Change search
Refine search result
1234567 1 - 50 of 714
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abergel, David
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm University, Sweden.
    Excitonic condensation in spatially separated one-dimensional systems2015In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 106, no 21, article id 213103Article in journal (Refereed)
    Abstract [en]

    We show theoretically that excitons can form from spatially separated one-dimensional ground state populations of electrons and holes, and that the resulting excitons can form a quasicondensate. We describe a mean-field Bardeen-Cooper-Schrieffer theory in the low carrier density regime and then focus on the core-shell nanowire giving estimates of the size of the excitonic gap for InAs/GaSb wires and as a function of all the experimentally relevant parameters. We find that optimal conditions for pairing include small overlap of the electron and hole bands, large effective mass of the carriers, and low dielectric constant of the surrounding media. Therefore, one-dimensional systems provide an attractive platform for the experimental detection of excitonic quasicondensation in zero magnetic field.

  • 2.
    Abergel, David
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Edge, Jonathan M.
    Balatsky, Alexander V.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    The role of spin-orbit coupling in topologically protected interface states in Dirac materials2014In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 16, p. 065012-Article in journal (Refereed)
    Abstract [en]

    We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin-orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as MoS2.

  • 3.
    Abergel, David
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Mucha-Kruczynski, Marcin
    Infrared absorption of closely aligned heterostructures of monolayer and bilayer graphene with hexagonal boron nitride2015In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 92, no 11, article id 115430Article in journal (Refereed)
    Abstract [en]

    We model optical absorption of monolayer and bilayer graphene on hexagonal boron nitride for the case of closely aligned crystal lattices. We show that perturbations with different spatial symmetry can lead to similar absorption spectra. We suggest that a study of the absorption spectra as a function of the doping for an almost completely full first miniband is necessary to extract meaningful information about the moire characteristics from optical absorption measurements and to distinguish between various theoretical proposals for the physically realistic interaction. Also, for bilayer graphene, the ability to compare spectra for the opposite signs of electric-field-induced interlayer asymmetry might provide additional information about the moire parameters.

  • 4.
    Abergel, David S. L.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Center for Quantum Materials, Sweden.
    Robustness of topologically protected transport in graphene-boron nitride lateral heterostructures2017In: Journal of Physics: Condensed Matter, ISSN 0953-8984, E-ISSN 1361-648X, Vol. 29, no 7, article id 075303Article in journal (Refereed)
    Abstract [en]

    Previously, graphene nanoribbons set in lateral heterostructures with hexagonal boron nitride were predicted to support topologically protected states at low energy. We investigate how robust the transport properties of these states are against lattice disorder. We find that forms of disorder that do not couple the two valleys of the zigzag graphene nanoribbon do not impact the transport properties at low bias, indicating that these lateral heterostructures are very promising candidates for chip-scale conducting interconnects. Forms of disorder that do couple the two valleys, such as vacancies in the graphene ribbon, or substantial inclusions of armchair edges at the graphene-hexagonal boron nitride interface will negatively affect the transport. However, these forms of disorder are not commonly seen in current experiments.

  • 5. Abolmasov, Pavel
    et al.
    Poutanen, Juri
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars2017In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 464, no 1, p. 152-169Article in journal (Refereed)
    Abstract [en]

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Ly alpha and He II Ly alpha. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of the gamma-ray source. We show that when the gamma-ray source moves further from the central source, all the absorption details move to higher energies and the overall level of absorption drops because of decreasing incidence angles between the gamma-rays and BLR photons. The observed positions of the spectral breaks can be used to measure the geometry and the location of the gamma-ray emitting region relative to the BLR. Strong dependence on geometry means that the soft photons dominating the pair-production opacity may be actually produced by a different population of BLR clouds than the bulk of the observed broad line emission.

  • 6. Agarwal, Abhishek
    et al.
    Lipstein, Arthur E.
    Young, Donovan
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Scattering amplitudes of massive N = 2 gauge theories in three dimensions2014In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 89, no 4, p. 045020-Article in journal (Refereed)
    Abstract [en]

    We study the scattering amplitudes of mass-deformed Chern-Simons theories and Yang-Mills-Chern-Simons theories with N = 2 supersymmetry in three dimensions. In particular, we derive the on-shell supersymmetry algebras which underlie the scattering matrices of these theories. We then compute various 3 and 4-point on-shell tree-level amplitudes in these theories. For the mass-deformed Chern-Simons theory, odd-point amplitudes vanish and we find that all of the 4-point amplitudes can be encoded elegantly in superamplitudes. For the Yang-Mills-Chern-Simons theory, we obtain all of the 4-point tree-level amplitudes using a combination of perturbative techniques and algebraic constraints and we comment on difficulties related to computing amplitudes with external gauge fields using Feynman diagrams. Finally, we propose a Britto-Cachazo-Feng-Witten recursion relation for mass-deformed theories in three dimensions and discuss the applicability of this proposal to mass-deformed N = 2 theories.

  • 7. Agarwal, S.
    et al.
    Wettlaufer, J. S.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Yale University, New Haven, CT, USA; Mathematical Institute, University of Oxford, Oxford, UK.
    Fluctuations in Arctic sea-ice extent: Comparing observations and climate models2018In: Philosophical Transactions. Series A: Mathematical, physical, and engineering science, ISSN 1364-503X, E-ISSN 1471-2962, Vol. 376, no 2129, article id 20170332Article in journal (Refereed)
    Abstract [en]

    The fluctuation statistics of the observed sea-ice extent during the satellite era are compared with model output from CMIP5 models using a multifractal time series method. The two robust features of the observations are that on annual to biannual time scales the ice extent exhibits white noise structure, and there is a decadal scale trend associated with the decay of the ice cover. It is shown that (i) there is a large inter-model variability in the time scales extracted from the models, (ii) none of the models exhibits the decadal time scales found in the satellite observations, (iii) five of the 21 models examined exhibit the observed white noise structure, and (iv) the multi-model ensemble mean exhibits neither the observed white noise structure nor the observed decadal trend. It is proposed that the observed fluctuation statistics produced by this method serve as an appropriate test bed for modelling studies. 

  • 8. Agarwal, Sahil
    et al.
    Del Sordo, Fabio
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Wettlaufer, John S.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    EXOPLANETARY DETECTION BY MULTIFRACTAL SPECTRAL ANALYSIS2017In: Astronomical Journal, ISSN 0004-6256, E-ISSN 1538-3881, Vol. 153, no 1, article id 12Article in journal (Refereed)
    Abstract [en]

    Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio >= 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.

  • 9. Agarwal, Sahil
    et al.
    Wettlaufer, John S.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Maximal stochastic transport in the Lorenz equations2016In: Physics Letters A, ISSN 0375-9601, E-ISSN 1873-2429, Vol. 380, no 1-2, p. 142-146Article in journal (Refereed)
    Abstract [en]

    We calculate the stochastic upper bounds for the Lorenz equations using an extension of the background method. In analogy with Rayleigh-Benard convection the upper bounds are for heat transport versus Rayleigh number. As might be expected, the stochastic upper bounds are larger than the deterministic counterpart of Souza and Doering [1], but their variation with noise amplitude exhibits interesting behavior. Below the transition to chaotic dynamics the upper bounds increase monotonically with noise amplitude. However, in the chaotic regime this monotonicity depends on the number of realizations in the ensemble; at a particular Rayleigh number the bound may increase or decrease with noise amplitude. The origin of this behavior is the coupling between the noise and unstable periodic orbits, the degree of which depends on the degree to which the ensemble represents the ergodic set. This is confirmed by examining the close returns plots of the full solutions to the stochastic equations and the numerical convergence of the noise correlations. The numerical convergence of both the ensemble and time averages of the noise correlations is sufficiently slow that it is the limiting aspect of the realization of these bounds. Finally, we note that the full solutions of the stochastic equations demonstrate that the effect of noise is equivalent to the effect of chaos.

  • 10. Agarwal, Sahil
    et al.
    Wettlaufer, John S.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Yale University, United States; University of Oxford, United Kingdom.
    The Statistical Properties of Sea Ice Velocity Fields2017In: Journal of Climate, ISSN 0894-8755, E-ISSN 1520-0442, Vol. 30, no 13, p. 4873-4881Article in journal (Refereed)
    Abstract [en]

    By arguing that the surface pressure field over the Arctic Ocean can be treated as an isotropic, stationary, homogeneous, Gaussian random field, Thorndike estimated a number of covariance functions from two years of data (1979 and 1980). Given the active interest in changes of general circulation quantities and indices in the polar regions during the recent few decades, the spatial correlations in sea ice velocity fields are of particular interest. It is thus natural to ask, "How persistent are these correlations?'' To this end, a multifractal stochastic treatment is developed to analyze observed Arctic sea ice velocity fields from satellites and buoys for the period 1978-2015. Since it was previously found that the Arctic equivalent ice extent (EIE) has a white noise structure on annual to biannual time scales, the connection between EIE and ice motion is assessed. The long-term stationarity of the spatial correlation structure of the velocity fields and the robustness of their white noise structure on multiple time scales is demonstrated; these factors (i) combine to explain the white noise characteristics of the EIE on annual to biannual time scales and (ii) explain why the fluctuations in the ice velocity are proportional to fluctuations in the geostrophic winds on time scales of days to months. Moreover, it is shown that the statistical structure of these two quantities is commensurate from days to years, which may be related to the increasing prevalence of free drift in the ice pack.

  • 11. Ahmed, T.
    et al.
    Albers, R. C.
    Balatsky, Alexander V.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Friedrich, C.
    Zhu, J. -X
    G W quasiparticle calculations with spin-orbit coupling for the light actinides2014In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 89, no 3, p. 035104-Article in journal (Refereed)
    Abstract [en]

    We report on the importance of GW self-energy corrections for the electronic structure of light actinides in the weak-to-intermediate coupling regime. Our study is based on calculations of the band structure and total density of states of Np, U, and Pu using a one-shot GW approximation that includes spin-orbit coupling within a full potential LAPW framework. We also present RPA screened effective Coulomb interactions for the f-electron orbitals for different lattice constants, and show that there is an increased contribution from electron-electron correlation in these systems for expanded lattices. We find a significant amount of electronic correlation in these highly localized electronic systems.

  • 12. Ahmed, Towfiq
    et al.
    Haraldsen, Jason T.
    Rehr, John J.
    Di Ventra, Massimiliano
    Schuller, Ivan
    Balatsky, Alexander V.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases2014In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 25, no 12, p. 125705-Article in journal (Refereed)
    Abstract [en]

    Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new 'multi-point cross-correlation' technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.

  • 13. Ahmed, Towfiq
    et al.
    Haraldsen, Jason T.
    Zhu, Jian-Xin
    Balatsky, Alexander V.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Institute for Materials Science, Los Alamos National Laboratory, United States.
    Next-Generation Epigenetic Detection Technique: Identifying Methylated Cytosine Using Graphene Nanopore2014In: Journal of Physical Chemistry Letters, ISSN 1948-7185, E-ISSN 1948-7185, Vol. 5, no 15, p. 2601-2607Article in journal (Refereed)
    Abstract [en]

    DNA methylation plays a pivotal role in the genetic evolution of both embryonic and adult cells. For adult somatic cells, the location and dynamics of methylation have been very precisely pinned down with the 5-cytosine markers on cytosine-phosphate-guanine (CpG) units. Unusual methylation on CpG islands is identified as one of the prime causes for silencing the tumor suppressant genes. Early detection of methylation changes can diagnose the potentially harmful oncogenic evolution of cells and provide promising guideline for cancer prevention. With this motivation, we propose a cytosine methylation detection technique. Our hypothesis is that electronic signatures of DNA acquired as a molecule translocates through a nanopore would be significantly different for methylated and nonmethylated bases. This difference in electronic fingerprints would allow for reliable real-time differentiation of methylated DNA. We calculate transport currents through a punctured graphene membrane while the cytosine and methylated cytosine translocate through the nanopore. We also calculate the transport properties for uracil and cyanocytosine for comparison. Our calculations of transmission, current, and tunneling conductance show distinct signatures in their spectrum for each molecular type. Thus, in this work, we provide a theoretical analysis that points to a viability of our hypothesis.

  • 14. Ajello, M.
    et al.
    Atwood, W. B.
    Baldini, L.
    Ballet, J.
    Barbiellini, G.
    Bastieri, D.
    Bellazzini, R.
    Bissaldi, E.
    Blandford, R. D.
    Bloom, E. D.
    Bonino, R.
    Bregeon, J.
    Britto, R. J.
    Bruel, P.
    Buehler, R.
    Buson, S.
    Cameron, R. A.
    Caputo, R.
    Caragiulo, M.
    Caraveo, P. A.
    Cavazzuti, E.
    Cecchi, C.
    Charles, E.
    Chekhtman, A.
    Cheung, C. C.
    Chiaro, G.
    Ciprini, S.
    Cohen, J. M.
    Costantin, D.
    Costanza, F.
    Cuoco, A.
    Cutini, S.
    D'Ammando, F.
    de Palma, F.
    Desiante, R.
    Digel, S. W.
    Di Lalla, N.
    Di Mauro, M.
    Di Venere, L.
    Dominguez, A.
    Drell, P. S.
    Dumora, D.
    Favuzzi, C.
    Fegan, S. J.
    Ferrara, E. C.
    Fortin, P.
    Franckowiak, A.
    Fukazawa, Y.
    Funk, S.
    Fusco, P.
    Gargano, F.
    Gasparrini, D.
    Giglietto, N.
    Giommi, P.
    Giordano, F.
    Giroletti, M.
    Glanzman, T.
    Green, D.
    Grenier, I. A.
    Grondin, M. -H
    Grove, J. E.
    Guillemot, L.
    Guiriec, S.
    Harding, A. K.
    Hays, E.
    Hewitt, J. W.
    Horan, D.
    Jóhannesson, Gudlaugur
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Kensei, S.
    Kuss, M.
    La Mura, G.
    Larsson, Stefan
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Latronico, L.
    Lemoine-Goumard, M.
    Li, J.
    Longo, F.
    Loparco, F.
    Lott, B.
    Lubrano, P.
    Magill, J. D.
    Maldera, S.
    Manfreda, A.
    Mazziotta, M. N.
    McEnery, J. E.
    Meyer, M.
    Michelson, P. F.
    Mirabal, N.
    Mitthumsiri, W.
    Mizuno, T.
    Moiseev, A. A.
    Monzani, M. E.
    Morselli, A.
    Moskalenko, I. V.
    Negro, M.
    Nuss, E.
    Ohsugi, T.
    Omodei, N.
    Orienti, M.
    Orlando, E.
    Palatiello, M.
    Paliya, V. S.
    Paneque, D.
    Perkins, J. S.
    Persic, M.
    Pesce-Rollins, M.
    Piron, F.
    Porter, T. A.
    Principe, G.
    Raino, S.
    Rando, R.
    Razzano, M.
    Razzaque, S.
    Reimer, A.
    Reimer, O.
    Reposeur, T.
    Parkinson, P. M. Saz
    Sgro, C.
    Simone, D.
    Siskind, E. J.
    Spada, F.
    Spandre, G.
    Spinelli, P.
    Stawarz, L.
    Suson, D. J.
    Takahashi, M.
    Tak, D.
    Thayer, J. G.
    Thayer, J. B.
    Thompson, D. J.
    Torres, D. F.
    Torresi, E.
    Troja, E.
    Vianello, G.
    Wood, K.
    Wood, M.
    3FHL: The Third Catalog of Hard Fermi-LAT Sources2017In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 232, no 2, article id 18Article in journal (Refereed)
  • 15. Akrami, Yashar
    et al.
    Koivisto, Tomi S.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Solomon, Adam R.
    The nature of spacetime in bigravity: Two metrics or none?2015In: General Relativity and Gravitation, ISSN 0001-7701, E-ISSN 1572-9532, Vol. 47, no 1, p. 1838-Article in journal (Refereed)
    Abstract [en]

    The possibility of matter coupling to two metrics at once is considered. This appears natural in the most general ghost-free, bimetric theory of gravity, where it unlocks an additional symmetry with respect to the exchange of the metrics. This double coupling, however, raises the problem of identifying the observables of the theory. It is shown that if the two metrics couple minimally to matter, then there is no physical metric to which all matter would universally couple, and that moreover such an effective metric generically does not exist even for an individual matter species. By studying point particle dynamics, a resolution is suggested in the context of Finsler geometry.

  • 16.
    Akrami, Yashar
    et al.
    Leiden Univ, Lorentz Inst Theoret Phys, POB 9506, NL-2300 RA Leiden, Netherlands..
    Kuhnel, Florian
    Stockholm Univ, AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, SE-10691 Stockholm, Sweden..
    Sandstad, Marit
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Uncertainties in primordial black-hole constraints on the primordial power spectrum2018In: Physics of the Dark Universe, ISSN 0953-8585, E-ISSN 2212-6864, Vol. 19, p. 124-128Article in journal (Refereed)
    Abstract [en]

    The existence (and abundance) of primordial black holes (PBHs) is governed by the power spectrum of primordial perturbations generated during inflation. So far no PBHs have been observed, and instead, increasingly stringent bounds on their existence at different scales have been obtained. Up until recently, this has been exploited in attempts to constrain parts of the inflationary power spectrum that are unconstrained by cosmological observations. We first point out that the simple translation of the PBH non-observation bounds into constraints on the primordial power spectrum is inaccurate as it fails to include realistic aspects of PBH formation and evolution. We then demonstrate, by studying two examples of uncertainties from the effects of critical and non-spherical collapse, that even though they may seem small, they have important implications for the usefulness of the constraints. In particular, we point out that the uncertainty induced by non-spherical collapse may be much larger than the difference between particular bounds from PBH non-observations and the general maximum cap stemming from the condition Omega <= 1 on the dark-matter density in the form of PBHs. We therefore make the cautious suggestion of applying only the overall maximum dark-matter constraint to models of early Universe, as this requirement seems to currently provide a more reliable constraint, which better reflects our current lack of detailed knowledge of PBH formation. These, and other effects, such as merging, clustering and accretion, may also loosen constraints from non-observations of other primordial compact objects such as ultra-compact minihalos of dark matter. 

  • 17. Albornoz, N. L. Gonzalez
    et al.
    Schmidt-May, Angnis
    von Strauss, Mikael
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Dark matter scenarios with multiple spin-2 fields2018In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, no 1, article id 014Article in journal (Refereed)
    Abstract [en]

    We study ghost-free multimetric theories for (N + 1) tensor fields with a coupling to matter and maximal global symmetry group S-N x (Z(2))(N). Their mass spectra contain a massless mode, the graviton, and N massive spin-2 modes. One of the massive modes is distinct by being the heaviest, the remaining (N - 1) massive modes are simply identical copies of each other. All relevant physics can therefore be understood from the case N = 2. Focussing on this case, we compute the full perturbative action up to cubic order and derive several features that hold to all orders in perturbation theory. The lighter massive mode does not couple to matter and neither of the massive modes decay into massless gravitons. We propose the lighter massive particle as a candidate for dark matter and investigate its phenomenology in the parameter region where the matter coupling is dominated by the massless graviton. The relic density of massive spin-2 can originate from a freeze-in mechanism or from gravitational particle production, giving rise to two different dark matter scenarios. The allowed parameter regions are very different from those in scenarios with only one massive spin-2 field and more accessible to experiments.

  • 18. Alonso, D.
    et al.
    Bellini, E.
    Ferreira, P. G.
    Zumalacarregui, Miguel
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm Univ, Sweden.
    Observational future of cosmological scalar-tensor theories2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 95, no 6, article id 063502Article in journal (Refereed)
    Abstract [en]

    The next generation of surveys will greatly improve our knowledge of cosmological gravity. In this paper we focus on how Stage IV photometric redshift surveys, including weak lensing and multiple tracers of the matter distribution and radio experiments combined with measurements of the cosmic microwave background will lead to precision constraints on deviations from general relativity. We use a broad subclass of Horndeski scalar-tensor theories to forecast the accuracy with which we will be able to determine these deviations and their degeneracies with other cosmological parameters. Our analysis includes relativistic effects, does not rely on the quasistatic evolution and makes conservative assumptions about the effect of screening on small scales. We define a figure of merit for cosmological tests of gravity and show how the combination of different types of surveys, probing different length scales and redshifts, can be used to pin down constraints on the gravitational physics to better than a few percent, roughly an order of magnitude better than present probes. Future cosmological experiments will be able to constrain

  • 19. Altfeder, Igor
    et al.
    Voevodin, Andrey A.
    Check, Michael H.
    Eichfeld, Sarah M.
    Robinson, Joshua A.
    Balatsky, Alexander V.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Scanning Tunneling Microscopy Observation of Phonon Condensate2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 43214Article in journal (Refereed)
    Abstract [en]

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase-and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.

  • 20. Amendola, L.
    et al.
    Appleby, S.
    Avgoustidis, A.
    Bacon, D.
    Baker, T.
    Baldi, M.
    Bartolo, N.
    Blanchard, A.
    Bonvin, C.
    Borgani, S.
    Branchini, E.
    Burrage, C.
    Camera, S.
    Carbone, C.
    Casarini, L.
    Cropper, M.
    de Rham, C.
    Dietrich, J. P.
    Di Porto, C.
    Durrer, R.
    Ealet, A.
    Ferreira, P. G.
    Finelli, F.
    García-Bellido, J.
    Giannantonio, T.
    Guzzo, L.
    Heavens, A.
    Heisenberg, L.
    Heymans, C.
    Hoekstra, H.
    Hollenstein, L.
    Holmes, R.
    Hwang, Z.
    Jahnke, K.
    Kitching, T. D.
    Koivisto, Tomi
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm University, Sweden.
    Kunz, M.
    La Vacca, G.
    Linder, E.
    March, M.
    Marra, V.
    Martins, C.
    Majerotto, E.
    Markovic, D.
    Marsh, D.
    Marulli, F.
    Massey, R.
    Mellier, Y.
    Montanari, F.
    Mota, D. F.
    Nunes, N. J.
    Percival, W.
    Pettorino, V.
    Porciani, C.
    Quercellini, C.
    Read, J.
    Rinaldi, M.
    Sapone, D.
    Sawicki, I.
    Scaramella, R.
    Skordis, C.
    Simpson, F.
    Taylor, A.
    Thomas, S.
    Trotta, R.
    Verde, L.
    Vernizzi, F.
    Vollmer, A.
    Wang, Y.
    Weller, J.
    Zlosnik, T.
    Group, The Euclid Theory Working
    Cosmology and fundamental physics with the Euclid satellite2018In: Living Reviews in Relativity, ISSN 1433-8351, E-ISSN 1433-8351, Vol. 21, no 1, article id 2Article in journal (Refereed)
    Abstract [en]

    Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015–2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid’s Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.

  • 21. Amoretti, A.
    et al.
    Areán, D.
    Goutéraux, Blaise
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Musso, D.
    Effective holographic theory of charge density waves2018In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 97, no 8, article id 086017Article in journal (Refereed)
    Abstract [en]

    We use gauge/gravity duality to write down an effective low energy holographic theory of charge density waves. We consider a simple gravity model which breaks translations spontaneously in the dual field theory in a homogeneous manner, capturing the low energy dynamics of phonons coupled to conserved currents. We first focus on the leading two-derivative action, which leads to excited states with nonzero strain. We show that including subleading quartic derivative terms leads to dynamical instabilities of AdS2 translation invariant states and to stable phases breaking translations spontaneously. We compute analytically the real part of the electric conductivity. The model allows to construct Lifshitz-like hyperscaling violating quantum critical ground states breaking translations spontaneously. At these critical points, the real part of the dc conductivity can be metallic or insulating.

  • 22.
    Amoretti, Andrea
    et al.
    Univ Libre Bruxelles, Phys Theor & Math Inst, CP 231, B-1050 Brussels, Belgium.;Univ Libre Bruxelles, Int Solvay Inst, CP 231, B-1050 Brussels, Belgium..
    Arean, Daniel
    Univ Porto, Dept Fis, Ctr Fis Porto, Rua Campo Alegre 687, P-4169007 Porto, Portugal..
    Goutéraux, Blaise
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Musso, Daniele
    Univ Santiago de Compostela, Dept Fis Particulas, E-15782 Santiago De Compostela, Spain.;IGFAE, E-15782 Santiago De Compostela, Spain..
    de Resistivity of Quantum Critical, Charge Density Wave States from Gauge-Gravity Duality2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 120, no 17, article id 171603Article in journal (Refereed)
    Abstract [en]

    In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T-c superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

  • 23.
    Anastasiou, A.
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm Univ, Roslagstullsbacken 23, S-10691 Stockholm, Sweden..
    Borsten, L.
    Dublin Inst Adv Studies, Sch Theoret Phys, 10 Burlington Rd, Dublin 4, Ireland..
    Duff, M. J.
    Imperial Coll London, Blackett Lab, Theoret Phys, London SW7 2AZ, England.;Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England.;Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77840 USA.;Texas A&M Univ, Hagler Inst Adv Study, College Stn, TX 77840 USA..
    Nagy, S.
    Imperial Coll London, Blackett Lab, Theoret Phys, London SW7 2AZ, England.;Ctr Astron & Particle Theory, Univ Pk, Nottingham NG7 2RD, England..
    Zoccali, M.
    Imperial Coll London, Blackett Lab, Theoret Phys, London SW7 2AZ, England..
    Gravity as Gauge Theory Squared: A Ghost Story2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 21, article id 211601Article in journal (Refereed)
    Abstract [en]

    The Becchi-Rouet-Stora-Tyutin (BRST) transformations and equations of motion of a gravity-two-form-dilaton system are derived from the product of two Yang-Mills theories in a BRST covariant form, to linear approximation. The inclusion of ghost fields facilitates the separation of the graviton and dilaton. The gravitational gauge fixing term is uniquely determined by those of the Yang-Mills factors which can be freely chosen. Moreover, the resulting gravity-two-form-dilaton Lagrangian is anti-BRST invariant and the BRST and anti-BRST charges anticommute as a direct consequence of the formalism.

  • 24.
    Anastasiou, Alexandros
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Borsten, L.
    Duff, M. J.
    Hughes, M. J.
    Marrani, A.
    Nagy, S.
    Zoccali, M.
    Twin supergravities from Yang-Mills theory squared2017In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 2, article id 026013Article in journal (Refereed)
    Abstract [en]

    We consider "twin supergravities"-pairs of supergravities with N+ and N- supersymmetries, N+ > N-, with identical bosonic sectors-in the context of tensoring super Yang-Mills multiplets. It is demonstrated that the pairs of twin supergravity theories are related through their left and right super YangMills factors. This procedure generates newtheories from old ones. In particular, the matter coupled N(-)twins in D = 3, 5, 6 and the N- = 1 twins inD = 4 have not, as far as we are aware, been obtained previously using the double-copy construction, adding to the growing list of double-copy constructible theories. The use of fundamental matter multiplets in the double-copy construction leads us to introduce a bifundamental scalar that couples to the well-known biadjoint scalar field. It is also shown that certain matter coupled supergravities admit more than one factorization into left and right super Yang-Mills-matter theories.

  • 25.
    Anastasiou, Alexandros
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Borsten, L.
    Dublin Inst Adv Studies, Sch Theoret Phys, 10 Burlington Rd, Dublin 4, Ireland..
    Duff, M. J.
    Imperial Coll London, Blackett Lab, Theoret Phys, London SW7 2AZ, England.;Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England..
    Marrani, A.
    Ctr Studi & Ric Enrico Fermi, Via Panisperna 89A, I-00184 Rome, Italy.;Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Via Marzolo 8, I-35131 Padua, Italy.;INFN, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy..
    Nagy, S.
    Ctr Astron & Particle Theory, Univ Pk, Nottingham NG7 2RD, England.;Univ Lisbon, Inst Super Tecn, Dept Math, Ctr Math Anal Geometry & Dynam Syst, Av Rovisco Pais, P-1049001 Lisbon, Portugal..
    Zoccali, M.
    Imperial Coll London, Blackett Lab, Theoret Phys, London SW7 2AZ, England..
    Are all supergravity theories Yang-Mills squared?2018In: Nuclear Physics B, ISSN 0550-3213, E-ISSN 1873-1562, Vol. 934, p. 606-633Article in journal (Refereed)
    Abstract [en]

    Using simple symmetry arguments we classify the ungauged D = 4, N = 2 supergravity theories, coupled to both vector and hyper multiplets through homogeneous scalar manifolds, that can be built as the product of N = 2 and N= 0 matter-coupled Yang-Mills gauge theories. This includes all such supergravities with two isolated exceptions: pure supergravity and the T-3 model.

  • 26. Anderson, Louise
    et al.
    Zarembo, Konstantin
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm University, Stockholm, Sweden; Uppsala University, Uppsala, Sweden; ITEPMoscow, Russian Federation .
    Quantum phase transitions in mass-deformed ABJM matrix model2014In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 9, p. 021-Article in journal (Refereed)
    Abstract [en]

    When mass-deformed ABJM theory is considered on S-3, the partition function of the theory localises, and is given by a matrix model. At large N, we solve this model in the decompactification limit, where the radius of the three-sphere is taken to infinity. In this limit, the theory exhibits a rich phase structure with an infinite number of third-order quantum phase transitions, accumulating at strong coupling.

  • 27. Andrade, Tomas
    et al.
    Krikun, Alexander
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Leiden Univ, Inst Lorentz, Netherlands.
    Commensurability effects in holographic homogeneous lattices2016In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 5, article id 039Article in journal (Refereed)
    Abstract [en]

    An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as "homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous holographic lattices. Our results indicate that the onset of the instability is controlled by the near horizon geometry, which for insulating solutions does carry information about the lattice. However, we observe no sharp connection between the characteristic momentum of the broken phase and the lattice pitch, which calls into question the applicability of these models to the physics of commensurability.

  • 28. Andrievsky, Alexander
    et al.
    Brandenburg, Axel
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Department of Astronomy, Stockholm University, AlbaNova University Center, Stockholm, Sweden.
    Noullez, Alain
    Zheligovsky, Vladislav
    Negative magnetic eddy diffusivities from the test-field method and multiscale stability theory2015In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 811, no 2, article id 135Article in journal (Refereed)
    Abstract [en]

    The generation of a large-scale magnetic field in the kinematic regime in the absence of an alpha-effect is investigated by following two different approaches: the test-field method and the multiscale stability theory relying on the homogenization technique. Our computations of the magnetic eddy diffusivity tensor of the parity-invariant flow IV of G. O. Roberts and the modified Taylor-Green flow confirm the findings of previous studies. and also explain some of their apparent contradictions. The two flows have large symmetry groups; this is used to considerably simplify the eddy diffusivity tensor. Finally, a new analytic result is presented: upon expressing the eddy diffusivity tensor in terms of solutions to auxiliary problems for the adjoint operator, we derive relations between the magnetic eddy diffusivity tensors that arise for mutually reverse small-scale flows v(x) and - v(x).

  • 29. Antipin, Oleg
    et al.
    Mojaza, Matin
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Sannino, Francesco
    Minimal Coleman-Weinberg theory explains the diphoton excess2016In: PHYSICAL REVIEW D, ISSN 2470-0010, Vol. 93, no 11, article id 115007Article in journal (Refereed)
    Abstract [en]

    We replace the standard Higgs-mechanism by the Coleman-Weinberg mechanism, and investigate its viability through the addition of a new scalar field. As we showed in a previous study, minimal models of this type can alleviate the hierarchy problem of the Higgs-mass through the so-called Veltman conditions. We here extend the previous analysis by taking into account the important difference between running mass and pole mass of the scalar states. We then investigate whether these theories can account for the 750 GeV excess in diphotons observed by the LHC collaborations. New QCD-colored fermions in the TeV mass range coupled to the new scalar state are needed to describe the excess. We further show, by explicit computation of the running of the couplings, that the model is under perturbative control till just above the masses of the heaviest states of the theory. We further suggest related testable signatures and thereby show that the LHC experiments can test these models.

  • 30. Argun, Aykut
    et al.
    Soni, Jalpa
    Dabelow, Lennart
    Bo, Stefano
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Pesce, Giuseppe
    Eichhorn, Ralf
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Volpe, Giovanni
    Experimental realization of a minimal microscopic heat engine2017In: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 96, no 5, article id 052106Article in journal (Refereed)
    Abstract [en]

    Microscopic heat engines are microscale systems that convert energy flows between heat reservoirs into work or systematic motion. We have experimentally realized a minimal microscopic heat engine. It consists of a colloidal Brownian particle optically trapped in an elliptical potential well and simultaneously coupled to two heat baths at different temperatures acting along perpendicular directions. For a generic arrangement of the principal directions of the baths and the potential, the symmetry of the system is broken, such that the heat flow drives a systematic gyrating motion of the particle around the potential minimum. Using the experimentally measured trajectories, we quantify the gyrating motion of the particle, the resulting torque that it exerts on the potential, and the associated heat flow between the heat baths. We find excellent agreement between the experimental results and the theoretical predictions.

  • 31. Aristov, Maria
    et al.
    Eichhorn, Ralf
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Bechinger, Clemens
    Separation of chiral colloidal particles in a helical flow field2013In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 9, no 8, p. 2525-2530Article in journal (Refereed)
    Abstract [en]

    Stereoisomeric molecules with opposite chirality, so-called enantiomers, often vary regarding their sensory, pharmacological and toxicological properties. Such enantiomer specific effects play a central role in the development, testing and evaluation of drugs, pesticides and food related products. Accordingly, efficient techniques for separation of chiral mixtures into enantiopure compounds are of enormous practical relevance. Most current enantiomer separation methods are based on enantioselective interactions with an auxiliary substance which has to be developed and optimized for different chiral molecules in an elaborate and costly process. Here, we experimentally demonstrate the separation of micron-sized chiral particles in a helical fluid flow which is created inside a microfluidic device patterned with slanted grooves. We observe that the retention time of particles in a helical flow field strongly depends on their chirality which leads to an effective chiral separation within the channel. Our experimental results are confirmed by numerical calculations which demonstrate how the coupling of rotational and translational degrees of freedom leads to differences in the trajectories of particles with opposite chirality. Since our separation mechanism does not rely on material specific interactions, this offers considerable advantages over existing methods. We expect that our approach can be also applied at nanometre length scales by using channels with smaller diameters and with an optimized geometry.

  • 32.
    Arratia, Cristobal
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. ;Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden.;Ecole Polytech Fed Lausanne, Lab Fluid Mech & Instabil, CH-1015 Lausanne, Switzerland..
    Mowlavi, Saviz
    Ecole Polytech Fed Lausanne, Lab Fluid Mech & Instabil, CH-1015 Lausanne, Switzerland.;MIT, Dept Mech Engn, Cambridge, MA 02139 USA..
    Gallaire, Francois
    Ecole Polytech Fed Lausanne, Lab Fluid Mech & Instabil, CH-1015 Lausanne, Switzerland..
    Absolute/convective secondary instabilities and the role of confinement in free shear layers2018In: Physical Review Fluids, ISSN 2469-990X, Vol. 3, no 5, article id 053901Article in journal (Refereed)
    Abstract [en]

    We study the linear spatiotemporal stability of an infinite row of equal point vortices under symmetric confinement between parallel walls. These rows of vortices serve to model the secondary instability leading to the merging of consecutive (Kelvin-Helmholtz) vortices in free shear layers, allowing us to study how confinement limits the growth of shear layers through vortex pairings. Using a geometric construction akin to a Legendre transform on the dispersion relation, we compute the growth rate of the instability in different reference frames as a function of the frame velocity with respect to the vortices. This approach is verified and complemented with numerical computations of the linear impulse response, fully characterizing the absolute/convective nature of the instability. Similar to results by Healey on the primary instability of parallel tanh profiles [J. Fluid Mech. 623, 241 (2009)], we observe a range of confinement in which absolute instability is promoted. For a parallel shear layer with prescribed confinement and mixing length, the threshold for absolute/convective instability of the secondary pairing instability depends on the separation distance between consecutive vortices, which is physically determined by the wavelength selected by the previous (primary or pairing) instability. In the presence of counterflow and moderate to weak confinement, small (large) wavelength of the vortex row leads to absolute (convective) instability. While absolute secondary instabilities in spatially developing flows have been previously related to an abrupt transition to a complex behavior, this secondary pairing instability regenerates the flow with an increased wavelength, eventually leading to a convectively unstable row of vortices. We argue that since the primary instability remains active for large wavelengths, a spatially developing shear layer can directly saturate on the wavelength of such a convectively unstable row, by-passing the smaller wavelengths of absolute secondary instability. This provides a wavelength selection mechanism, according to which the distance between consecutive vortices should be sufficiently large in comparison with the channel width in order for the row of vortices to persist. We argue that the proposed wavelength selection criteria can serve as a guideline for experimentally obtaining plane shear layers with counterflow, which has remained an experimental challenge.

  • 33. Arutyunov, Gleb
    et al.
    Heinze, Martin
    Medina-Rincon, Daniel
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Uppsala University, Sweden; Stockholm University, Sweden.
    Superintegrability of geodesic motion on the sausage model2017In: Journal of Physics A: Mathematical and Theoretical, ISSN 1751-8113, E-ISSN 1751-8121, Vol. 50, no 24, article id 244002Article in journal (Refereed)
    Abstract [en]

    Reduction of the eta-deformed sigma model on AdS(5) x S-5 to the two-dimensional squashed sphere (S-2)eta can be viewed as a special case of the Fateev sausage model where the coupling constant v is imaginary. We show that geodesic motion in this model is described by a certain superintegrable mechanical system with four-dimensional phase space. This is done by means of explicitly constructing three integrals of motion which satisfy the sl(2) Poisson algebra relations, albeit being non-polynomial in momenta. Further, we find a canonical transformation which transforms the Hamiltonian of this mechanical system to the one describing the geodesic motion on the usual two-sphere. By inverting this transformation we map geodesics on this auxiliary two-sphere back to the sausage model.

  • 34. Asboth, Janos K.
    et al.
    Edge, Jonathan M.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Edge-state-enhanced transport in a two-dimensional quantum walk2015In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 91, no 2, article id 022324Article in journal (Refereed)
    Abstract [en]

    Quantum walks on translation-invariant regular graphs spread quadratically faster than their classical counterparts. The same coherence that gives them this quantum speedup inhibits or even stops their spread in the presence of disorder. We ask how to create an efficient transport channel from a fixed source site (A) to fixed target site (B) in a disordered two-dimensional discrete-time quantum walk by cutting some of the links. We show that the somewhat counterintuitive strategy of cutting links along a single line connecting A to B creates such a channel. The efficient transport along the cut is due to topologically protected chiral edge states, which exist even though the bulk Chern number in this system vanishes. We give a realization of the walk as a periodically driven lattice Hamiltonian and identify the bulk topological invariant responsible for the edge states as the quasienergy winding of this Hamiltonian.

  • 35. Ashoorioon, A.
    et al.
    Casadio, R.
    Koivisto, Tomi
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Anisotropic non-gaussianity from rotational symmetry breaking excited initial states2016In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, Vol. 2016, no 12, article id 002Article in journal (Refereed)
    Abstract [en]

    If the initial quantum state of the primordial perturbations broke rotational invariance, that would be seen as a statistical anisotropy in the angular correlations of the cosmic microwave background radiation (CMBR) temperature fluctuations. This can be described by a general parameterisation of the initial conditions that takes into account the possible direction-dependence of both the amplitude and the phase of particle creation during inflation. The leading effect in the CMBR two-point function is typically a quadrupole modulation, whose coefficient is analytically constrained here to be |B| &lt;~ 0.06. The CMBR three-point function then acquires enhanced non-gaussianity, especially for the local configurations. In the large occupation number limit, a distinctive prediction is a modulation of the non-gaussianity around a mean value depending on the angle that short and long wavelength modes make with the preferred direction. The maximal variations with respect to the mean value occur for the configurations which are coplanar with the preferred direction and the amplitude of the non-gaussianity increases (decreases) for the short wavelength modes aligned with (perpendicular to) the preferred direction. For a high scale model of inflation with maximally pumped up isotropic occupation and ϵ~ 0.01 the difference between these two configurations is about 0.27, which could be detectable in the future. For purely anisotropic particle creation, the non-Gaussianity can be larger and its anisotropic feature very sharp. The non-gaussianity can then reach fNL ∼ 30 in the preferred direction while disappearing from the correlations in the orthogonal plane.

  • 36. Ashoorioon, Amjad
    et al.
    Koivisto, Tomi S.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Hemispherical anomaly from asymmetric initial states2016In: PHYSICAL REVIEW D, ISSN 2470-0010, Vol. 94, no 4, article id 043009Article in journal (Refereed)
    Abstract [en]

    We investigate if the hemispherical asymmetry in the CMB is produced from "asymmetric" excited initial conditions. We show that in the limit where the deviations from the Bunch-Davies vacuum are large and the scale of new physics is maximally separated from the inflationary Hubble parameter, the primordial power spectrum is modulated only by position-dependent dipole and quadrupole terms. Requiring the dipole contribution in the power spectrum to account for the observed power asymmetry, A = 0.07 +/- 0.022, we show that the amount of quadrupole terms is roughly equal to A(2). The mean local bispectrum, which gets enhanced for the excited initial state, is within the 1 sigma bound of Planck 2015 results for a large field model, f(NL) similar or equal to 4.17, but is reachable by future CMB experiments. The amplitude of the local non-Gaussianity modulates around this mean value, depending on the angle that the correlated patches on the 2d CMB surface make with the preferred direction. The amount of variation is minimized for the configuration in which the short and long wavelength modes are around the preferred pole and vertical bar(k(3)) over right arrow vertical bar approximate to vertical bar(k) over right arrow (l approximate to 10)vertical bar << vertical bar(k(1)) over right arrow vertical bar approximate to vertical bar(k(2)) over right arrow vertical bar approximate to vertical bar(k) over right arrow (l approximate to 2500)vertical bar with f(NL)(min) approximate to 3.64. The maximum occurs when these modes are at the antipode of the preferred pole, f(NL)(max) approximate to 4.81. The difference of non-Gaussianity between these two configurations is as large as similar or equal to 1.17, which can be used to distinguish this scenario from other scenarios that try to explain the observed hemispherical asymmetry.

  • 37.
    Aurell, Erik
    et al.
    KTH. Departments of Information and Computer Science and Applied Physics, Aalto University, FIN-00076 Espoo, Finland.
    Bo, Stefano
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Steady diffusion in a drift field: A comparison of large-deviation techniques and multiple-scale analysis2017In: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 96, no 3, article id 032140Article in journal (Refereed)
    Abstract [en]

    A particle with internal unobserved states diffusing in a force field will generally display effective advection-diffusion. The drift velocity is proportional to the mobility averaged over the internal states, or effective mobility, while the effective diffusion has two terms. One is of the equilibrium type and satisfies an Einstein relation with the effective mobility while the other is quadratic in the applied force. In this contribution we present two new methods to obtain these results, on the one hand using large deviation techniques and on the other by a multiple-scale analysis, and compare the two. We consider both systems with discrete internal states and continuous internal states. We show that the auxiliary equations in the multiple-scale analysis can also be derived in second-order perturbation theory in a large deviation theory of a generating function (discrete internal states) or generating functional (continuous internal states). We discuss that measuring the two components of the effective diffusion give a way to determine kinetic rates from only first and second moments of the displacement in steady state.

  • 38.
    Aurell, Erik
    et al.
    KTH, School of Computer Science and Communication (CSC), Computational Biology, CB. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. Aalto Univ, Finland.
    Eichhorn, Ralf
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm Univ, Sweden.
    On the von Neumann entropy of a bath linearly coupled to a driven quantum system2015In: New Journal of Physics, ISSN 1367-2630, E-ISSN 1367-2630, Vol. 17, article id 065007Article in journal (Refereed)
    Abstract [en]

    The change of the von Neumann entropy of a set of harmonic oscillators initially in thermal equilibrium and interacting linearly with an externally driven quantum system is computed by adapting the Feynman-Vernon influence functional formalism. This quantum entropy production has the form of the expectation value of three functionals of the forward and backward paths describing the system history in the Feynman-Vernon theory. In the classical limit of Kramers-Langevin dynamics (Caldeira-Leggett model) these functionals combine to three terms, where the first is the entropy production functional of stochastic thermodynamics, the classical work done by the system on the environment in units of k(B)T, and the second and the third other functionals which have no analogue in stochastic thermodynamics.

  • 39.
    Azevedo, Tholes
    et al.
    Uppsala Univ, Dept Phys & Astron, S-75108 Uppsala, Sweden..
    Chiodaroli, Marco
    Uppsala Univ, Dept Phys & Astron, S-75108 Uppsala, Sweden..
    Johansson, Henrik
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Uppsala Univ, Dept Phys & Astron, S-75108 Uppsala, Sweden.;Stockholm Univ, Nordita, Roslagstullsbacken 23, S-10691 Stockholm, Sweden.
    Schlotterer, Oliver
    Albert Einstein Inst, Max Planck Inst Gravitationphys, D-14476 Potsdam, Germany.;Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada..
    Heterotic and bosonic string amplitudes via field theory2018In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 10, article id 012Article in journal (Refereed)
    Abstract [en]

    Previous work has shown that massless tree amplitudes of the type I and IIA/B superstrings can be dramatically simplified by expressing them as double copies between field-theory amplitudes and scalar disk/sphere integrals, the latter containing all the alpha'-corrections. In this work, we pinpoint similar double-copy constructions for the heterotic and bosonic string theories using an alpha'-dependent field theory and the same disk/sphere integrals. Surprisingly, this field theory, built out of dimension-six operators such as (D mu F mu v)(2), has previously appeared in the double-copy construction of conformal supergravity. We elaborate on the alpha' -> infinity limit in this picture and derive new amplitude relations for various gauge-gravity theories from those of the heterotic string.

  • 40. Bacca, S.
    et al.
    Hally, K.
    Liebendoerfer, M.
    Perego, A.
    Pethick, Christopher J.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Schwenk, A.
    Neutrino processes in partially degenerate neutron matter2012In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 758, no 1, p. 34-Article in journal (Refereed)
    Abstract [en]

    We investigate neutrino processes for conditions reached in simulations of core-collapse supernovae. In regions where neutrino-matter interactions play an important role, matter is partially degenerate, and we extend earlier work that addressed the degenerate regime. We derive expressions for the spin structure factor in neutron matter, which is a key quantity required for evaluating rates of neutrino processes. We show that, for essentially all conditions encountered in the post-bounce phase of core-collapse supernovae, it is a very good approximation to calculate the spin relaxation rates in the nondegenerate limit. We calculate spin relaxation rates based on chiral effective field theory interactions and find that they are typically a factor of two smaller than those obtained using the standard one-pion-exchange interaction alone.

  • 41. Baggio, Marco
    et al.
    Ohlsson Sax, Olof
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm Univ, Sweden.
    Sfondrini, Alessandro
    Stefanski, Bogdan, Jr.
    Torrielli, Alessandro
    Protected string spectrum in AdS(3)/CFT2 from worldsheet integrability2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, article id 091Article in journal (Refereed)
    Abstract [en]

    We derive the protected closed-string spectra of AdS(3)/CFT2 dual pairs with 16 supercharges at arbitrary values of the string tension and of the three-form fluxes. These follow immediately from the all-loop Bethe equations for the spectra of the integrable worldsheet theories. Further, representing the underlying integrable systems as spin chains, we find that their dynamics involves length-changing interactions and that protected states correspond to gapless excitations above the Berenstein-Maldacena-Nastase vacuum. In the case of AdS(3) x S-3 x T-4 the degeneracies of such operators precisely match those of the dual CFT2 and the supergravity spectrum. On the other hand, we find that for AdS(3) x S-3 x S-3 x S-1 there are fewer protected states than previous supergravity calculations had suggested. In particular, protected states have the same su(2) charge with respect to the two three spheres.

  • 42. Baggioli, M.
    et al.
    Goutéraux, Blaise
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Kiritsis, E.
    Li, W. -J
    Higher derivative corrections to incoherent metallic transport in holography2017In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, Vol. 2017, no 3, article id 170Article in journal (Refereed)
    Abstract [en]

    Transport in strongly-disordered, metallic systems is governed by diffusive processes. Based on quantum mechanics, it has been conjectured that these diffusivities obey a lower bound D/v2 ≳ ℏ/kBT , the saturation of which provides a mechanism for the T-linear resistivity of bad metals. This bound features a characteristic velocity v, which was later argued to be the butterfly velocity vB, based on holographic models of transport. This establishes a link between incoherent metallic transport, quantum chaos and Planckian timescales. Here we study higher derivative corrections to an effective holographic action of homogeneous disorder. The higher derivative terms involve only the charge and translation symmetry breaking sector. We show that they have a strong impact on the bound on charge diffusion Dc/νB 2 ≳ ℏ/kBT, by potentially making the coefficient of its right-hand side arbitrarily small. On the other hand, the bound on energy diffusion is not affected.

  • 43. Balasubramanian, V.
    et al.
    Bernamonti, A.
    Craps, B.
    Keränen, Ville
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Keski-Vakkuri, E.
    Mueller, B.
    Thorlacius, Larus
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Vanhoof, J.
    Thermalization of the spectral function in strongly coupled two dimensional conformal field theories2013In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 4, p. 069-Article in journal (Refereed)
    Abstract [en]

    Using Wigner transforms of Green functions, we discuss non-equilibrium generalizations of spectral functions and occupation numbers. We develop methods for computing time-dependent spectral functions in conformal field theories holographically dual to thin-shell AdS-Vaidya spacetimes.

  • 44.
    Balatsky, Alexander
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Gudnason, Sven Bjarke
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Kedem, Yaron
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Krikun, Alexander
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Thorlacius, Larus
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Zarembo, Konstantin
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Classical and quantum temperature fluctuations via holography2015In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 1, article id 011Article in journal (Refereed)
    Abstract [en]

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS spacetime. The fluctuation spectrum is governed by the lowest-lying hydrodynamic modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at high temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

  • 45.
    Balatsky, Alexander V.
    et al.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Institute for Materials Science, Los Alamos National Laboratory, Los Alamos, NM, United States .
    Balatsky, Galina I.
    Borysov, Stanislav S.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. KTH, School of Engineering Sciences (SCI), Applied Physics, Nanostructure Physics.
    Resource Demand Growth and Sustainability Due to Increased World Consumption2015In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 7, no 3, p. 3430-3440Article in journal (Refereed)
    Abstract [en]

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet's limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially needed immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.

  • 46. Balazs, Csaba
    et al.
    Li, Tong
    Savage, Chris
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. University of Utah, United States.
    White, Martin
    Interpreting the Fermi-LAT gamma ray excess in the simplified framework2015In: Physical Review D, ISSN 1550-7998, E-ISSN 1550-2368, Vol. 92, no 12, article id 123520Article in journal (Refereed)
    Abstract [en]

    We test the plausibility of the hypothesis that the annihilation of a Majorana fermion dark matter particle via a scalar mediator explains the gamma ray excess from the Galactic center. Assuming that the mediator couples to all third generation fermions we calculate observables for dark matter abundance and scattering on nuclei, gamma, positron, and antiproton cosmic ray fluxes, radio emission from dark matter annihilation, and the effect of dark matter annihilations on the CMB. After discarding the controversial radio observation, we show that the dark matter model simultaneously fits the observed excesses in the cosmic gamma ray, the positron, and antiproton fluxes, while evading constraints from the CMB and direct detection. The experimental data are consistent with a dark matter (mediator) mass in the 10-100 (3-1000) GeV region and with weakly correlated couplings to bottom quarks and tau leptons with values of 10(-3) - 1 at the 68% credibility level.

  • 47.
    Banerjee, R.
    et al.
    Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore..
    Liew, T. C. H.
    Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore..
    Kyriienko, O.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden..
    Realization of Hofstadter's butterfly and a one-way edge mode in a polaritonic system2018In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 98, no 7, article id 075412Article in journal (Refereed)
    Abstract [en]

    We present a scheme to generate an artificial gauge field for the system of neutral bosons, represented by polaritons in micropillars arranged into a square lattice. The splitting between the two polarizations of the micropillars breaks the time-reversal symmetry (TRS) and results in the effective phase-dependent hopping between cavities. This can allow for engineering a nonzero flux on the plaquette, corresponding to an artificial magnetic field. Changing the phase, we observe a characteristic Hofstadter's butterfly pattern and the appearance of chiral edge states for a finite-size structure. For long-lived polaritons, we show that the propagation of wave packets at the edge is robust against disorder. Moreover, given the inherent driven-dissipative nature of polariton lattices, we find that the system can exhibit topological lasing, recently discovered for active ring cavity arrays. The results point to a static way to realize artificial magnetic field in neutral spinful systems, avoiding the periodic modulation of the parameters or strong spin-orbit interaction. Ultimately, the described system can allow for high-power topological single-mode lasing which is robust to imperfections.

  • 48.
    Banerjee, saikat
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Universal trends in interacting two-dimensional Dirac materialsManuscript (preprint) (Other academic)
  • 49.
    Banerjee, Saikat
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology. KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Institute for Materials Science, Los Alamos National Laboratory, USA.
    Fransson, J.
    Black-Schaffer, A. M.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Balatsky, A. V.
    Granular superconductor in a honeycomb lattice as a realization of bosonic Dirac material2016In: PHYSICAL REVIEW B, ISSN 2469-9950, Vol. 93, no 13, article id 134502Article in journal (Refereed)
    Abstract [en]

    We examine the low-energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in a honeycomb lattice structure. Using the example of graphene, we present evidence for the engineered Dirac nodes in the bosonic excitations: the spectra of the collective bosonic modes cross at the K and K' points in the Brillouin zone and form Dirac nodes. We show how two different types of collective phase oscillations are obtained and that they are analogous to the Leggett and the Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. We show that the Dirac node is preserved in the presence of an intergrain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with fermionic Dirac materials. The Dirac node dispersion of bosonic excitations is thus expanding the discussion of the conventional Dirac cone excitations to the case of bosons. We call this case as a representative of bosonic Dirac materials (BDM), similar to the case of Fermionic Dirac materials extensively discussed in the literature.

  • 50.
    Banerjee, Saikat
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology. KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Los Alamos Natl Lab, USA.
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Balatsky, Alexander V.
    KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
    Landau-like states in neutral particles2016In: PHYSICAL REVIEW B, ISSN 2469-9950, Vol. 93, no 23, article id 235134Article in journal (Refereed)
    Abstract [en]

    We show the emergence of a new type of dispersion relation for neutral atoms with an interesting similarity to the spectrum of two-dimensional electrons in an applied perpendicular constant magnetic field. These neutral atoms can be confined in toroidal optical traps and give quasi-Landau spectra. In strong contrast to the equidistant infinitely degenerate Landau levels for charged particles, the spectral gap for such two-dimensional neutral particles increases in particular electric-field configurations. The idea in the paper is motivated by the development in cold atom experiments and builds on the seminal paper of Aharonov and Casher.

1234567 1 - 50 of 714
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf