kth.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Shakerighadi, Bahram
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Johansson, N.
    Eriksson, R.
    Mitra, P.
    Bolzoni, A.
    Clark, Angel
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    An overview of stability challenges for power-electronic-dominated power systems: The grid-forming approach2022In: IET Generation, Transmission & Distribution, ISSN 1751-8687, E-ISSN 1751-8695Article in journal (Refereed)
    Abstract [en]

    Inverter-based generators (IBGs) are becoming popular in modern power systems. When the penetration of IBGs is increasing in power systems, new stability, protection, and monitoring challenges are introduced in the grid. Grid-forming (GFM) control of converters is seen as a promising solution for future power grids to overcome particular stability challenges. Here, the technical challenges of the GFM-based IBGs are reviewed from the point of view of TSOs and academic research. The properties of different GFM methods are studied for different GFM-based IBGs for a single grid-tied IBG and using the IEEE 9-bus test system. Simulation results are provided by using the PSCAD-EMT simulation software. 

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf