kth.sePublications
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Augustin, Tim
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Becerra Garcia, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering. ABB.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Experimental Study of Enhanced Active Resonant DC Circuit Breakers2022In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 37, no 5, p. 5687-5698Article in journal (Refereed)
    Abstract [en]

    Enhanced active resonant (EAR) dc circuit breakers (DCCBs) are a novel type of DCCB that use a discharge closing switch as interruption medium. A technical limitation of discharge closing switches is the minimum voltage across the main gap required for successful triggering. A novel commutation process creating the minimum voltage internally is proposed, which allows to simplify the EAR DCCB configuration and to reduce its component count. In the prototype, the discharge closing switch is implemented with a TVG. Experiments show that the TVG can be triggered reliably down to a voltage of 50 V and that the discharge in the TVG is highly oscillatory at low current. The originally proposed EAR DCCB configuration has to be tuned such that the commutation to the TVG succeeds at low current. Conversely, the novel commutation process decouples the minimum voltage from the current level by adjusting the triggering delay. This allows reliable commutation irrespective of the operating conditions. It is shown that the novel commutation process does not adversely affect dc interruption. Proactive commutation operation and auto-reclosing strategies are demonstrated.

    Download full text (pdf)
    fulltext
  • 2.
    Augustin, Tim
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Parekh, Mrunal
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    Magnusson, Jesper
    ABB.
    Becerra Garcia, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering. ABB.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Thomson-Coil Actuator System for Enhanced Active Resonant DC Circuit Breakers2022In: IEEE Journal of Emerging and Selected Topics in Power Electronics, ISSN 2168-6777, E-ISSN 2168-6785, Vol. 10, no 1, p. 800-810Article in journal (Refereed)
    Abstract [en]

    Enhanced active resonant (EAR) dc circuit breakers (DCCBs) are a promising set of recently proposed DCCB concepts. As other DCCBs, EAR DCCBs still require a fast mechanical switch. The requirements on the actuator of the mechanical switch depend on the DCCB concept and the dc grid and are derived here for an EAR DCCB. Thomson-coil actuators (TCAs) can open and close mechanical switches sufficiently fast to satisfy the requirements. This work studies experimentally a TCA system with active damping for an off-the-shelf industrial vacuum interrupter used as mechanical switch in an EAR DCCB. The prototype is explained in detail, and extensive measurement results are presented, showing that active damping must be perfectly timed to be effective. A novel Thomson-coil (TC) driver is proposed and studied experimentally, which operates the TCA more efficiently by recycling energy during the actuation. Moreover, the novel TC driver reduces the capacitive storage by 50% and allows for faster recharging with lower charging current. Finally, the autoreclosing and proactive commutation operation of the TCA system and the interruption capability of the prototype EAR DCCB are demonstrated experimentally.

    Download full text (pdf)
    fulltext
  • 3.
    Ciftci, Baris
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Gross, James
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.
    Augustin, Tim
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Wang, Xiongfei
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Norrga, Staffan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Wireless Communication in Modular Multilevel Converters and Electromagnetic Interference Characterization2022In: IEEE Access, E-ISSN 2169-3536, p. 38189-38201Article in journal (Refereed)
    Abstract [en]

    The wireless control of modular multilevel converter (MMC) submodules was recently proposed. The success of the control depends on specialized control methods suitable for wireless communication and a properly designed wireless communication network in the MMC valve hall while aiming for low latency and high reliability. The wireless communication in the hall can be affected by the electromagnetic interference (EMI) of MMC submodules, voltage and current transients. In this article, firstly, a wireless communication network based on 5G New Radio is designed for an example full-scale MMC valve hall. After that, the radiated EMI characteristics of the MMC submodules with different voltage and current ratings and two dc circuit breakers are measured. The effects of EMI on wireless communication in the multi-GHz frequency band are tested. The interference from the components is confined below 500 MHz, and the wireless communication with 5825 MHz center frequency is not affected by the interference.

    Download full text (pdf)
    fulltext
  • 4.
    Augustin, Tim
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Becerra Garcia, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering. ABB Corporate Research, Västerås, Sweden.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Enhanced Active Resonant DC Circuit Breakers Based on Discharge Closing Switches2021In: IEEE Transactions on Power Delivery, ISSN 0885-8977, E-ISSN 1937-4208, Vol. 36, no 3, p. 1735-1743Article in journal (Refereed)
    Abstract [en]

    Direct current circuit breakers (DCCBs) have become a large research topic and are considered one of the critical components for future DC grids. Proposed DCCB concepts may be grouped into hybrid DCCBs and active resonant DCCBs. In this work, the enhanced active resonant (EAR) DCCB family is introduced. EAR DCCBs combine elements of hybrid and active resonant DCCBs. The EAR DCCB family consists of one unidirectional and six bidirectional concepts. All concepts feature proactive commutation. The main characteristic of the EAR DCCBs is that discharge closing switches are used instead of semiconductors with turn-off capability. Relevant discharge closing switch technology is reviewed, a laboratory prototype is explained, and experimental results are presented to demonstrate the feasibility of the proposed DCCB concepts.

    Download full text (pdf)
    fulltext
  • 5.
    Augustin, Tim
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Enhanced Active Resonant DC Circuit Breakers for HVDC Grids2021Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    High-voltage DC (HVDC) grids are considered promising for the electricity grid expansion required to integrate renewable energy sources into the existing infrastructure. DC fault currents increase rapidly and lack a current zero crossing. Therefore, HVDC grids require complex DC circuit breakers (DCCBs) capable of interrupting faster than AC circuit breakers to protect against DC faults. Being complex, DCCBs can offer functionality in addition to interruption. Most DCCBs can be categorized as current-injection DCCBs or hybrid DCCBs. Hybrid DCCBs feature more functionality than current-injection DCCBs. Nevertheless, the power semiconductors used in hybrid DCCBs are expensive. The enhanced active resonant (EAR) DCCBs studied in this work are an intermediate solution with the functionality of hybrid DCCBs and the interruption mechanism of current-injection DCCBs. The core of EAR DCCBs are discharge closing switches, which are simple, robust and available for high current and high voltage.

    Like all HVDC DCCBs, EAR DCCBs need a fast mechanical switch. A Thomson-coil actuator with active damping is used to open and close the mechanical switch fast. A novel Thomson-coil driver recycling energy during actuation simplifies the Thomson-coil actuator system. Experimental results demonstrate the open-close and open-close-open operation of the Thomson-coil actuator. Extensive experimental studies investigate the DC interruption capability and functionality of a prototype EAR DCCB in a specialized DCCB test circuit. The tests results show that the prototype EAR DCCB can interrupt up to 1.2 kA, abort proactive commutation, and auto-reclose. The studies of the discharge closing switch used find that its minimum voltage is not a serious limitation and that the discharge can become unstable after commutationat low currents. An alternative commutation technique allows EAR DCCBs with less components to operate reliably at all currents.

    Download full text (pdf)
    Enhanced Active Resonant DC Circuit Breakers
  • 6.
    Augustin, Tim
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Becerra Garcia, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Advanced Test Circuit for DC Circuit Breakers2018In: 20th European Conference on Power Electronics and Applications (EPE'18 ECCE EUROPE), 2018Conference paper (Refereed)
    Abstract [en]

    In future HVDC systems, many DC circuit breakers (DCCBs) will be required. In this paper, an advanced test circuit for DCCBs is described. A DC source is combined with a capacitor bank. In contrast to other test circuits, the proposed test circuit allows to replicate constant DC and temporary faults. In addition to conventional faults, this enables testing of auto-reclosing, proactive commutation, and complex test sequences combining all of these modes. The test circuit is easy to setup and also suitable for smaller research facilities. Experimental results from a down-scaled mock-up are included to demonstrate the capabilities of the test circuit.

    Download full text (pdf)
    fulltext
  • 7.
    Augustin, Tim
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Becerra Garcia, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    Magnusson, Jesper
    ABB Corporate Research, Västerås.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Parekh, Mrunal
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    System Design of Fast Actuator for Vacuum Interrupter in DC Applications2018In: 2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Institute of Electrical and Electronics Engineers (IEEE), 2018, Vol. 2, p. 527-530Conference paper (Refereed)
    Abstract [en]

    One of the major challenges of DC circuit breakers is the required fast mechanical actuator. In this paper, a Thomson coil actuator system for a vacuum interrupter is designed. Active damping is used to decelerate the moving contacts. Challenges are discussed, especially concerning the power supply needed for the Thomson coil actuator. The design philosophy is explained and FEM simulation results are presented. The results indicate that a wide range of combinations of drive circuit capacitance and voltage fulfill the requirements for armature acceleration. However, active damping requires a very careful selection of drive circuit voltage and timing of applied damping.

    Download full text (pdf)
    fulltext
  • 8.
    Augustin, Tim
    et al.
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Modelling of HVDC breakers for HVDC grid simulations2017In: IET Conference Publications, Institution of Engineering and Technology, 2017, Vol. 2017, article id CP709Conference paper (Refereed)
    Abstract [en]

    This paper deals with the modelling of high-voltage direct current (HVDC) breakers in PSCAD. The models are aimed at HVDC grid simulation and are kept as simple as possible. An overview is given over recently proposed HVDC breaker concepts. Assumptions and simplifications are explained as well. The main result is that even these simplified models are too detailed for grid simulations. The reason for this is that from a grid perpective the only thing that matters is when the metal-oxide varistor is inserted. The models can be used to estimate interruption times.

    Download full text (pdf)
    fulltext
  • 9.
    Augustin, Tim
    et al.
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Jahn, Ilka
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Transient Behaviour of VSC-HVDC Links with DC Breakers Under Faults2017In: 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE EUROPE), Institute of Electrical and Electronics Engineers (IEEE), 2017Conference paper (Refereed)
    Abstract [en]

    In future high-voltage direct current (HVDC) systems, a large number of HVDC breakers will be required.In this paper, the influence of HVDC breakers on the transient performance of point-to-point HVDC links in both asymmetrical and symmetrical monopolar configuration with half-bridge modular multilevel converters is studied with simulations in PSCAD. As HVDC breakers, the active resonant breaker and ABB’s hybrid breaker are considered. The analyzed scenarios include DC line faults, DC bus faults, and AC faults between the converter and the transformer. The highest DC breaking capability is required during DC line faults in the asymmetric and symmetric monopole. The converter stress is highest for DC bus faults and unbalanced converter AC faults in the asymmetric monopole and for DC bus pole-to-pole faults in the symmetric monopole. During DC pole-to-ground faults in the symmetric monopole, the HVDC breaker combined with DC side arrestors yields the lowest overvoltage stress on the cable of the healthy pole. The fault current shapes depend strongly on the interaction of the converter and the travelling waves on the lines, and differ from the fault current shapes in typical HVDC breaker test circuits. Furthermore, the active resonant breaker and the ABB hybrid breaker perform similarly in the used benchmarks due to the very fast DC line fault detection.

    Download full text (pdf)
    fulltext
  • 10.
    Ciftci, Baris
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Gross, James
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering.
    Augustin, Tim
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Wang, Xiongfei
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Norrga, Staffan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Wireless Communication in Modular Multilevel Converters and Electromagnetic Interference CharacterizationManuscript (preprint) (Other academic)
    Abstract [en]

    The wireless control of modular multilevel converter (MMC) submodules was recently proposed. The success of the control depends on specialized control methods suitable for wireless communication and a properly designed wireless communication network in the MMC valve hall while aiming for low latency and high reliability. The wireless communication in the hall can be affected by the electromagnetic interference (EMI) of MMC submodules, voltage and current transients. In this article, firstly, a wireless communication network based on 5G New Radio is designed for an example full-scale MMC valve hall. After that, radiated EMI characteristics of MMC submodules with different voltage and current ratings and two dc circuit breakers are measured. The effects of EMI on wireless communication in the multi-GHz frequency band are tested. The interference from the components is confined below 500 MHz, and the wireless communication with 5825 MHz center frequency is not affected by the interference.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf