI-MS method as comparable degradation product patterns were observed. Furthermore, the possibility of using polylactide based nanocomposites as surfaces in the analysis of drugs was evaluated in paper IV. An advantage was the ease of handling compared to the use of free nanoparticles. Paper V introduces the potential of direct examination of oxygen plasma modified parylene C surfaces by a LDI-MS methodology. 

  • 55.
    Aminlashgari, Nina
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    SALDI-MS Method Development for Analysis of Pharmaceuticals and Polymer Degradation Products2012Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) was evaluated as a new tool for analysis of polymer degradation products. A SALDI method was developed enabling rapid analysis of low molecular mass polyesters and their degradation products. In addition, the possibility to utilize nanocomposite films as easy-to-handle surfaces for analysis of pharmaceutical compounds was investigated.

    Poly(ε-caprolactone) was used as a model compound for SALDI-MS method development. The signal-to-noise values obtained by SALDI-MS were 20 times higher compared to traditional matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) of the same samples with 2,5-dihydroxybenzoic acid as a matrix. Halloysite nanoclay and magnesium oxide showed best potential as surfaces and clean backgrounds in the low mass range were observed. The SALDI-MS method for the analysis of polyester degradation products was also verified by electrospray ionization-mass spectrometry (ESI-MS). An advantage over ESI-MS is the possibility to directly analyze degradation products in buffer solutions. Compared to gas chromatography-mass spectrometry (GC-MS) it is possible to analyze polar compounds and larger molecular mass ranges at the same time as  complicated extraction steps are avoided.

    The possibility to use nanocomposite films as surfaces instead of free nanoparticles was evaluated by solution casting of poly(lactide) (PLA) films with eight inorganic nanoparticles. The S/N values of the pharmaceutical compounds, acebutolol, propranolol and carbamazepine, analyzed on the nanocomposite surfaces were higher than the values obtained on the surface of plain PLA showing that the nanoparticles participated in the ionization/desorption process even when they are immobilized. Beside the ease of handling, the risk for instrument contamination is reduced when nanocomposites are used instead of free nanoparticles. The signal intensities depended on the type of drug, type and concentration of nanoparticle. PLA with 10 % titanium oxide or 10 % silicon nitride functioned best as SALDI-MS surfaces.

  • 56.
    Aminlashgari, Nina
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Hakkarainen, Minna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Emerging Mass Spectrometric Tools for Analysis of Polymers and Polymer Additives2012Ingår i: Advances in Polymer Science, ISSN 0065-3195, E-ISSN 1436-5030, Vol. 248, s. 1-38Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The field of mass spectrometry has experienced enormous developments in the last few years. New interesting mass spectrometric techniques have arrived and there have been further developments in the existing methods that have opened up new possibilities for the analysis of increasingly complex polymer structures and compositions. Some of the most interesting emerging techniques for polymer analysis are briefly reviewed in this paper. These include new developments in laser desorption ionization techniques, like solvent-free matrix-assisted laser desorption ionization (solvent-free MALDI) and surface-assisted laser desorption ionization (SALDI) mass spectrometry, and the developments in secondary ion mass spectrometry (SIMS), such as gentle-SIMS and cluster SIMS. Desorption electrospray ionization (DESI) mass spectrometry and direct analysis in real time (DART) mass spectrometry offer great possibilities for analysis of solid samples in their native form, while mobility separation prior to mass spectrometric analysis in ion mobility spectrometry (IMS) mass spectrometry further facilitates the analysis of complex polymer structures. The potential of these new developments is still largely unexplored, but they will surely further strengthen the position of mass spectrometry as an irreplaceable tool for polymer characterization.

  • 57.
    Aminlashgari, Nina
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    Hakkarainen, Minna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    Surface Assisted Laser Desorption Ionization-Mass Spectrometry (SALDI-MS) for Analysis of Polyester Degradation Products2012Ingår i: Journal of the American Society for Mass Spectrometry, ISSN 1044-0305, E-ISSN 1879-1123, Vol. 23, nr 6, s. 1071-1076Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Novel surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) method was developed for rapid analysis of low molecular mass polyesters and their degradation products by laser desorption ionization-mass spectrometry. Three polycaprolactone materials were analyzed by the developed method before and after hydrolytic degradation. The signal-to-noise values obtained by SALDI-MS were 20-100 times higher compared with the ones obtained by using traditional MALDI-MS matrices. A clean background at low mass range and higher resolution was obtained by SALDI-MS. Different nanoparticle, cationizing agent, and solvent combinations were evaluated. Halloysite nanoclay and magnesium hydroxide showed the best potential as SALDI surfaces. The SALDI-MS spectrum of the polyester hydrolysis products was verified by ESI-MS. The developed SALDI-MS method possesses several advantages over existing methods for similar analyses.

  • 58.
    Aminlashgari, Nina
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymerteknologi.
    Pal, Jit
    Sanwaria, Sunita
    Nandan, Bhanu
    Srivastava, Rajiv K.
    Hakkarainen, Minna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Degradation product profiles of melt spun in situ cross-linked poly(epsilon-caprolactone) fibers2015Ingår i: Materials Chemistry and Physics, ISSN 0254-0584, E-ISSN 1879-3312, Vol. 156, s. 82-88Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In situ cross-linking of poly(epsilon-caprolactone) (PCL) fiber with bis-(epsilon-caprolactone-4-yl) (BCY) was shown to be a feasible approach to compensate for reduction in molar mass of PCL during melt-spinning. The effect of in situ cross-linking on the degradation profile of melt spun PCL fibers with different amounts of BCY was evaluated using electrospray ionization-mass spectrometry. Degradation of the cross-linked fibers was carried out in aqueous medium at 37 degrees C and 60 degrees C for different periods of time. The degradation profiles were then compared with uncross-linked fiber and 3D porous cross-linked film of PCL Interesting differences in the degradation product profiles with linear, cyclic or BCY-related low molar mass compounds were observed, clearly demonstrating the effect of cross-linking and processing on the degradation process and formation of water-soluble products. In addition the degradation product profiles demonstrated that in situ cross-linking is a feasible technique for counteracting degradation reactions during melt-spinning.

  • 59.
    Aminlashgari, Nina
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymerteknologi.
    Shariatgorji, Mohammadreza
    Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden.
    Ilag, Leopold L.
    Department of Analytical Chemistry, Stockholm University, Stockholm, Sweden.
    Hakkarainen, Minna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymerteknologi.
    Nanocomposites as novel surfaces for laser desorption ionization mass spectrometry2011Ingår i: Analytical Methods, ISSN 1759-9660, E-ISSN 1759-9679, Vol. 3, nr 1, s. 192-197Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The possibility to utilize nanocomposite films as easy-to-handle surfaces for surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) of small molecules, such as pharmaceutical compounds, was evaluated. The signal-to-noise values of acebutolol, propranolol and carbamazepine obtained on the nanocomposite surfaces were higher than the values obtained on plain PLA surface showing that the nanoparticles participate in the ionization/desorption process even when they are immobilized in the polymer matrix. The advantages of nanocomposite films compared to the free nanoparticles used in earlier studies are the ease of handling and reduction of instrument contamination since the particles are immobilized into the polymer matrix. Eight inorganic nanoparticles, titanium dioxide, silicon dioxide, magnesium oxide, hydroxyapatite, montmorillonite nanoclay, halloysite nanoclay, silicon nitride and graphitized carbon black at different concentrations were solution casted to films with polylactide (PLA). There were large differences in signal intensities depending on the type of drug, type of nanoparticle and the concentration of nanoparticles. Polylactide with 10% titanium oxide or 10% silicon nitride functioned best as SALDI-MS surfaces. The limit of detection (LOD) for the study was ranging from 1.7 ppm up to 56.3 ppm and the signal to noise relative standard deviations for the surface containing 10% silicon nitride was approximately 20-30%. Scanning electron microscopy demonstrated in most cases a good distribution of the nanoparticles in the polymer matrix and contact angle measurements showed increasing hydrophobicity when the nanoparticle concentration was increased, which could influence the desorption and ionization. Overall, the results show that nanocomposite films have potential as surfaces for SALDI-MS analysis of small molecules.

  • 60.
    Aminzadeh, Selda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Lauberts, M.
    Dobele, G.
    Ponomarenko, J.
    Mattsson, T.
    Lindström, Mikael
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Sevastyanova, Olena
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Membrane filtration of kraft lignin: Structural charactristics and antioxidant activity of the low-molecular-weight fraction2018Ingår i: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 112, s. 200-209Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lignin, which is the second most abundant biomass component and has carbon-rich phenolic content, is a promising renewable raw material for multiple applications, such as carbon fibers, adhesives, and emulsifiers. To use lignin efficiently, it is important to ensure its purity and homogeneity. As a result, the separation of lignin into fractions with high purity and narrow molecular-weight distributions is likely a prerequisite for several applications. Ultrafiltration using ceramic membranes has many advantages, including enabling direct lignin extraction from Kraft pulp cooking liquors without pH and temperature adjustment. One challenge with membrane filtration using such a system is the potential for reduced membrane performance over time, which is associated with fouling. In this study, LignoBoost Kraft lignin was fractionated using a ceramic membrane with a molecular weight cut-off of 1 kDa. The separation behavior during ultrafiltration fractionation was investigated and the antioxidant properties of the recovered low-molecular-weight (low-MW) lignin samples were evaluated. Using this model system, the permeate fluxes were unstable during the 100 h of membrane operation. However, a decrease in the average MW in the permeate over time was observed. The shift in MW was most pronounced for virgin membranes, while a more stable MW distribution was evident for membranes subjected to multiple cleaning cycles. According to 2D NMR analysis, low-MW lignin that was recovered after 100 h of operation, consisted of smaller lignin fragments, such as dimers and oligomers, with a high content of methoxy-groups. This was confirmed using the size exclusion chromatography method, which indicated an weigh average molecular weight in the range of 450–500 Da. 31P NMR spectroscopy showed that, despite the lower total content of phenolic OH groups, the low-MW sample had a higher proportion of non-condensed phenolic OH groups. The results of the antioxidant tests demonstrated the strong potential of lignin and its low-MW fraction as a natural antioxidant, particularly for lipid-containing systems. The low-MW lignin fraction showed better antioxidant activity than the non-fractionated LignoBoost lignin in the kinetic oxygen radical absorbance capacity (ORAC) test and demonstrated three-fold stronger inhibition of the substrate (fluorescein) than the reference antioxidant Trolox (a water-soluble derivative of vitamin E).

  • 61.
    Andersson, Anna
    KTH, Skolan för kemivetenskap (CHE), Kemi.
    Characterisation of the influence of curing temperature on the properties of 2K waterborne topcoat2012Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
    Abstract [sv]

    Genom att ersätta lösningsmedelsburna ytbehandlingar med vattenburna kan man kraftigt reducera utsläppen av VOC från lackeringsverkstäder och minska mängden CO2som frigörs från efterbrännare. Kemin för 2K WB uretanlacker innefattar komplex kinetik med selektivitet som är starkt beroende av applicerings- och härdningsbetingelser. För att kunna konstruera en ytbehandlingsprocess som producerar stabila högkvalitativa ytbehandlingar är det viktigt att känna till vilka faktorer påverkar materialegenskaperna. I detta projekt har effekten av variationer i temperatur under härdning av 2K WB och 2K SB topplack utvärderats för att fastställa om det resulterar i mätbara effekter på den färdiga topplacken. Även signifikansen av dessa skillnader har utvärderats för att bedöma behovet av noggrann utformning av härdningsprocessen.

    Efter utvärdering av visuella, mekaniska och kemiska egenskaper samt hållbarheten hos de härdade lackerna, fanns det att effekten av härdningstemperaturen på nivån av glans för 2K WB topplacker kunde ses med blotta ögat. Effekter på färg, hårdhet, flexibilitet, vidhäftning och hållbarhet visades också mätbara, och visade på tydliga förändringar i materialet. Förhöjd härdningstemperatur visade sig ha effekter på både tvärbindningsdensiteten och omsättning av isocyanater hos härdaren. En förhöjd härdningstemperatur påvisades även bidra till bildandet av en topplack med avsevärt minskad glansnivå och visst minskad stenskottsbeständighet, men även ökad hårdhet och kemikalietålighet i en omfattning som fanns signifikant. Varierad härdningstemperatur visade sig ge variationer i hållfasthet, som med tiden riskerar att ge olika åldringsegenskaper hos komponenter belagda under olika förhållanden. Innan denna typ av vattenburen täckfärg implementeras i produktion rekommenderas att ytterligare egenskaper utvärderas, såsom inverkan av fukt och våtfärgsviskositet på ytbehandlingens slutegenskaper

  • 62.
    Andersson, Richard L.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Mallon, Peter E.
    Salajkova, Michaela
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Hedenqvist, Mikael S.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Olsson, Richard T.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Micromechanics of toughness improved electrospun PMMA fibers with embedded cellulose as tested under in-situ microscopyManuskript (preprint) (Övrigt vetenskapligt)
  • 63.
    Andersson, Richard L.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Salajkova, Michaela
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Mallon, P. E.
    Berglund, Lars A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Hedenqvist, Mikael S.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Olsson, Richard T.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Micromechanical Tensile Testing of Cellulose-Reinforced Electrospun Fibers Using a Template Transfer Method (TTM)2012Ingår i: Journal of polymers and the environment, ISSN 1064-7546, E-ISSN 1572-8900, Vol. 20, nr 4, s. 967-975Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A template transfer method (TTM) and a fiber fixation technique were established for fiber handling and micro tensile stage mounting of aligned and non-aligned electrospun fiber mats. The custom-made template had been precut to be mounted on a variety of collectors, including a rapidly rotating collector used to align the fibers. The method eliminated need for direct physical interaction with the fiber mats before or during the tensile testing since the fiber mats were never directly clamped or removed from the original substrate. By using the TTM it was possible to measure the tensile properties of aligned poly(methyl methacrylate) (PMMA) fiber mats, which showed a 250 % increase in strength and 450 % increase in modulus as compared to a non-aligned system. The method was further evaluated for aligned PMMA fibers reinforced with cellulose (4 wt%) prepared as enzymatically derived nanofibrillated cellulose (NFC). These fibers showed an additional increase of 30 % in both tensile strength and modulus, resulting in a toughness increase of 25 %. The fracture interfaces of the PMMA-NFC fibers showed a low amount of NFC pull-outs, indicating favorable phase compatibility. The presented fiber handling technique is universal and may be applied where conservative estimates of mechanical properties need to be assessed for very thin fibers.

  • 64.
    Andersson, Richard L.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymera material.
    Micromechanical, Antimicrobial and Filtration Properties of Electrospun Fiber Mats2014Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
  • 65. Ankerfors, Caroline
    et al.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Polyelectrolyte Complexes for Tailoring of Wood Fibre Surfaces2014Ingår i: Polyelectrolyte Complexes In The Dispersed And Solid State II: Application Aspects, Springer Berlin/Heidelberg, 2014, s. 1-24Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    The use of polyelectrolyte complexes (PECs) provides new opportunities for surface engineering of solid particles in aqueous environments to functionalize the solids either for use in interactive products or to tailor their adhesive interactions in the dry and/or wet state. This chapter describes the use of PECs in paper-making applications where the PECs are used for tailoring the surfaces of wood-based fibres. Initially a detailed description of the adsorption process is given, in more general terms, and in this respect both in situ formed and pre-formed complexes are considered. When using in situ formed complexes, which were intentionally formed by the addition of oppositely charged polymers, it was established that the order of addition of the two polyelectrolytes was important, and by adding the polycation first a more extensive fibre flocculation was found. PECs can also form in situ by the interaction between polyelectrolytes added and polyelectrolytes already present in the fibre suspension originating from the wood material, e. g. lignosulphonates or hemicelluloses. In this respect the complexation can be detrimental for process efficiency and/or product quality depending on the charge balance between the components, and when using the PECs for fibre engineering it is not recommended to rely on in situ PEC formation. Instead the PECs should be pre-formed before addition to the fibres. The use of pre-formed PECs in the paper-making process is described as three sub-processes: PEC formation, adsorption onto surfaces, and the effect on the adhesion between surfaces. The addition of PECs, and adsorption to the fibres, prior to formation of the paper network structure has shown to result in a significant increase in joint strength between the fibres and to an increased strength of the paper made from the fibres. The increased joint strength between the fibres is due to both an increased molecular contact area between the fibres and an increased molecular adhesion. The increased paper strength is also a result of an increased number of fibre/fibre contacts/unit volume of the paper network.

  • 66.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Salajkova, Michaela
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Zhou, Qi
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Lars, Berglund
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Strong surface treatment effects on reinforcement efficiency in biocomposites based on cellulose nanocrystals in poly(vinyl acetate) matrix2015Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 16, nr 12, s. 3916-3924Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this work, the problem to disperse cellulose nanocrystals (CNC) in hydrophobic polymer matrices has been addressed through application of an environmentally friendly chemical modification approach inspired by clay chemistry. The objective is to compare the effects of unmodified CNC and modified CNC (modCNC) reinforcement, where degree of CNC dispersion is of interest. Hydrophobic functionalization made it possible to disperse wood-based modCNC in organic solvent and cast well-dispersed nanocomposite films of poly(vinyl acetate) (PVAc) with 1-20 wt % CNC. Composite films were studied by infrared spectroscopy (FT-IR), UV-vis spectroscopy, dynamic mechanical thermal analysis (DMTA), tensile testing, and field-emission scanning electron microscopy (FE-SEM). Strongly increased mechanical properties were observed for modCNC nanocomposites. The reinforcement efficiency was much lower in unmodified CNC composites, and specific mechanisms causing the differences are discussed.

  • 67.
    Ansari, Farhan
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer.
    Skrifvars, M.
    Berglund, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network2015Ingår i: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 117, s. 298-306Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Biocomposites reinforced by natural plant fibers tend to be brittle, moisture sensitive and have limited strength. Wood cellulose nanofibers (CNF) were therefore used to reinforce an unsaturated polyester matrix (UP) without the need of coupling agents or CNF surface modification. The nanostructured CNF network reinforcement strongly improves modulus and strength of UP but also ductility and toughness. A template-based prepreg processing approach of industrial potential is adopted, which combines high CNF content (up to 45 vol%) with nanoscale CNF dispersion. The CNF/UP composites are subjected to moisture sorption, dynamic thermal analysis, tensile tests at different humidities, fracture toughness tests and fractography. The glass transition temperature (T-g) increases substantially with CNF content. Modulus and strength of UP increase about 3 times at 45 vol% CNF whereas ductility and apparent fracture toughness are doubled. Tensile properties at high humidity are compared with other bio-composites and interpreted based on differences in molecular interactions at the interface.

  • 68.
    Antoni, Per
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Hed, Yvonne
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Nordberg, Axel
    KTH, Skolan för teknik och hälsa (STH), Neuronik (Stängd 20130701).
    Nyström, Daniel
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    von Holst, Hans
    KTH, Skolan för teknik och hälsa (STH), Neuronik (Stängd 20130701).
    Hult, Anders
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Malkoch, Michael
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Bifunctional Dendrimers: From Robust Synthesis and Accelerated One-Pot Postfunctionalization Strategy to Potential Applications2009Ingår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 48, nr 12, s. 2126-2130Artikel i tidskrift (Refereegranskat)
  • 69. Arasteh, Rouhollah
    et al.
    Naderi, Ali
    Kaptan, Navid
    Maleknia, Laleh
    Akhlaghi, Shahin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Nazockdast, Hosein
    Effects of Fiber Spinning on the Morphology, Rheology, Thermal, and Mechanical Properties of Poly(trimethylene terephthalate)/Poly(ethylene terephthalate) Blends2014Ingår i: Advances in Polymer Technology, ISSN 0730-6679, E-ISSN 1098-2329, Vol. 33, nr S1, s. 21443-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The morphology, thermal behavior, rheological, and mechanical properties of poly(trimethylene terephthalate) (PTT)/poly(ethylene terephthalate) (PET) blend fibers were investigated. The scanning electron microscopy studies revealed the formation of a microfibrillar network of the PET within the PTT matrix after the fiber-spinning process. Differential scanning calorimetry results demonstrated that although the thermal characteristics of the amorphous phase were unaffected by the fiber-spinning process, the melting and crystallization behavior of the blends was altered by the elongation flow imposed during the melt spinning. The viscoelastic behavior of the PTT/PET blends was also studied by a steady shear rate and dynamic sweep rheological experiments before and after the spinning process. The induced morphology and crystallization reordering resulting from the fibrillation process are shown to have a remarkable effect on the complex viscosity profile of the PTT/PET fibers, particularly in the blend containing 30 wt% PET. The mechanical testing showed that tenacity and Young's modulus of the PTT fibers increased with the addition of PET up to 30 wt%.

  • 70.
    Arias, Veluska
    KTH, Skolan för kemivetenskap (CHE).
    COPOLYMER MICELLES FOR TARGETED DRUG DELIVERY2011Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
    Abstract [en]

    In this study, two families of amphiphilic block copolymers were synthesized with different block length. The polymer copolymers are PVP-PCL and PEG-PCL. For each family three copolymers were made with variation in the length of the PCL block, thus the length ratios were label using the following composition: 1-2000-2000 g/mol, 2-2000-4000 g/mol and 3-2000-6000 g/mol. In the synthesis of PVP-PCL copolymers, PVP end-capped in ε-Caprolactone was synthesized by free radical polymerization; then the copolymer was synthesized by ring opening polymerization of ε-Caprolactone using BuLi as initiator. In the case of PEG-PCL copolymers, mPEG (Mn=2000 g/mol) was used as a co-monomer and the process was done by ring opening polymerization of ε-Caprolactone in the presence of Sn(Otc)2.The copolymers were characterized by SEC and the molecular structure confirmed using 1H-NMR. Knowing that amphiphilic block copolymers can form micelles at certain concentration, micellization study was performed by UV-vis spectroscopy. All the copolymers showed micelles formation in deionized water. The micellization process was also tested in buffer solutions with difference in pH, where only PVP-PCL copolymers showed micellar formation. The micelles formation was confirmed by SEM after lyophilization process. Also the size of the micelles was measure by Zetasizer, showing a range size between 100 nm and 500 nm. After studied the micelles features given by all the copolymers, one polymer of each family was chosen for drug loading and further study of release kinetics, based on the efficiency of the formulation. The copolymer chosen were the ones with the highest length of the hydrophobic block. The drug loading was done by direct dissolution method. Two types of drugs were used, SBA and Diflunisal. The drug loading content was 20 % w/w and 50 % w/w. Micelles from the PEG-PCL copolymer could achieve retention till 50 % w/w of drug loaded, whereas micelles from PVP-PCL copolymer only achieved retention of 20 % w/w of the drug. The micelles formation was again confirm by SEM and the micelles size was measure by Zetasizer. The size of the loaded micelles was smaller than the unloaded micelles. The delivery kinetics was study by UV-vis. After lyophilization process, the compound polymer-drug was immersed in PBS to perform the study, examining the delivery of both drugs in each copolymer selected. In the case of micelles from PVP-PCL copolymer, the large amount of drug was release after 9 h in PBS for both Pas. The micelles from PEG-PCL copolymer, showed a difference in release rate for both drugs, 9 h for Diflunisal and 3 h for SBA; the nature of the drug play a role in drug release and thus in drug loading efficiency. Finally, the families investigated seemed to be promising carriers for controlled drug release. In addition, they appeared to be promising formulations as injectable DDS.

  • 71.
    Arias, Veluska
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Höglund, Anders
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Odelius, Karin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Albertsson, Ann-Christine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Polylactides with "green" plasticizers: Influence of isomer composition2013Ingår i: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 130, nr 4, s. 2962-2970Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Synthesized polylactides (PLA) with different D-isomer contents in the polymer chain were melt-blended with a series of green plasticizers by extrusion. Mechanical and thermal properties as well as the morphology of the plasticized materials were characterized to demonstrate how the combination of PLA with different D-contents and plasticizer controls the material properties. After addition of acetyl tributyl citrate (ATC), the elongation at break for PLA with a low D-isomer content was twice as high as that for PLAs with high D-isomer contents. Similar variations in the plasticization effect on the PLAs were also observed with the other plasticizers used, glyceryl triacetate (GTA), glycerol trihexanoate (GTH) and polyethylene glycol (PEG). In order to continue with the development of renewable polymers in packaging applications, the interrelation between a plasticizer and a specific polymer needs to be understood.

  • 72.
    Arias, Veluska
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Odelius, Karin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Albertsson, Ann-Christine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik.
    Nano-Stereocomplexation of Polylactide (PLA) Spheres by Spray Droplet Atomization2014Ingår i: Macromolecular rapid communications, ISSN 1022-1336, E-ISSN 1521-3927, Vol. 35, nr 22, s. 1949-1953Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A direct, efficient, and scalable method to prepare stereocomplexed polylactide (PLA)-based nanoparticles (NPs) is achieved. By an appropriate combination of fabrication parameters, NPs with controlled shape and crystalline morphology are obtained and even pure PLA stereocomplexes (PLASC) are successfully prepared using the spray-drying technology. The formed particles of varying D- and L-LA content have an average size of approximate to 400 nm, where the smallest size is obtained for PLA50, which has an equimolar composition of PLLA and PDLA in solution. Raman spectra of the particles show the typical shifts for PLASC in PLA50, and thermal analysis indicates the presence of pure stereocomplexation, with only one melting peak at 226 degrees C. Topographic images of the particles exhibit a single phase with different surface roughness in correlation with the thermal analysis. A high yield of spherically shaped particles is obtained. The results clearly provide a proficient method for achieving PLASC NPs that are expected to function as renewable materials in PLA-based nanocomposites and potentially as more stable drug delivery carriers.

  • 73.
    Arias, Veluska
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymerteknologi.
    Odelius, Karin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymerteknologi.
    Höglund, Anders
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi.
    Albertsson, Ann-Christine
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi.
    Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites2015Ingår i: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 3, nr 9, s. 2220-2231Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The demand for “green” degradable composite materials increases with growing environmental awareness. The key challenge is achieving the preferred physical properties and maintaining their eco-attributes in terms of the degradability of the matrix and the filler. Herein, we have designed a series of “green” homocomposites materials based purely on polylactide (PLA) polymers with different structures. Film-extruded homocomposites were prepared by melt-blending PLA matrixes (which had different degrees of crystallinity) with PLLA and PLA stereocomplex (SC) particles. The PLLA and SC particles were spherical and with 300–500 nm size. Interfacial crystalline structures in the form of stereocomplexes were obtained for certain particulate-homocomposite formulations. These SC crystallites were found at the particle/matrix interface when adding PLLA particles to a PLA matrix with d-lactide units, as confirmed by XRD and DSC data analyses. For all homocomposites, the PLLA and SC particles acted as nucleating agents and enhanced the crystallization of the PLA matrixes. The SC particles were more rigid and had a higher Young’s modulus compared with the PLLA particles. The mechanical properties of the homocomposites varied with particle size, rigidity, and the interfacial adhesion between the particles and the matrix. An improved tensile strength in the homocomposites was achieved from the interfacial stereocomplex formation. Hereafter, homocomposites with tunable crystalline arrangements and subsequently physical properties, are promising alternatives in strive for eco-composites and by this, creating materials that are completely degradable and sustainable.

  • 74.
    Arkannia, Maral
    KTH, Skolan för kemivetenskap (CHE).
    Improved Impregnation of Wood Chips and Increased Pulp Yield by Sulfate Cooking2016Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
    Abstract [en]

    The aim in pulp production is to liberate the wood fibres. This study investigates the possibility of using a high effective alkali charge and a low temperature in the impregnation step when using Kraft cooking to produce pulp. This specific approach increases the rate of diffusion without risking enhancing the peeling process, which could result in a higher yield. This study has used eucalyptus wood chips and the impregnation step has been carried out by using an alkali concentration similar to what is currently being used in the pulp mills, which is in this study is referred to as "REF", and the higher alkali concentration which is referred to as HAI. The impregnation temperature for the REF case was 130 °C and for the HAI cases were 105 °C and 115 °C. The study was divided in two parts; an impregnation pre-study and a cooking study. The cooking parameters were kept constant because in this study only the impregnation has been of interest.

    The results from the impregnation pre-study were that for the HAI cases, when the temperature increased, the residual alkali decreased. The temperature also affected the yield, in such way that as the temperature increased, the yield decreased which means that more carbohydrates were dissolved. In the cooking study, the high alkali impregnation resulted in shorter cooking times. The initial concentration of OH

    - in the cooking was too low (0.6 M) and this made the delignification eventually decline.

  • 75.
    Asif Jamil, Muhammad
    KTH, Skolan för kemivetenskap (CHE).
    Surface functionalization of thermally reduced graphene with 3-aminopropyltriethoxy silane and its composite with crosslinked polyethylene2011Självständigt arbete på avancerad nivå (yrkesexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
    Abstract [en]

    This research work encompasses the potential application of graphene as filler in high voltage transmission power cables. The graphene was produced through thermal exfoliation method from graphite oxide (GO) in the laboratory. In order to improve dispersion ability, thermally reduced graphene (TRG) was surface modified covalently with 3-aminopropyltriethoxy silane (APTS) at 80°C for 30 minutes in presence of acetone. The silane attachment at the thermally reduced graphene surface was confirmed by the following techniques: FTIR, XPS, SEM and EDS. The APTS functionalized TRG sheets showed better dispersion in organic solvents like DMF (N, N-dimethylformamide) and APTS (3-aminopropyltriethoxy silane) than polar solvents water and ethanol. Furthermore, crosslinked polyethylene was melt processed with thermally reduced graphene in a mini extruder at 135-140°C with rotor speed of 100 rpm. The resulting composites were thermally analysed by DSC and mechanically tested by tensile machine. An increase in crystallinity and tensile modulus was observed for TRG/crosslinked polyethylene nanocomposites. Hence, thermally reduced graphene was successfully surface modified by APTS molecule but quantitatively this modification was lower than expected.

  • 76.
    Atari Jabarzadeh, Sevil
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Polymera material.
    Prevention of Biofilm Formation on Silicone Rubber Materials for Outdoor High Voltage Insulators2015Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Microbial colonization on the surface of silicone rubber high voltage outdoor insulators often results in the formation of highly hydrated biofilm that influence the surface properties, such as surface hydrophobicity. The loss of hydrophobicity might lead to dry band formation, and, in the worst cases, flashover and failure of the insulator.

    In this work, the biocidal effects of various antimicrobial compounds in silicone rubber materials were determined. These materials were evaluated according to an ISO standard for the antimicrobial activity against the growth of aggressive fungal strains, and microorganisms that have been found colonizing the surfaces of outdoor insulators in several areas in the world. Several compounds suppressed microbial growth on the surfaces of the materials without compromising the material properties of the silicone rubber. A commercial biocide and thymol were very effective against fungal growth, and sodium benzoate could suppress the fungal growth to some extent. Thymol could also inhibit algal growth. However, methods for preservation of the antimicrobial agents in the bulk of the material need to be further developed to prevent the loss of the compounds during manufacturing. Biofilm formation affected the surface hydrophobicity and complete removal of the biofilm was not achieved through cleaning. Surface analysis confirmed that traces of microorganisms were still present after cleaning.

    Further, surface modification of the silicone rubber was carried out to study how the texture and roughness of the surface affect biofilm formation. Silicone rubber surfaces with regular geometrical patterns were evaluated to determine the influence of the surface texture on the extent of microbial growth in comparison with plane silicone rubber surfaces. Silicone rubber nanocomposite surfaces, prepared using a spray-deposition method that applied hydrophilic and hydrophobic nanoparticles to obtain hierarchical structures, were studied to determine the effects of the surface roughness and improved hydrophobicity on the microbial attachment. Microenvironment chambers were used for the determination of microbial growth on different modified surfaces under conditions that mimic those of the insulators in their outdoor environments. Different parts of the insulators were represented by placing the samples vertically and inclined. The microbial growth on the surfaces of the textured samples was evenly distributed throughout the surfaces because of the uniform distribution of the water between the gaps of the regular structures on the surfaces. Microbial growth was not observed on the inclined and vertical nanocomposite surfaces due to the higher surface roughness and improved surface hydrophobicity, whereas non-coated samples were colonized by microorganisms.

  • 77.
    Atarijabarzadeh, Sevil
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Biofilm formation on silicone materials containing various antimicrobial agents2010Konferensbidrag (Refereegranskat)
    Abstract [en]

    The colonisation of microorganisms and subsequent biofilm formation on the surface of polymeric high voltage insulators affect the surface properties and can lead to failure of the insulators.  In this study, silicone materials were prepared with different antimicrobial agents. The materials were analysed for the changes in the physical, chemical, surface and mechanical properties before and after biological growth test.

     

    Microorganisms used for the biological tests were fungi defined in the international standard test ISO 846 for electrical applications (Aspergillus niger van Tieghem, Penicillium funiculosum Thom, Paecilomyces variotii Bainier, Chaetomium globosum Kunze: Fries, Aspergillus terreus Thom, Aureobasidium pullulans (de Bary) Arnaud & Penicillium ochrochloron Biourge) and algae isolated from insulators in Sri Lanka and Tanzania (Chlorella vulgaris var. Autotrophica + various bacterial strains). Fungi growth test was performed by inoculation of the fungi on the surface of the materials and incubation in an oven at 28°C and 98% humidity for a specific period. Algae growth test was performed by inoculation on the material surface and subsequent incubation in room temperature under a constant fluorescent lamps for a specific period.

     

    The results indicated that some of the samples could prevent the biofilm formation on the surface of the materials while the microbial growth was unaffected on the pure silicone rubber.

  • 78.
    Atarijabarzadeh, Sevil
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Biofilm formation on silicone nanocomposites containing different antimicrobial agents2010Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this study three types of clay/silicon nanocomposites were prepared. Clay was modified with two different antimicrobial agents (p-aminobenzoic acid and partially aminated poly(vinylbenzyl chloride) and used for preparation of the nanocomposites, which aimed to show antimicrobial properties and also easy dispersion of the clay into the polymeric matrix. Reference nanocomposites were made through the modification of the clay with a siloxane surfactant to make an easy dispersion of the clay into the silicone rubber. Nanocomposites were studied for resistancy against biological attack according to the international standard tests. Growth test results indicated that some of the nanocomposites can inhibit biological growth more than pristine nanocomposites. Modified clay was studied with x-ray diffraction technique. Materials were also studied with scanning electron microscopy before and after biological growth to analyse the biofilm formation on the surface.

  • 79. Atlas, Salima
    et al.
    Raihane, Mustapha
    Hult, Anders
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Malkoch, Michael
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Ytbehandlingsteknik.
    Lahcini, Mohammed
    Ameduri, Bruno
    Radical copolymerization of acrylonitrile with 2,2,2-trifluoroethyl acrylate for dielectric materials: Structure and characterization2013Ingår i: Journal of Polymer Science Part A: Polymer Chemistry, ISSN 0887-624X, E-ISSN 1099-0518, Vol. 51, nr 18, s. 3856-3866Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Radical copolymerization based on acrylonitrile (AN) and 2,2,2-Trifluoroethyl acrylate (ATRIF) initited by AIBN was investigated in acetonitrile solution. The resulting poly(AN-co-ATRIF) copolymers were characterized by 1 H, 13 C, and 19 F NMR and IR spectroscopy, and size exclusion chromatography (SEC). Their compositions were assessed by 1 H NMR. The kinetics of radical copolymerization of AN with ATRIF was investigated from sereval experiments achieved at 70 degrees C from initial [AN](0)/[ATRIF](0) molar ratios ranging between 20/80 and 80/20 and was enabled to determine the reactivity ratios of both comonomers. From the monomer-polymer copolymerization curve, the Fineman-Ross and Kelen-Tudos laws enabled to assess the reactivity ratios (r(AN) = r(1) = 1.25 +/- 0.04 and r(ATRIF) = r(2) = 0.93 +/- 0.05 at 70 degrees C) while the revised patterns scheme led to r(12) = r(AN) = 1.03, and r(21) = r(ATRIF) = 0.78 at 70 degrees C. In all cases, rAN x rATRIF product was close to unity, which indicates that poly(AN-co-ATRIF) copolymers exhibit a random structure. This was also confirmed by the Igarashi's and Pyun's laws which revealed the presence of AN-ATRIF, AN-AN, and ATRIF-ATRIF dyads. The Q and e values for ATRIF were also assessed (Q(2) = 0.62 and e(2) = 0.93). The glass transition temperature values, Tg, of these copolymers increased from 17 to 61 degrees C as the molar percentage of ATRIF decreased from 77 to 16% in the copolymer. Thermogravimetry analysis of poly(AN-co-ATRIF) copolymers showed a good thermal stability compared to that of poly(ATRIF) homopolymer due to incorporation of AN comonomer.

  • 80.
    Austrell, Per-Erik
    et al.
    Division of Structural Mechanics, Lund Institute of Technology.
    Kari, LeifKTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, MWL Strukturakustik.
    Constitutive Models for Rubber IV: proceedings of the 4th European Conference for Constitutive Models for Rubber, ECCMR 2005, Stockholm, Sweden, 27-29 June 20052005Samlingsverk (redaktörskap) (Refereegranskat)
    Abstract [en]

    The unique properties of elastomeric materials are taken advantage of in many engineering applications. Elastomeric units are used as couplings or mountings between stiff parts. Examples are shock absorbers, vibration insulators, flexible joints, seals and suspensions etc.

     

    However, the complicated nature of the material behavior makes it difficult to accurately predict the performance of these units, using for example finite element modelling. It is therefore necessary that the constitutive model accurately capture relevant aspects of the mechanical behavior.

     

    The latest development concerning constitutive modelling of rubber is collected in these proceedings. It is the fourth ECCMR-European Conference on Constitutive Modelling in a series on this subject.

     

    Topics included in this volume are, Hyperelastic models, Strength, fracture & fatigue, Dynamic properties & the Fletcher-Gent effect, Micro-mechanical & statistical approaches, Stress softening, Viscoelasticity, Filler reinforcement, and Tyres, fiber & cord reinforced rubber.

  • 81.
    Avalos, Arturo Salazar
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Hakkarainen, Minna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Odelius, Karin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Superiorly Plasticized PVC/PBSA Blends through Crotonic and Acrylic Acid Functionalization of PVC2017Ingår i: Polymers, ISSN 2073-4360, E-ISSN 2073-4360, Vol. 9, nr 3, artikel-id 84Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Superior plasticization efficiency was achieved by a grafting from functionalization of the PVC backbone. This was deduced to a synergistic effect of internal plasticization and improved intermolecular interactions between PVC and an oligomeric poly(butylene succinate-co-adipate) ( PBSA) plasticizer. A mild grafting process for functionalization of the PVC chain by crotonic acid ( CA) or acrylic acid ( AA) was used. The formation of PVC-g-CA and PVC-g-AA was confirmed by FTIR and H-1 NMR. Grafting with the seemingly similar monomers, CA and AA, resulted in different macromolecular structures. AA is easily homopolymerized and long hydrophilic poly( acrylic acid) grafts are formed resulting in branched materials. Crotonic acid does not easily homopolymerize; instead, single crotonic acid units are located along the PVC chain, leading to basically linear PVC chains with pendant crotonic acid groups. The elongation of PVC-g-CA and PVC-g-AA in comparison to pure PVC were greatly increased from 6% to 128% and 167%, respectively, by the grafting reactions. Blending 20% ( w/w) PBSA with PVC, PVC-AA or PVC-CA further increased the elongation at break to 150%, 240% and 320%, respectively, clearly showing a significant synergistic effect in the blends with functionalized PVC. This is a clearly promising milestone towards environmentally friendly flexible PVC materials.

  • 82. Axegard, Peter
    et al.
    Bergnor, Elisabeth
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Ekholm, Ulrika
    Bleaching of softwood kraft pulps with H2O2, O3, and ClO21996Ingår i: TAPPI Journal, ISSN 0734-1415, Vol. 79, nr 1, s. 113-119Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Ozone or chlorine dioxide bleaching prior to hydrogen peroxide bleaching greatly improves the performance of the hydrogen peroxide stage. The efficiency is further improved by a chelating treatment immediately after the ozone or chlorine dioxide stage. With an optimal metal ion profile, laboratory bleached (OAZQP) softwood kraft pulps can reach brightness levels above 90% ISO, with 5-10% lower pulp strength properties and bleaching costs comparable to ECF bleaching. It also is possible to obtain full brightness with only hydrogen peroxide provided the metal ion profile is optimal, e.g., by using multiple QP treatments. The chemical consumptions, expressed as oxidation equivalents per decreased kappa number are the same as for sequences including ozone or chlorine dioxide. Ozone and chlorine dioxide are comparable as far as delignification and brightness efficiency go.

  • 83. Axegård, Peter
    et al.
    Bergnor, Elisabeth
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Ekholm, Ulrika
    The role of metal ions in TCF-bleaching of softwood kraft pulps.: Vol.31994Ingår i: Proceedings Tappi Pulping conf., 1994, s. 1161-1167Konferensbidrag (Refereegranskat)
  • 84. Axelsson, Patrik
    et al.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Teder, Ants
    Bleachability of Alkaline Birch Pulps.2000Ingår i: Proceedings 6th European Workshop on Lignocellulosics and Pulp., 2000Konferensbidrag (Refereegranskat)
  • 85. Axelsson, Patrik
    et al.
    Ek, Monica
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Teder, Ants
    Influence of alkali profile in the kraft cook on the bleachability of birch.2001Ingår i: : Book:Vol I, 2001, s. 41-44Konferensbidrag (Refereegranskat)
  • 86.
    Azhar, Shoaib
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Theliander, Hans
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. Chalmers University of Technology, Sweden.
    Lindström, Mikael
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Extraction of hemicelluloses from fiberized spruce wood2015Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 117, s. 19-24Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A novel mechanical pre-treatment method was used to separate the wood chips into fiber bundles in order to extract high molecular weight wood polymers. The mechanical pre-treatment involved chip compression in a conical plug-screw followed by defibration in a fiberizer. The fiberized wood was treated with hot water at various combinations of time and temperature in order to analyze the extraction yield of hemicelluloses at different conditions. Nearly 6 mg/g wood of galactoglucomannan was obtained at 90◦C/120min which was about three times more than what could be extracted from wood chips. The extracted carbohydrates had molecular weight ranging up to 60 kDa. About 10% of each of the extracted material had a molecular weight above 30 kDa. The extraction liquor could also be reused for consecutive extractions with successive increase in the extraction yield of hemicelluloses. 

  • 87.
    Azwar, Edwin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    Agro-Waste Derived Additives for Polylactide and Tapioca Starch2012Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Development of materials from renewable resources is one of the big challenges facing our world. In this thesis agro-industrial waste derivatives were developed and evaluated as additives for two common renewable polymer matrices, polylactide (PLA) and starch. Two waste products, wood flour (WF) and rice bran (RB) were evaluated in different forms. Milled WF and RB were either used directly to prepare PLA and starch biocomposites or they were liquefied by acid catalyzed hydrolysis to low molecular weight products. The complex polyol mixtures from liquefaction were tested directly as PLA and starch additives or utilized as monomers for synthesis of esters. The synthesized esters were evaluated as plasticizers for PLA and starch. The effect of different additives on tensile properties, miscibility, surface chemistry and morphology were evaluated by Instron, DSC, FTIR, FTIR imaging and SEM. In the case of polylactide films the influence of additives on hydrolytic degradation rate and process was evaluated by following the weight loss, surface changes, compositional changes and/or water-soluble migrants and degradation products by FTIR, SEM, pyrolysis-GC-MS and ESI-MS. The most marked difference in mechanical properties was observed in the case of PLA modified with liquefied wood flour derived ester plasticizer (PWF). Addition of 10 and 30 weight-% plasticizer increased the strain at break from a few percent for pure PLA to over 100 and 300%, respectively. The liquefied rice bran based ester, however, did not form miscible blends with PLA and it did not function as plasticizer. In some cases the impact of additives on the following degradation process was significant. Depending on the used additive, they could either concentrate in the matrix during the hydrolysis of polylactide or they were rapidly released to the surrounding water. In some cases clear hydrolysis catalyzing effects were observed. Liquefied rice bran in combination with mineral fillers and/or traditional plasticizers seemed to have the best potential as starch plasticizer.

  • 88.
    Backman, Anna
    et al.
    KTH, Tidigare Institutioner, Fiber- och polymerteknologi.
    Lange, Jakob
    KTH, Tidigare Institutioner, Fiber- och polymerteknologi.
    Hedenqvist, Mikael S.
    KTH, Tidigare Institutioner, Polymerteknologi.
    Transport properties of uniaxially oriented aliphatic polyketone2004Ingår i: Journal of Polymer Science Part B: Polymer Physics, ISSN 0887-6266, E-ISSN 1099-0488, Vol. 42, nr 6, s. 947-955Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The oxygen, carbon dioxide, and water-transport properties of a uniaxially oriented aliphatic polyketone were determined. The polyketone was drawn to 5-10 times its original length. The transport properties were related to changes in crystallinity estimated by differential scanning calorimetry and density measurements and by changes in the molecular and crystal orientation assessed by, respectively, infrared and X-ray spectroscopy. The film structures were characterized by confocal scanning laser microscopy and scanning electron microscopy. Stress-strain tests on the drawn specimens enabled the impacts of orientation on the transport and mechanical properties to be compared. A draw-induced increase in crystallinity and molecular orientation yielded permeabilities at a draw ratio of 10 that were 30-40% of the original value, and the percentage decrease was basically independent of the type of gas/vapor molecule. Also, the diffusivities of oxygen and carbon dioxide decreased by an order of magnitude. The fact that the amorphous permeability was peaking at a draw ratio of about 5 was a consequence of a peak in amorphous solubility, which was very high for oxygen and absent for water. It was suggested that the peak in solubility was mainly caused by the destruction of the polymer hydrogen-bond network during drawing and crystal reorientation. The impact of structural reorganization within the polymer and presence of surface valleys seemed to have less impact on the mechanical properties than on the transport properties. This suggested that transport data are more sensitive than mechanical data in probing material defects and changes in molecular packing and morphology.

  • 89.
    Backström, Eva
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Odelius, Karin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Hakkarainen, Minna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Trash to Treasure: Microwave-Assisted Conversion of Polyethylene to Functional Chemicals2017Ingår i: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 56, nr 50, s. 14814-14821Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An effective microwave-assisted process for recycling low-density polyethylene (LDPE) waste into value-added chemicals was developed. To achieve fast and effective oxidative degradation aimed at production of dicarboxylic acids, nitric acid was utilized as an oxidizing agent. Different conditions were evaluated, where recycling time and concentration of oxidizing agent were varied and the end products were characterized by FTIR, NMR, and HPLC. After just 1 h of microwave irradiation at 180 degrees C in relatively dilute nitric acid solution (0.1 g/mL), LDPE powder was totally degraded. This transformation led to few well-defined water-soluble products, mainly succinic, glutaric, and adipic acids, as well as smaller amounts of longer dicarboxylic acids, acetic acid, and propionic acid. The length of the obtained dicarboxylic acids could to some extent be tuned by adjusting the reaction time, temperature, and amount of oxidizing agent. Finally, the developed process was verified by recycling LDPE freezer bags as model LDPE waste. The freezer bags were converted mainly into dicarboxylic acids with a yield of 71%, and the carbon efficiency of the process was 37%. The developed method can, thus, contribute to a circular economy and offers new possibilities to increase the value of plastic waste.

  • 90. Badia, J. D.
    et al.
    Kittikorn, Thorsak
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Träkemi och massateknologi.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymerteknologi.
    Santonja-Blasco, L.
    Martizez-Felipe, A.
    Ribes-Greus, A.
    Ek, Monica
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Water absorption and hydrothermal performance of PHBV/sisal biocomposites2014Ingår i: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 108, s. 166-174Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The performance of biocomposites of poly(hydroxybutyrate-co-valerate) (PHBV) and sisal fibre subjected to hydrothermal tests at different temperatures above the glass transition of PHBV (T-H = 26, 36 and 46 degrees C) was evaluated in this study. The influences of both the fibre content and presence of coupling agent were focused. The water absorption capability and water diffusion rate were considered for a statistical factorial analysis. Afterwards, the physico-chemical properties of water-saturated biocomposites were assessed by Fourier-Transform Infrared Analysis, Size Exclusion Chromatography, Differential Scanning Calorimetry and Scanning Electron Microscopy. It was found that the water diffusion rate increased with both temperature and percentage of fibre, whereas the amount of absorbed water was only influenced by fibre content. The use of coupling agent was only relevant at the initial stages of the hydrothermal test, giving an increase in the diffusion rate. Although the chemical structure and thermal properties of water-saturated biocomposites remained practically intact, the physical performance was considerably affected, due to the swelling of fibres, which internally blew-up the PHBV matrix, provoking cracks and fibre detachment.

  • 91. Badia, J.D.
    et al.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Ribes-Greus, A.
    Material valorisation of amorphous polylactide. Influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance2012Ingår i: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 97, nr 4, s. 670-678Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper reports the effects of multiple mechanical recycling on the structure and properties of amorphous polylactide (PIA). The influence of the thermo-mechanical degradation induced by means of five successive injection cycles was initially addressed in terms of macroscopic mechanical properties and surface modification. A deeper inspection on the structure and morphology of PLA was associated to the thermal properties and viscoelastic behaviour. Although FT-IR analysis did not show significant changes in functional groups, a remarkable reduction in molar mass was found by viscometry. PIA remained amorphous throughout the reprocessing cycles, but the occurrence of a cold-crystallization during DSC and DMTA measurements, which enthalpy increased with each reprocessing step, suggested chain scission due to thermo-mechanical degradation. The effect of chain shortening on the glass-rubber relaxation studied by DMTA showed an increase in free volume affecting the segmental dynamics of PLA, particularly after the application of the second reprocessing step, in connection to the overall loss of performance showed by the remaining properties.

  • 92. Badia, J.D.
    et al.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Ribes-Greus, A
    The role of crystalline, mobile amorphous and rigid amorphous fractions on the performance of recycled poly (ethylene terephthalate) (PET)2012Ingår i: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 97, nr 1, s. 98-107Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The action of thermo-mechanical degradation induced by mechanical recycling of poly(ethylene terephthalate) was simulated by successive injection moulding cycles. Degradation reactions provoked chain scissions and a reduction in molar mass mainly driven by the reduction of diethyleneglycol to ethylene glycol units in the flexible domain of the PET backbone, and the formation ofeOH terminated species with shorter chain length. The consequent microstructural changes were quantified taking into account a three-fraction model involving crystalline, mobile amorphous (MAF) and rigid amorphous fractions (RAF). A remarkable increase of RAF, to a detriment of MAF was observed, while the percentage of crystalline fraction remained nearly constant. A deeper analysis of the melting behaviour, the segmental dynamics around the glass-rubber relaxation, and the macroscopic mechanical performance, showed the role of each fraction leading to a loss of thermal, viscoelastic and mechanical features, particularly remarkable after the first processing cycle.

  • 93. Badia, J.D.
    et al.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Ribes-Greus, Amparo
    Characterization of Induced Thermo-mechanical Degradation on Poly (ethylene terephthalate)2011Konferensbidrag (Refereegranskat)
  • 94. Badia, J.D.
    et al.
    Strömberg, Emma
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Karlsson, Sigbritt
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknik, Polymera material.
    Ribes-Greus, Amparo
    STUDY OF THERMO-MECHANICAL AND THERMO-OXIDATIVE DEGRADATION OF POLYLACTIDE BYMALDI-TOF MS. A STATISTICAL DESIGN OF EXPERIMENTS TO OPTIMIZE THE SAMPLE PREPARATIONPROCEDURES2011Konferensbidrag (Refereegranskat)
  • 95. Bedo, Daniel
    et al.
    Imre, Balazs
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. Hungarian Academy of Sciences, Hungary; Budapest University of Technology and Economics, Hungary.
    Domjan, Attila
    Schoen, Peter
    Vancso, G. Julius
    Pukanszky, Bela
    Coupling of poly(lactic acid) with a polyurethane elastomer by reactive processing2017Ingår i: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 97, s. 409-417Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A segmented polyurethane elastomer (PU) was synthesized in poly(lactic acid) (PLA) melt by reactive processing. The isocyanate component was anticipated to react with the end-groups of PLA resulting in the formation of block-copolymers. The stoichiometry of the functional groups was optimized in the preliminary experiments. Two different processing methods were compared in the further experiments: conventional mixing of PU with PLA (PLA/PU), and reactive blending (PLA-b-PU). The comparison of the structure and properties of compatibilized reactive blends and conventional physical blends clearly shows the benefits of reactive processing. Coupling resulted in a finer dispersion of the particles in the matrix leading to better mechanical properties in the reactive blend. The successful synthesis of PEA-b-PU block copolymers was confirmed by NMR spectroscopy. The isocyanate component was found to react only with the hydroxyl end-groups of PLA, while the formation of amide and acylurea groups was not detected on the carboxyl end.

  • 96.
    Benselfelt, Tobias
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Cranston, Emily D.
    Department of Chemical Engineering, McMaster University.
    Ondaral, Sedat
    Department of Pulp and Paper Technology, Karadeniz Technical University.
    Johansson, Erik
    Cellutech AB.
    Brumer, Harry
    The Michael Smith Laboratories and the Department of Chemistry, The University of British Columbia.
    Rutland, Mark W.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process2016Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 17, nr 9, s. 2801-2811Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The temperature-dependence of xyloglucan (XG) adsorption onto smooth cellulose model films regenerated from N-methylmorpholine N-oxide (NMMO) was investigated using surface plasmon resonance spectroscopy, and it was found that the adsorbed amount increased with increasing temperature. This implies that the adsorption of XG to NMMO-regenerated cellulose is endothermic and supports the hypothesis that the adsorption of XG onto cellulose is an entropy-driven process. We suggest that XG adsorption is mainly driven by the release of water molecules from the highly hydrated cellulose surfaces and from the XG molecules, rather than through hydrogen bonding and van der Waals forces as previously suggested. To test this hypothesis, the adsorption of XG onto cellulose was studied using cellulose films with different morphologies prepared from cellulose nanocrystals (CNC), semicrystalline NMMO-regenerated cellulose, and amorphous cellulose regenerated from lithium chloride/dimethylacetamide. The total amount of high molecular weight xyloglucan (XGHMW) adsorbed was studied by quartz crystal microbalance and reflectometry measurements, and it was found that the adsorption was greatest on the amorphous cellulose followed by the CNC and NMMO-regenerated cellulose films. There was a significant correlation between the cellulose dry film thickness and the adsorbed XG amount, indicating that XG penetrated into the films. There was also a correlation between the swelling of the films and the adsorbed amounts and conformation of XG, which further strengthened the conclusion that the water content and the subsequent release of the water upon adsorption are important components of the adsorption process.

  • 97.
    Benyahia Erdal, Nejla
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymerteknologi.
    Adolfsson, Karin H.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Pettersson, Torbjörn
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Hakkarainen, Minna
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Green Strategy to Reduced Nanographene Oxide through Microwave Assisted Transformation of Cellulose2018Ingår i: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 6, nr 1, s. 1245-1255Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A green strategy for fabrication of biobased reduced nanographene oxide (r-nGO) was developed. Cellulose derived nanographene oxide (nGO) type carbon nanodots were reduced by microwave assisted hydrothermal treatment with superheated water alone or in the presence of caffeic acid (CA), a green reducing agent. The carbon nanodots, r-nGO and r-nGO-CA, obtained through the two different reaction routes without or with the added reducing agent, were characterized by multiple analytical techniques including FTIR, XPS, Raman, XRD, TGA, TEM, AFM, UV-vis, and DLS to confirm and evaluate the efficiency of the reduction reactions. A significant decrease in oxygen content accompanied by increased number of sp2 hybridized functional groups was confirmed in both cases. The synergistic effect of superheated water and reducing agent resulted in the highest C/O ratio and thermal stability, which also supported a more efficient reduction. Interesting optical properties were detected by fluorescence spectroscopy where nGO, r-nGO, and r-nGO-CA all displayed excitation dependent fluorescence behavior. r-nGO-CA and its precursor nGO were evaluated toward osteoblastic cells MG-63 and exhibited nontoxic behavior up to 200 μg mL-1, which gives promise for utilization in biomedical applications.

  • 98.
    Bergenstrahle-Wohlert, Malin
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    d'Ortoli, Thibault Angles
    Sjoberg, Nils A.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Widmalm, Goran
    Wohlert, Jakob
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    On the anomalous temperature dependence of cellulose aqueous solubility2016Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 23, nr 4, s. 2375-2387Artikel i tidskrift (Refereegranskat)
  • 99.
    Berggren, Frida
    KTH, Skolan för kemivetenskap (CHE).
    Development of an Expancel Product through Optimisation of Polymer Composition and the Suspension Stabilising System2014Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
    Abstract [sv]

    Termiskt expanderbara mikrosfärer är sfäriska partiklar, ca 5-­‐40 µm i diameter, som består av ett polymerskal som innesluter en drivgas. Mikrosfärerna expanderar när de utsätts för värme och erhåller då en mycket låg densitet. De är därför lämpliga att använda som fyllmedel då låg vikt är önskvärt eller som skummedel.

    AkzoNobel är världsledande inom produktion av expanderbara mikrosfärer, som marknadsförs under namnet Expancel. Hållbar utveckling är en viktig fråga för AkzoNobel och två problem som de står inför idag är att utveckla produkter fria från klor och Me1. Målet med detta examensarbete har varit att undersöka om det är möjligt att framställa mikrosfärer fria från dessa kemikalier och om de framtagna mikrosfärerna skulle kunna vare ett hållbarare alternativ till en av de befintliga Expancel-­‐ produkterna.

    I den här studien har mikrosfärerna framställts genom suspensionspolymerisation som initierats av fria radikaler och de har analyserats främst genom att mäta partikelstorlek och expansionsegenskaper. Polymerskalet bestod av monomererna akrylnitril, metakrylnitril och metylakrylat. I det här arbetet har det viktigaste varit att utvärdera det silikabaserade stabiliseringssystemet som stabiliserar monomerdropparna vid polymerisationen. Stabiliseringen är möjlig eftersom silika bildar flockar som adsorberar på ytan av monomerdropparna. Olika parametrar, exempelvis mängd stabiliseringsmedel och satsningsförfarande, har därför varierats för att undersöka vilken effekt det får på flockningen av silika och stabiliseringen av monomerdroppar.

    Satsningsordning och omrörningshastiget för stabiliseringssystemet samt mängd stabiliseringsmedel är några av de faktorer som påverkar bildningen av flockar. Det konstaterades även att mängd stabiliseringsmedel påverkar stabiliseringen utav monomerdropparna.

    Fulländade mikrosfärer utan klor och Me1 har framställts i laboratorieskala (50 mL och 1 L) och partikelstorleken samt expansionsegenskaper är jämförbara med en av Expancels nuvarande produkter. Dock har reproducerbarheten i 1 litersskala varit otillfredsställande.

  • 100.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Azhar, Shoaib
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The structure of galactoglucomannan impacts the degradation under alkaline conditions2018Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882XArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    Galactoglucomannan (GGM) from sprucewas studied with respect to the degradation behavior inalkaline solution. Three reference systems includinggalactomannan from locust bean gum, glucomannanfrom konjac and the linear water-soluble carboxymethylcellulose were studied with focus onmolecular weight, sugar composition, degradationproducts, as well as formed oligomers, to identifyrelative structural changes in GGM. Initially allmannan polysaccharides showed a fast decrease inthe molecular weight, which became stable in the laterstage. The degradation of the mannan polysaccharidescould be described by a function corresponding to thesum of two first order reactions; one slow that wasascribed to peeling, and one fast that was connectedwith hydrolysis. The galactose side group wasstable under conditions used in this study (150 min,90 C, 0.5 M NaOH). This could suggest that, apartfrom the covalent connection to C6 in mannose, thegalactose substitutions also interact non-covalentlywith the backbone to stabilize the structure againstdegradation. Additionally, the combination of differentbackbone sugars seems to affect the stability of thepolysaccharides. For carboxymethyl cellulose thedegradation was linear over time which furthersuggests that the structure and sugar composition playan important role for the alkaline degradation. Moleculardynamics simulations gave details about theconformational behavior of GGM oligomers in watersolution, as well as interaction between the oligomersand hydroxide ions.

1234567 51 - 100 av 782
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf