kth.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Swati, Kumari
    et al.
    Indian Inst Technol Madras, Dept Elect Engn, Madras 600036, Tamil Nadu, India..
    Sarathi, R.
    Indian Inst Technol Madras, Dept Elect Engn, Madras 600036, Tamil Nadu, India..
    Yadav, Kandur Sahitya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    Taylor, Nathaniel
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    Edin, Hans Ezz
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    Corona Discharge Activity in Nanoparticle Dispersed Transformer Oil under Composite Voltages2018In: IEEE transactions on dielectrics and electrical insulation, ISSN 1070-9878, E-ISSN 1558-4135, Vol. 25, no 5, p. 1731-1738Article in journal (Refereed)
    Abstract [en]

    Titania (TiO2) nanoparticles with cetyl trimethyl ammonium bromide (CTAB) surfactant dispersed in transformer oil has higher corona inception voltage than the normal transformer oil, under AC, DC, and composite AC and DC voltages. It is observed that corona inception voltage is lower under composite voltages compared to AC and DC voltages. The corona activity radiates ultra high frequency (UHF) signals with its dominant frequency near 1 GHz. Operating a spectrum analyzer in zero span mode, the UHF signals generated from the corona activity, the number of discharges is observed to be more under composite voltages than under AC voltages, both at inception and at higher voltages. A reduction in interfacial tension and an improvement in flash point is observed in nano-titania with surfactant dispersed transformer oil. The addition of surfactant reduces the turbidity of the nanofluid. Phase Resolved Partial Discharge (PRPD) analysis with UHF signals measured, indicates that corona discharge activity occurs around the peak and the pre-peak rising portions of the supply voltage. It is observed that more discharges occur in the positive half cycle for AC superimposed with positive DC voltage and in the negative half cycle for AC superimposed with negative DC voltage. The magnitude of UHF signals formed due to corona activity is less with nanofluid, irrespective of voltage profiles.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf