Change search
Refine search result
12 1 - 50 of 58
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aldaeus, Fredrik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Lin, Yuan
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Amberg, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Multi-step dielectrophoresis for separation of particles2006In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1131, no 1-2, p. 261-266Article in journal (Refereed)
    Abstract [en]

    A new concept for separation of particles based on repetitive dielectrophoretic trapping and release in a flow system is proposed. Calculations using the finite element method have been performed to envision the particle behavior and the separation effectiveness of the proposed method. As a model system, polystyrene beads in deionized water and a micro-flow channel with arrays of interdigited electrodes have been used. Results show that the resolution increases as a direct function of the number of trap-and-release steps, and that a difference in size will have a larger influence on the separation than a difference in other dielectrophoretic properties. About 200 trap-and-release steps would be required to separate particles with a size difference of 0.2%. The enhanced separation power of dielectrophoresis with multiple steps could be of great importance, not only for fractionation of particles with small differences in size, but also for measuring changes in surface conductivity, or for separations based on combinations of difference in size and dielectric properties.

  • 2.
    Aldaeus, Fredrik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Lin, Yuan
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Amberg, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Superpositioned dielectrophoresis for enhanced trapping efficiency2005In: Electrophoresis, ISSN 0173-0835, E-ISSN 1522-2683, Vol. 26, no 22, p. 4252-4259Article in journal (Refereed)
    Abstract [en]

    One of the major applications for dielectrophoresis is selective trapping and fractionation of particles. If the surrounding medium is of low conductivity, the trapping force is high, but if the conductivity increases, the attraction decreases and may even become negative. However, high-conductivity media are essential when working with biological material such as living cells. In this paper, some basic calculations have been performed, and a model has been developed which employs both positive and negative dielectrophoresis in a channel with interdigitated electrodes. The finite element method was utilized to predict the trajectories of Escherichia coli bacteria in the superpositioned electrical fields. It is shown that a drastic improvement of trapping efficiency can be obtained in this way, when a high conductivity medium is employed.

  • 3. Al-Jarah, S. Y.
    et al.
    Sjodahl, J.
    Woldegiorgis, A.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Capillary electrophoretic and mass spectrometric analysis of a polydisperse fluorosurfactant2005In: Journal of Separation Science, ISSN 1615-9306, E-ISSN 1615-9314, Vol. 28, no 3, p. 239-244Article in journal (Refereed)
    Abstract [en]

    A fluorosurfactant has been studied using capillary electrophoresis and mass spectrometry. The fluorosurfactant, FC134, can be used as a buffer additive in capillary electrophoresis in order to decrease wall adsorption of proteins and in micellar electrokinetic chromatography. However, it has been discovered that this fluorosurfactant is polydisperse, thus containing substances with different lengths and structures. In this work, the fluorosurfactant sample components were separated by capillary electrophoresis. An uncoated as well as a poly(vinyl alcohol)-coated capillary were used with running electrolytes containing methanol and acetic acid. Following the capillary electrophoretic separation, fractions were collected for further analysis by MALDI-MS. Non-fractionated samples were also analyzed both by MALDI-MS and by ESI-MS.

  • 4.
    Benkestock, Kurt
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Electrospray Ionization Mass Spectrometry for Determination of Noncovalent Interactions in Drug Discovery2008Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Noncovalent interactions are involved in many biological processes in which biomolecules bind specifically and reversibly to a partner. Often, proteins do not have a biological activity without the presence of a partner, a ligand. Biological signals are produced when proteins interact with other proteins, peptides, oligonucleotides, nucleic acids, lipids, metal ions, polysaccharides or small organic molecules. Some key steps in the drug discovery process are based on noncovalent interactions. We have focused our research on the steps involving ligand screening, competitive binding and ‘off-target’ binding. The first paper in this thesis investigated the complicated electrospray ionization process with regards to noncovalent complexes. We have proposed a model that may explain how the equilibrium between a protein and ligand changes during the droplet evaporation/ionization process.

    The second paper describes an evaluation of an automated chip-based nano-ESI platform for ligand screening. The technique was compared with a previously reported method based on nuclear magnetic resonance (NMR), and excellent correlation was obtained between the results obtained with the two methods. As a general conclusion we believe that the automated nano-ESI/MS should have a great potential to serve as a complementary screening method to conventional HTS. Alternatively, it could be used as a first screening method in an early phase of drug development programs when only small amounts of purified targets are available.

    In the third article, the advantage of using on-line microdialysis as a tool for enhanced resolution and sensitivity during detection of noncovalent interactions and competitive binding studies by ESI-MS was demonstrated. The microdialysis device was improved and a new approach for competitive binding studies was developed.

    The last article in the thesis reports studies of noncovalent interactions by means of nanoelectrospray ionization mass spectrometry (nanoESI-MS) for determination of the specific binding of selected drug candidates to HSA. Two drug candidates and two known binders to HSA were analyzed using a competitive approach. The drugs were incubated with the target protein followed by addition of site-specific probes, one at a time. The drug candidates showed predominant affinity to site I (warfarin site). Naproxen and glyburide showed affinity to both sites I and II.

  • 5.
    Benkestock, Kurt
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Edlund, Per Olof
    Biovitrum AB, Dept Analyt Sci.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Electrospray ionization mass spectrometry as a tool for determination of drug binding sites to human serum albumin by noncovalent interaction2005In: Rapid Communications in Mass Spectrometry, ISSN 0951-4198, E-ISSN 1097-0231, Vol. 19, no 12, p. 1637-1643Article in journal (Refereed)
    Abstract [en]

    Most proteins in blood plasma bind ligands. Human serum albumin (HSA) is the main transport protein with a very high capacity for binding of endogenous and exogenous compounds in plasma. Many pharmacokinetic properties of a drug depend on the level of binding to plasma proteins. This work reports studies of noncovalent interactions by means of nanoelectrospray ionization mass spectrometry (nanoESI-MS) for determination of the specific binding of selected drug candidates to HSA. Warfarin, iopanoic acid and digitoxin were chosen as site-specific probes that bind to the main sites of HSA. Two drug candidates and two known binders to HSA were analyzed using a competitive approach. The drugs were incubated with the target protein followed by addition of site-specific probes, one at a time. The drug candidates showed predominant affinity to site I (warfarin site). Naproxen and glyburide showed affinity to both sites I and II. The advantages of nanoE-SI-MS for these studies are the sensitivity, the absence of labeled molecules and the short method development time.

  • 6. Bertani, Stefano
    et al.
    Jacobsson, Bjorn
    Laurell, Fredrik
    KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.
    Pasiskevicius, Valdas
    KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.
    Stjernström, Mårten
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Stretching-tunable external-cavity laser locked by an elastic silicone grating2006In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 14, no 25, p. 11982-11986Article in journal (Refereed)
    Abstract [en]

    We demonstrate wavelength locking of a diode laser at 760 nm with feedback from an elastic transmission grating in the Littrow configuration. The laser was in a single longitudinal mode with a side-mode suppression of 20 dB. By stretching the grating the laser could be tuned over a few nm. The grating was fabricated in a silicone elastomer ( polydimethylsiloxane) by a moulding technique, and coated by a thin layer of Ti and Au to achieve an increased diffraction efficiency needed for efficient locking.

  • 7.
    Björk, Anders
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Danielsson, Lars-Göran
    AstraZeneca.
    Modeling of pulp quality parameters from distribution curves extracted from process acoustic measurements on a thermo mechanical pulp (TMP) process2007In: Chemometrics and Intelligent Laboratory Systems, ISSN 0169-7439, E-ISSN 1873-3239, Vol. 85, no 1, p. 63-69Article in journal (Refereed)
    Abstract [en]

    In this paper the feasibility of modeling strength and optical pulp properties from length distribution curves extracted from acoustic data using continuous wavelet transform-fiber length extraction, CWT-FLE (A Björk and L-G Danielsson, 'Extraction of Distribution Curves from Process Acoustic Measurements on a TMP-Process', Pulp and Paper Canada 105 No. 11 (2004), T260-T264) by use of Partial Least Squares (PLS) have been tested. The curves used have earlier been validated against length distribution curves obtained by analyzing pulp samples with a commercial analyzer (FiberMaster). The curves were extracted from acoustic data without any "calibration" against fiber length analyses. The acoustic measurements were performed using an accelerometer affixed to the refiner blow-line during a full-scale trial with a Sunds Defibrator double disc refiner at SCA Ortviken, Sweden. Pulp samples were collected concurrently with the acoustic measurements and extensive physical testing has been made on these samples. For each trial point three pulp samples were collected. PLS1 and PLS2 models were successfully made linking the distribution curves obtained using CWT-FLE to pulp tensile strength properties as well as optical properties. The resulting Root Mean Square Error of Prediction (RMSEP) for all parameters is comparable to what can be obtained by pooling the standard deviations of reference measurements from the different trial points. The results obtained are compared to FiberMaster data modeled in the same fashion, yielding lower prediction errors than the CWT-FLE data. However, this can be partly due to the five-year storage of pulp samples between pulp sampling/acoustic measurement and FiberMaster analyses/sheet testing. The acoustic method is fast and produces results without dead time and could constitute a new tool for improving process control and optimizing the fiber characteristics in a specific process and for a specific purpose. The technique could be implemented in a PC-environment at a fairly low cost.

  • 8.
    Björk, Anders
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Danielsson, Lars-Göran
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Predicting Pulp Quality from Process Acoustic Measurements on a Medium Concistency Pulp Stream2006In: JPAC, Journal of Process Analytical Chemistry., ISSN 1077-419X, Vol. 10, no 1, p. 1-5Article in journal (Refereed)
  • 9.
    Björk, Anders
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Danielsson, Lars-Göran
    Pulp Quality And Performance Indicators For Pressure Screens Based On Process Acoustic MeasurementsManuscript (Other academic)
  • 10.
    Bonn, Jonas
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Improved Techniques for Sampling and Sample Introduction in Gas Chromatography2008Licentiate thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Sampling and sample introduction are two key steps in quantitative gas chromatography. In this thesis, a development of a previously described sampling technique as well as a novel concept for sample introduction in gas chromatography are presented. The thesis is based on two papers.

    Paper I describes a method for preparing physically mixed polymers for use as sorbent phases in open tubular trapping of gaseous analytes. The concept is based on mechanical disintegration and mixing of solid or liquid poly(ethylene glycol), PEG, into poly(dimethylsiloxane), PDMS, in a straightforward manner. The resulting mixture exhibits a higher affinity towards polar analytes, as compared to pure PDMS.

    Paper II describes a novel approach to liquid sample introduction with the split/splitless inlet, used in gas chromatography. Classical injection techniques struggle with discrimination of high boiling analytes and poor repeatability of the injected amount of analytes. The presented injection technique utilizes high voltage to obtain a spraying effect of the injected liquid. The spraying effect can be achieved with a cold needle, which is unprecedented for gas chromatographic injections. The cold needle spraying results in highly repeatable injections, free from discrimination of high boiling analytes.

  • 11.
    Bonn, Jonas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Pettersson Redeby, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Electrostatic Sample Nebulization for Improved Sample Vaporization in the Split/Splitless Gas Chromatography Inlet2009In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 81, no 13, p. 5327-5332Article in journal (Refereed)
    Abstract [en]

    The split/splitless inlet system has basically the same fundamental drawbacks it had when it was introduced: poor repeatability of the injected amount of sample and discrimination of high-boiling analytes. Hot needle injection improves the repeatability of the sample transfer but suffers from in-needle discrimination. Injection with a fast autosampler, resulting in minimal heating of the needle, solves this problem but usually requires a glass wool packing in the inlet liner to assist in vaporization of the sample. As glass wool has been reported to cause degradation of labile analytes, it cannot be applied as a general remedy for improving incomplete vaporization. In this paper, a novel concept, based on electrostatic nebulization of the injected sample, is presented. The resulting fine droplets promote a more effective heat transfer and a rapid vaporization. Evaluation of the electrospray inlet in the split mode, using a straight, empty glass liner and a cold needle, showed an improvement in peak area repeatability by about 1 order of magnitude, compared with the results obtained when no electrostatic field was applied, Splitless injection of a series of hydrocarbons up to C-28 in the electrospray inlet with an empty, tapered liner, using a cold needle, showed no measurable analyte discrimination. The relative standard deviation in terms of area count for the largest hydrocarbon (C-28) was < 1.5%, compared to similar to 30% for injections where no high voltage was applied.

  • 12.
    Bonn, Jonas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Redeby, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    A novel injection technique for the split/splitless gas chromatography inletManuscript (Other academic)
  • 13.
    Bonn, Jonas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Redeby, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Mixed sorbent phases for thick film open tubular traps2009In: Journal of Chromatographic Science, ISSN 0021-9665, E-ISSN 1945-239X, Vol. 47, no 4, p. 297-303Article in journal (Refereed)
    Abstract [en]

    In this work, we present a technique for the preparation of tailor-made sorbent phases for thick film open tubular traps. Solid or liquid polymers are dispersed in a polydimethylsiloxane (PDMS) pre-polymer, which is cross-linked in situ after coating. The technique is evaluated by preparing thick film open tubular traps with PDMS containing solid or liquid poly(ethylene glycol) (PEG). A significant increase in retention for polar analytes is observed, even when only 7.5% PEG is present. The increase in retention for 3-chloro-1,2-propanediol is more than tenfold. The preparation method is simple and no solvents are required. Also, the concept provides great flexibility in terms of phase composition.

  • 14. Chabert, Max
    et al.
    Dorfman, Kevin D.
    de Cremoux, Patricia
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Viovy, Jean-Louis
    Automated microdroplet platform for sample manipulation and polymerase chain reaction2006In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 78, no 22, p. 7722-7728Article in journal (Refereed)
    Abstract [en]

    We present a fully automated system performing continuous sampling, reagent mixing, and polymerase chain reaction (PCR) in microdroplets transported in immiscible oil. Sample preparation and analysis are totally automated, using an original injection method from a modified 96-well plate layered with three superimposed liquid layers and in-capillary laser-induced fluorescence endpoint detection. The process is continuous, allowing sample droplets to be carried uninterruptedly into the reaction zone while new drops are aspirated from the sample plate. Reproducible amplification, negligible cross-contamination, and detection of low sample concentrations were demonstrated on numerous consecutive sample drops. The system, which opens the route to strong reagents and labor savings in high-throughput applications, was validated on the clinically relevant quantification of progesterone receptor gene expression in human breast cancer cell lines.

  • 15. Chilo, J.
    et al.
    Horvath, G.
    Lindblad, Thomas
    KTH, School of Engineering Sciences (SCI), Physics.
    Olsson, R.
    Redeby, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    A flexible electronic nose for odor discrimination using different methods of classification2009In: 2009 16th IEEE-NPSS Real Time Conference - Conference Record, 2009, p. 317-320Conference paper (Refereed)
    Abstract [en]

    Ovarian cancer is one of the leading causes of death from cancer in women. The lifetime risk is around 1.5%, which makes it the second most common gynecologic malignancy (the first one being breast cancer). To have a definitive diagnose, a surgical procedure is generally required and suspicious areas (samples) will be removed and sent for microscopic and other analysis. This paper describes the result of a pilot study in which an electronic nose is used to "smell" the aforementioned samples, analyze the multi-sensor signals and have a close to real-time answer on the detection of cancer. Besides being fast, the detection method is inexpensive and simple. Experimental analysis using real ovarian carcinoma samples shows that the use of proper algorithms for analysis of the multi-sensor data from the electronic nose yielded surprisingly good results with more than 77% classification rate. The electronic nose used in this pilot study was originally developed to be used as a "bomb dog" and can distinguish between e.g. TNT, Dynamex, Prillit. However, it was constructed to be a flexible multi-sensor device and the individual (16) sensors can easily be replaced/exchanged. This is suggestive for further investigations to obtain even better results with new, specific sensors. In another pilot experiment, headspace of an ovarian carcinoma sample and a control sample were analyzed using gas chromatography-mass spectrometry. Significant differences in chemical composition and compound levels were recorded, which would explain the different response obtained with the electronic nose.

  • 16.
    Ek, Patrik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Mass Spectrometry with Electrospray Ionization from an Adjustable Gap2008Licentiate thesis, comprehensive summary (Other scientific)
    Abstract [en]

    In this thesis the fabrication and analytical evaluation of two new electrospray emitters utilized for mass spectrometry analysis is presented. The emitters are based on a new concept, where the spray orifice can be varied in size. The thesis is based on two papers.

    All present-day nanoelectrospray emitters have fixed dimensions. The range of the applicable flow rate for such an emitter is therefore rather limited and exchange of emitters may be necessary from one experiment to another. Optimization of the signal of the analyte ions is also limited to adjustments of the applied voltage or the distance between the emitter and the mass spectrometer inlet. Furthermore, clogging can occur in emitters with fixed dimensions of narrow orifice sizes. In this thesis, electrospray emitters with a variable size of the spray orifice are proposed. An open gap between two thin substrates is filled with sample solution via a liquid bridge from a capillary. Electrospray is generated at the end point of the gap, which can be varied in width.

    In Paper I, electrospray emitters fabricated in polyethylene terephthalate have been evaluated. Triangular tips are manually cut from the polymer film. The tips are mounted to form a gap between the edges of the tips. The gap wall surfaces are subjected to a hydrophilic surface treatment to increase the wetting of the gap walls.

    In Paper II, silicon electrospray chips with high precision are fabricated and evaluated. A thin beam, elevated from the bulk silicon chip is fabricated by means of deep reactive ion etching. The top surfaces of the beams of two chips act as a sample conduit when mounted in the electrospray setup. An anisotropic etching step with KOH of the intersecting <100> crystal planes results in a very sharp spray point. The emitters were given a hydrophobic surface treatment except for the hydrophilic gap walls.

    For both emitter designs, the gap width has been adjusted during the experiments without any interruption of the electrospray. For a continuously applied peptide mixture, a shift towards higher charge states and increased signal to noise ratios could be observed when decreasing the gap width. The limit of detection has been investigated and the silicon chips have been interfaced with capillary electrophoresis.

  • 17.
    Ek, Patrik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    New methods for sensitive analysis with nanoelectrospray ionization mass spectrometry2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, new methods that address some current limitations in nanoelectrospray mass spectrometry (nESI-MS) analysis are presented. One of the major objectives is the potential gain in sensitivity that can be obtained when employing the proposed techniques.

    In the first part of this thesis, a new emitter, based on the generation of electrospray from a spray orifice with variable size, is presented. Electrospray is generated from an open gap between the edges of two individually mounted, pointed tips. The fabrication and evaluation of two different types of such emitters is presented; an ESI emitter fabricated from polyethylene terephtalate (Paper I), and a high-precision silicon device (Paper II). Both emitters were surface-treated in a selective way for an improved wetting of the gap and to confine the sample solution into the gap.

    In the second part of this thesis, different methods for improved sensitivity of nESI-MS analysis have been developed. In Paper III, a method for nESI-MS analysis from discrete sample volumes down to 1.5 nL is presented, using commercially available nESI needles. When analyzing attomole amounts of analyte in such a small volume of sample, an increased sensitivity was obtained, compared to when analyzing equal amounts in conventional nESI-MS analysis. To be able to analyze smaller sample volumes, needles with a narrower orifice and a higher flow resistance were needed. This triggered the development of a new method for fabrication of fused silica nESI needles (Paper IV). The fabrication is based on melting of a fused silica capillary by means of a rotating plasma, prior to pulling the capillary into a fine tip. Using the described technique, needles with sub-micrometer orifices could be fabricated. Such needles enabled the analysis of sample volumes down to 275 pL, and a further improvement of the sensitivity was obtained. In a final project (Paper V), nESI-MS was used to study the aggregation behavior of Aβ peptides, related to Alzheimer’s disease. An immunoprecipitation followed by nESI-MS was employed. This technique was also utilized to study the selectivity of the antibodies utilized.

  • 18.
    Ek, Patrik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    New Method for Fabrication of Fused Silica Emitters with Submicrometer Orifices for Nanoelectrospray Mass Spectrometry2011In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 83, no 20, p. 7771-7777Article in journal (Refereed)
    Abstract [en]

    In this paper, we describe a new method for fabrication of nanoelectrospray emitters. The needles were pulled from fused silica capillary tubing, which was melted by means of a plasma, formed by electrical discharges between two pointed platinum electrodes. A key feature of the pulling device is a rotating configuration of the electrodes, which results in an even radial heating of the capillary. The construction of the setup is straightforward, and needles with a variety of shapes can be fabricated, including orifices of submicrometer dimensions. Pulled needles with long tapered tips and an orifice of 0.5 mu m were utilized for electrospray ionization mass spectrometry (ESI-MS) of discrete sample volumes down to 275 pL. The picoliter-sized samples were transferred into the tip of the needle from a silicon microchip by aspiration. To avoid a rapid evaporation of the sample, all manipulations were performed under a cover of a fluorocarbon liquid. The limit of detection was measured to be ca. 20 attomole for insulin (chain B, oxidized).

  • 19.
    Ek, Patrik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Schönberg, Tommy
    Sjödahl, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Jacksén, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Vieider, Christian
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Electrospray Ionization from an Adjustable Gap between two Silicon Chips2009In: Journal of Mass Spectrometry, ISSN 1076-5174, E-ISSN 1096-9888, Vol. 44, no 2, p. 171-181Article in journal (Refereed)
    Abstract [en]

    In this paper, a silicon chip - based electrospray emitter with a variable orifice size is presented. The device consists of two chips, with a thin beam elevating from the center of each of the chips. The chips are individually mounted to form an open gap of a narrow, uniform width between the top areas of the beams. The electrospray is generated at the endpoint of the gap, where the spray point is formed by the very sharp intersection between the crystal planes of the < 100 > silicon chips. Sample solution is applied to the rear end of the gap from a capillary via a liquid bridge, and capillary forces ensure a spontaneous imbibition of the gap. The sample solution is confined to the gap by means of a hydrophobic treatment of the surfaces surrounding the gap, as well as the geometrical boundaries formed by the edges of the gap walls. The gap width could be adjusted between 1 and 25 μm during electrospray experiments without suffering from any interruption of the electrospray process. Using a peptide sample solution, a shift toward higher charge states and increased signal-to-noise ratios was observed when the gap width was decreased. The limit of detection for the peptide insulin (chain B, oxidized) was approximately 4 nM. We also show a successful interfacing of the electrospray setup with capillary electrophoresis.

  • 20.
    Ek, Patrik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Sjödahl, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Electrospray Ionization from a Gap with Adjustable Width2006In: Rapid Communications in Mass Spectrometry, ISSN 0951-4198, E-ISSN 1097-0231, Vol. 20, no 21, p. 3176-3182Article in journal (Refereed)
    Abstract [en]

    In this paper, we present a new concept for electrospray ionization mass spectrometry, where the sample is applied in a gap which is formed between the edges of two triangular-shaped tips. The size of the spray orifice can be changed by varying the gap width. The tips were fabricated from polyethylene terephthalate film with a thickness of 36 μm. To improve the wetting of the gap and sample confinement, the edges of the tips forming the gap were hydrophilized by means of silicon dioxide deposition. Electrospray was performed with gap widths between 1 and 36 μm and flow rates down to 75 nL/min. The gap width could be adjusted in situ during the mass spectrometry experiments and nozzle clogging could be managed by simply widening the gap. Using angiotensin I as analyte, the signal-to-noise ratio increased as the gap width was decreased, and a shift towards higher charge states was observed. The detection limit for angiotensin I was in the low nM range.

  • 21.
    Ek, Patrik
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Stjernström, Mårten
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Electrospray ionization mass spectrometry from discrete nanoliter-sized sample volumes2010In: Rapid Communications in Mass Spectrometry, ISSN 0951-4198, E-ISSN 1097-0231, Vol. 24, no 17, p. 2561-2568Article in journal (Refereed)
    Abstract [en]

    We describe a method for nanoelectrospray ionization mass spectrometry (nESI-MS) of very small sample volumes. Nanoliter-sized sample droplets were taken up by suction into a nanoelectrospray needle from a silicon microchip prior to ESI. To avoid a rapid evaporation of the small sample volumes, all manipulation steps were performed under a cover of fluorocarbon liquid. Sample volumes down to 1.5 nL were successfully analyzed, and an absolute limit of detection of 105 attomole of insulin (chain B, oxidized) was obtained. The open access to the sample droplets on the silicon chip provides the possibility to add reagents to the sample droplets and perform chemical reactions under an extended period of time. This was demonstrated in an example where we performed a tryptic digestion of cytochrome C in a nanoliter-sized sample volume for 2.5h, followed by monitoring the outcome of the reaction with nESI-MS. The technology was also utilized for tandem mass spectrometry (MS/MS) sequencing analysis of a 2 nL solution of angiotensin I.

  • 22.
    Emmer, Åsa
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Enzymatic protein digest in chip-based nanovials with immobilized proteolytic enzymes2005In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 542, no 2, p. 137-143Article in journal (Refereed)
    Abstract [en]

    In the present work, protein digest reactions in silicon-based microchips, coated with immobilized proteolytic enzymes, have been carried out. The performance of such vials, modified with trypsin or chymotrypsin, was tested with myoglobin as a substrate. Capillary electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry were utilized for analysis of the digests, and the influence of different instrumentation setups. immobilization procedures and reaction conditions are discussed.

  • 23.
    Gantelius, Jesper
    et al.
    KTH, School of Biotechnology (BIO), Nano Biotechnology.
    Hartmann, Michael
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics.
    Roeraade, Johan
    Andersson-Svahn, Helene
    KTH, School of Biotechnology (BIO), Nano Biotechnology.
    Joos, Thomas O
    Magnetic bead-based detection of autoimmune responses using protein microarrays.2009In: New biotechnology, ISSN 1871-6784, Vol. 26, p. 269-276Article in journal (Refereed)
    Abstract [en]

    In the present study, a magnetic bead-based detection approach for protein microarrays is described as an alternative approach to the commonly used fluorescence-based detection system. Using the bead-based detection approach with applied magnetic force, it was possible to perform the detection step more rapidly as a result of the accelerated binding between the captured analyte in the microspot and the detection antibody, which was coupled to the magnetic beads. The resulting strong opacity shift on the microspots could be recorded with an ordinary flatbed scanner. In the context of autoimmunity, a set of 24 serum samples was analyzed for the presence of antibodies against 12 autoantigens using standard fluorescence and magnetic bead-based detection methods. Dynamic range, sensitivity, and specificity were determined for both detection methods. We propose from our findings that the magnetic bead-based detection option provides a simplified and cost effective readout method for protein microarrays.

  • 24. Gao, Qiuju
    et al.
    Araia, Musie
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Leck, Caroline
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Characterization of exopolysaccharides in marine colloids by capillary electrophoresis with indirect UV detection2010In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 662, no 2, p. 193-199Article in journal (Refereed)
    Abstract [en]

    A method was established using capillary electrophoresis with indirect UV detection for analysis of monosaccharides liberated from exopolysaccharides by acidic hydrolysis. Tangential flow filtration was used to isolate high molecular weight polysaccharides from seawater. The capillary electrophoresis method included the use of a background electrolyte consisting of 2,6-dimethoxyphenol and cetyltrimethylammonium bromide. Several neutral sugars commonly existing in marine polysaccharides were separated under optimized conditions. The relative standard deviations were between 1.3% and 2.3% for relative migration time and 1.3-2.5% for peak height. Detection limits (at S/N 3) were in the range of 27.2-47.8 mu M. The proposed approach was applied to the analysis of hydrolyzed colloidal polysaccharides in seawater collected from the Baltic Sea. Nanomolar levels of liberated monosaccharides in seawater samples can be detected by preconcentration up to 30,000 times.

  • 25. Gonzalez, Nelida J. D.
    et al.
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Pettersson Redeby, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Noziere, Barbara
    Krejci, Radovan
    Pei, Yuxin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Dommen, Josef
    Prevot, Andre S. H.
    New method for resolving the enantiomeric composition of 2-methyltetrols in atmospheric organic aerosols2011In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1218, no 51, p. 9288-9294Article in journal (Refereed)
    Abstract [en]

    In order to facilitate the determination of the primary and secondary origin of atmospheric organic aerosols, a novel method involving chiral capillary gas chromatography coupled with mass spectrometry has been developed and validated. The method was focused on the analysis of 2-methylerythritol and 2-methylthreitol, considered to be tracers of secondary organic aerosols from the oxidation of atmospheric isoprene. The method was validated by performing various tests using authentic standards, including pure enantiomeric standards. The result showed that the analytical method itself does not affect the enantiomeric composition of the samples analyzed. The method was applied on atmospheric aerosols from a boreal forest collected in Aspvreten, Sweden and on laboratory samples obtained from liquid phase oxidation of isoprene and smog chamber experiments. Aerosol samples contained one enantiomer of 2-methylerythritol in significantly larger quantities than the others. In contrast, the liquid-phase oxidation of isoprene and its gas-phase oxidation in the smog chamber produced all enantiomers in equal quantities. The results obtained where the enantiomer fraction, EF, is larger than 0.50 suggest that 2-methyltetrols in atmospheric aerosols may also have biological origin. Information about the differences between enantiomer fractions obtained using this method brings new insights in the area of atmospheric aerosols.

  • 26.
    Hamberg, Anders
    et al.
    KTH, School of Biotechnology (BIO), Biochemistry.
    Kempka, Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Sjödahl, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Hult, Karl
    KTH, School of Biotechnology (BIO), Biochemistry.
    C-terminal ladder sequencing of peptides using an alternative nucleophile in carboxypeptidase Y digests2006In: Analytical Biochemistry, ISSN 0003-2697, E-ISSN 1096-0309, Vol. 357, no 2, p. 167-172Article in journal (Refereed)
    Abstract [en]

     A method for improved sequence coverage in C-terminal sequencing of peptides, based on carboxypeptidase digestion, is described. In conventional carboxypeptidase digestions, the peptide substrate is usually extensively degraded and a full amino acid sequence cannot be obtained due to the lack of a complete peptide ladder. In the presented method, a protecting group is introduced at the C terminus of a fraction of the peptide fragments formed in the digest, and thereby further degradation of the C-terminally modified peptides are slowed down. The protecting group was attached to the C-terminal amino acid through a carboxypeptidase-catalyzed reaction with an alternative nucleophile, 2-pyridylmethylamine, added to the aqueous digestion buffer. Six peptides were digested by carboxypeptidase Y with and without 2-pyridylmethylamine present in the digest buffer, and the resulting fragments subsequently were analyzed with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Comparison of the two digestion methods showed that the probability of successful ladder sequencing increased, by more than 50% using 2-pyridylmethylamine as a competing nucleophile in carboxypeptidase Y digests.

  • 27.
    Hartmann, Michael
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Microfluidic Methods for Protein Microarrays2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Protein microarray technology has an enormous potential for in vitro diagnostics (IVD)1. Miniaturized and parallelized immunoassays are powerful tools to measure dozens of parameters from minute amounts of sample, whilst only requiring small amounts of reagent. Protein microarrays have become well-established research tools in basic and applied research and the first diagnostic products are already released on the market. However, in order for protein microarrays to become broadly accepted tools in IVD, a number of criteria have to be fulfilled concerning robustness and automation. Robustness and automation are key demands to improve assay performance and reliability of multiplexed assays, and to minimize the time of analysis.

    These key demands are addressed in this thesis and novel methods and techniques concerning assay automation, array fabrication as well as performance and detection strategies related to protein microarrays are presented and discussed. In the first paper an automated assay format, based on planar protein microarrays is described and evaluated by the detection of several auto-antibodies from human serum and by quantification of matrix metalloproteases present in plasma. Diffusion-rate limited solid phase reactions were enhanced by microagitation, using the surface acoustic wave technology, resulting in a slightly increased signal-to-noise ratio. In the second paper of the thesis, a novel multiplexed immunoassay system was developed by combining a direct immunoassay with a competitive system. This set-up allows quantification of analytes present in widely varying concentrations within a single multiplex assay. In the third paper, a new concept for sample deposition is introduced, addressing contemporary problems of contact or non-contact microarrayers in protein microarray fabrication.

    In the fourth paper, a magnetic bead-based detection method for protein microarrays is described as a cost-effective alternative approach to the commonly used fluorescence-based confocal scanning systems. The magnetic bead-based detection could easily be performed by using an ordinary flatbed scanner. In addition, applying magnetic force to the magnetic bead-based detection approach enables to run the detection step more rapidly. Finally, in paper five, a microfluidic bead-based immunoassay for multiplexed detection of receptor tyrosine kinases in breast cancer tissue is presented. Since the assay is performed inside a capillary, the amounts of sample and reagent material could be reduced by a factor of 30 or more when compared with the current standard protein microarray assay.

  • 28.
    Hartmann, Michael
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Stoll, Dieter
    Templin, Markus F.
    Joos, Thomas O.
    Protein microarrays for diagnostic assays2009In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 393, no 5, p. 1407-1416Article in journal (Refereed)
    Abstract [en]

    Protein microarray technology has enormous potential for in vitro diagnostics (IVD). Miniaturized parallelized immunoassays are perfectly suited to generating a maximum of diagnostically relevant information from minute amounts of sample whilst only requiring small amounts of reagent. Protein microarrays have become well-established research tools in basic and applied research and the first products are already on the market. This article reviews the current state of protein microarrays and discusses developments and future demands relating to protein arrays in their role as multiplexed immunoassays in the field of diagnostics.

  • 29.
    Hartmann, Michael
    et al.
    NMI–Natural and Medical Sciences Institute at the University of Tübingen.
    Schrenk, Monika
    Dottinger, Anette
    Nagel, Sarah
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Joos, Thomas O.
    Templin, Markus F.
    Expanding assay dynamics: A combined competitive and direct assay system for the quantification of proteins in multiplexed Immunoassays2008In: Clinical Chemistry, ISSN 0009-9147, E-ISSN 1530-8561, Vol. 54, no 6, p. 956-963Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The concurrent detection and quantification of analytes that vary widely in concentration present a principal problem in multiplexed assay systems. Combining competitive and sandwich immunoassays permits coverage of a wide concentration range, and both highly abundant molecules and analytes present in low concentration can be quantified within the same assay. METHODS: The use of different fluorescence readout channels allows the parallel use of a competitive system and a sandwich configuration. The 2 generated assay signals are combined and used to calculate the amount of analyte. The measurement range can be adjusted by varying the competitor concentration, and an extension of the assay system's dynamic range is possible. RESULTS: We implemented the method in a planar protein microarray-based autoimmune assay to detect autoantibodies against 13 autoantigens and to measure the concentration of a highly abundant protein, total human IgG, in one assay. Our results for autoantibody detection and IgG quantification agreed with results obtained with commercially available assays. The use of 2 readout channels in the protein microarray-based system reduced spot-to-spot variation and intraassay variation. CONCLUSIONS: By combining a direct immunoassay with a competitive system, analytes present in widely varying concentrations can be quantified within a single multiplex assay. Introducing a second readout channel for analyte quantification is an effective tool for spot-to-spot normalization and helps to lower intraassay variation.

  • 30.
    Hartmann, Michael
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Sjödahl, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Stjernström, Mårten
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Pettersson Redeby, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Joos, Thomas
    NMI–Natural and Medical Sciences Institute at the University of Tübingen.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Non-contact protein microarray fabrication using a procedure based on liquid bridge formation2009In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 393, no 2, p. 591-598Article in journal (Refereed)
    Abstract [en]

    Contemporary microarrayers of contact or noncontact format used in protein microarray fabrication still suffer from a number of problems, e. g. generation of satellite spots, inhomogeneous spots, misplaced or even absent spots, and sample carryover. In this paper, a new concept of non-contact sample deposition that reduces such problems is introduced. To show the potential and robustness of this pressure-assisted deposition technique, different sample solutions known to cause severe problems or to be even impossible to print with conventional microarrayers were accurately printed. The samples included 200 mg mL(-1) human serum albumin, highly concentrated sticky cell adhesion proteins, pure high-salt cell-lysis buffer, pure DMSO, and a suspension of 5-mu m polystyrene beads. Additionally, a water-immiscible liquid fluorocarbon, which was shown not to affect the functionality of the capture molecules, was employed as a lid to reduce evaporation during microarray printing. The fluorocarbon liquid lid was shown to circumvent hydrolysis of water-sensitive activated surfaces during long-term deposition procedures.

  • 31.
    Hedberg, Yolanda
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Lundin, Maria
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Jacksén, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Blomberg, Eva
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Wallinder, Inger Odnevall
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Chromium-protein complexation studies by adsorptive cathodic stripping voltammetry and MALDI-TOF-MS2012In: Journal of Applied Electrochemistry, ISSN 0021-891X, E-ISSN 1572-8838, Vol. 42, no 5, p. 349-358Article in journal (Refereed)
    Abstract [en]

    A methodology using stripping voltammetry has been elaborated to enable sensitive and reliable protein-chromium complexation measurements. Disturbing effects caused by adsorption of proteins on the mercury electrode were addressed. At low concentrations of proteins (< 60-85 nM), chromium-protein complexation measurements were possible. Chromium(VI) complexation was quantitatively determined using differently sized, charged, and structured proteins: serum albumin (human and bovine), lysozyme, and mucin. Generated results showed a strong relation between complexation and protein size, concentration, and the number of amino acids per protein mass. Complexation increased nonlinearly with increasing protein concentrations. The nature of this complexation was based on weak interactions judged from combined results with MALDI-TOF-MS and adsorptive cathodic stripping voltammetry.

  • 32.
    Jacksén, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Improved techniques for CE and MALDI-MS including microfluidic hyphenations foranalysis of biomolecules2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis, improved techniques for biomolecule analysis using capillary electrophoresis (CE) and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and hyphenations between those have been presented.A pre-concentration method which is possible to apply in both techniques, has also been investigated.

    In this work the off-line MS mode has been used either in the form of fractionation (Paper I) or by incorporating the MALDI target in the CE separation system (Paper II).In Paper I, a protocol for CE-MALDI analysis of cyanogen bromide digested bacteriorhodopsin (BR) peptides as model integral membrane protein peptides were established. Also, an improved protocol for partially automated manufacturing of a concentration MALDI-target plate is presented. The design of the targets was suitable for the fractions from the CE.

    A novel technique for the integration of CE to MALDI-MS using a closed-open-closed system is presented in Paper II, where the open part is a micro canal functioning as a MALDI target window. A protein separation was obtained and detected with MALDI-MS analysis in the micro canal.

    A method has been developed for detection of monosaccharides originating from hydrolysis of a single wood fiber performed in a micro channel, with an incorporated electromigration pre-concentration step preceding CE analysis in Paper III. The pre-concentration showed to be highly complex due to the fact that several parameters are included that affecting each other.

    In Paper IV a protocol using enzymatic digestion, MALDI-TOF-MS and CE with laser induced fluorescence (LIF) detection for the investigation of the degree of substitution of fluorescein isothiocyanate (FITC) to bovine serum albumin (BSA), as a contact allergen model system for protein-hapten binding in the skin, is presented. The intention of a further CE-MALDI hyphenation has been considered during the work.

    In Paper V 2,6-dihydroxyacetophenone (DHAP) was investigated, showing promising MALDI-MS matrix properties for hydrophobic proteins and peptides. 2,5-dihydroxybenzoic acid (DHB) was undoubtedly the better matrix for the hydrophilic proteins, but its performance for the larger and hydrophobic peptides was not optimal. Consequently, DHAP can be used as a compliment matrix for improved analysis of hydrophobic analytes.

  • 33.
    Jacksén, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Dahl, Kenneth
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Karlberg, Ann-Therese
    Redeby, Theres
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Capillary electrophoresis separation and matrix-assisted laser desorption/ionization mass spectrometry characterization of bovine serum albumin fluorescein isothiocyanate conjugates2010In: Journal of chromatography. B, ISSN 1570-0232, E-ISSN 1873-376X, Vol. 878, no 15-16, p. 1125-1134Article in journal (Refereed)
    Abstract [en]

    A protocol using enzymatic digestion, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and capillary electrophoresis with laser induced fluorescence detection (CE-LIF) for the investigation of the binding of the fluorescent contact allergen fluorescein isothiocyanate (FITC) to the 66 kDa large protein bovine serum albumin (BSA), as a model system for protein-hapten binding in the skin, is presented. Mass spectra of BSA-FITC digestions, using trypsin and chymotrypsin, respectively, provided sequence coverage of 97%. To investigate the number of FITC-bound peptides using CE-LIF separation, three different buffer salts at four different pH levels were evaluated. The use of 20 mM sodium citrate pH 6.5 as well as 20 mM sodium phosphate pH 6.5 or pH 7.5 as background electrolyte revealed high numbers of peptides with at least one bound FITC. The effect of the electrolyte counter ion on MALDI-MS was investigated and was found to have effect on the MALDI spectra signal-to-noise (S/N) at 50 mM but not at 10 m M. Of the 60 theoretical FITC-binding sites in BSA this MALDI-MS protocol presents 30 defined. 28 possible and 2 non-binding sites for FITC. (C) 2010 Elsevier B.V. All rights reserved.

  • 34.
    Jacksén, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    CE analysis of single wood cells performing hydrolysis and preconcentration inopen micro channelsManuscript (preprint) (Other academic)
  • 35.
    Jacksén, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Evaluation of 2,6-dihydroxyacetophenone as MALDI matrix for analysis ofhydrophobic proteins and peptidesManuscript (preprint) (Other academic)
  • 36.
    Jacksén, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Frisk, Thomas
    KTH, School of Electrical Engineering (EES), Microsystem Technology.
    Redeby, Theres
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Parmar, Varun
    KTH, School of Electrical Engineering (EES), Microsystem Technology.
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering (EES), Microsystem Technology.
    Stemme, Göran
    KTH, School of Electrical Engineering (EES), Microsystem Technology.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Off-line integration of CE and MALDI-MS using a closed-open-closed microchannel system2007In: Electrophoresis, ISSN 0173-0835, E-ISSN 1522-2683, Vol. 28, no 14, p. 2458-2465Article in journal (Refereed)
    Abstract [en]

    In this work, a new technique for off-line hyphenation between CE and MALDI-MS is presented. Two closed fused-silica capillaries were connected via a silicon chip comprising an open microcanal. The EOF in the system was evaluated using mesityloxide or leucine-enkephalin as a sample and with a running buffer that rendered the analyte neutrally charged. Comparison was made between the EOF in a closed system (first capillary solely included in the electrical circuit) and in a closed-open system (first capillary and microcanal included in the electrical circuit). It was concluded that the experimental values of the EOF agreed with the theory. The influence of the capillary outer diameter on the peak dispersion was investigated using a closed-open-closed system (first capillary, microcanal and second capillary included in the electrical circuit). It was clearly seen that a capillary with 375 mu m od induced considerably higher peak dispersion than a 150 mu m od capillary, due to a larger liquid dead volume in the connection between the first capillary outlet and the microcanal. Mass spectrometric analysis has also been performed following CE separation runs in a closed-open-closed system with cytochrome c and lysozyme as model proteins. It was demonstrated that a signal distribution profile of the separated analytes could be recorded over a 30 mm long microcanal.

  • 37.
    Jacksén, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Redeby, Theres
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Capillary electrophoretic separation and fractionation of hydrophobic peptides onto a pre-structured matrix assisted laser desorption/ionization target for mass spectrometric analysis2006In: Journal of Separation Science, ISSN 1615-9306, E-ISSN 1615-9314, Vol. 29, no 2, p. 288-295Article in journal (Refereed)
    Abstract [en]

     A CE separation of hydrophobic peptides followed by fractionation onto a prestructured MALDI target and off-line MS analysis was performed. An improved and partially automated manufacturing procedure of the previously described MALDI target is presented. This target is structurally coated with silicone and especially developed for hydrophobic peptides and proteins. Here, the target plate was designed specifically for the CE fraction collection. Different solvents were evaluated to meet the requirements of peptide solubility and compatibility to both the CE and MALDI methods and to the fractionation procedure. CE-MALDI-MS analysis of nine highly hydrophobic peptides from cyanogen bromide-digested bacteriorhodopsin is demonstrated.

  • 38. Jarmeus, Alf
    et al.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    CE determination of monosaccharides in pulp using indirect detection and curve-fitting2008In: Chromatographia, ISSN 0009-5893, E-ISSN 1612-1112, Vol. 67, no 1-2, p. 151-155Article in journal (Refereed)
    Abstract [en]

    In the present work a capillary electrophoretic method for the analysis of monosaccharides utilizing indirect UV-detection has been developed. Different probes for indirect detection have been assessed using model carbohydrate samples. Background electrolytes with or without addition of cetyltrimethylammonium bromide have also been evaluated regarding the separation power. Furthermore, a curve-fitting algorithm has been introduced to increase the separation resolution. The optimized method has been used for analysis of monosaccharides from an acidically hydrolyzed pulp sample.

  • 39.
    Jelger, Pär
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Stjernström, Mårten
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Margulis, W.
    Pasiskevicius, Valdas
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Laurell, Fredrik
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    All-fiber capillary electrophoresis with novel axial in-line detection2008In: : Vols. 1-9, IEEE , 2008, p. 556-557Conference paper (Refereed)
    Abstract [en]

    An all-fiber capillary electrophoresis system is presented. It enables sensitive in-line electrophoresis separation and fluorescence detection. As a proof of concept, a biological sample (FITC-BSA) is electrokinetically separated and analyzed.

  • 40.
    Lin, Yuan
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Amberg, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Aldaeus, Fredrik
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Simulation of dielectrophoretic motion of microparticles using a molecular dynamics approach2006In: 4th International Conference on Nanochannels, Microchannels and Minichannels, ICNMM2006, 2006, p. 1-10Conference paper (Refereed)
    Abstract [en]

    We model and simulate dielectrophoresis of microscale particles using the finite element method. A soft sphere system molecular dynamics model is presented, which solves a set of equations for the motion of every particle. The model couples most of the significant forces, i.e. the dielectrophoresis (DEP) forces, the particle-particle electrostatic forces, particle-particle interfacial repulsive forces, particle-wall repulsive forces and the hydrodynamic forces in Stokes flow. Since the system of equations is stiff, an implicit scheme is used. To obtain the particle trajectories, a constant time-step is applied. We present some numerical tests computing hydrodynamic force, electrostatic force and DEP force using our model, including simulated trapping of particles in a micro channel by dielectrophoresis. The results are in agreement with the theories and the experimental observations.

  • 41. Noziere, Barbara
    et al.
    Gonzalez, Nelida J. D.
    Borg-Karlson, Anna-Karin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Pei, Yuxin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Pettersson Redeby, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Krejci, Radovan
    Dommen, Josef
    Prevot, Andre S. H.
    Anthonsen, Thorleif
    Atmospheric chemistry in stereo: A new look at secondary organic aerosols from isoprene2011In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 38, p. L11807-Article in journal (Refereed)
    Abstract [en]

    Isoprene, a compound emitted by vegetation, could be a major contributor to secondary organic aerosols (SOA) in the atmosphere. The main evidence for this contribution were the 2-methylbutane-1,2,3,4-tetraols, or 2-methyltetrols (2-methylerythritol and 2-methylthreitol) present in ambient aerosols. In this work, the four stereoisomers of these tetraols were analyzed in aerosols from Aspvreten, Sweden. 2-C-methyl-D-erythritol was found in excess over its enantiomer in the Spring/Summer, by up to 29% in July. This clearly indicated some biological origins for this enantiomer, consistent with its well-documented production by plants and other living organisms. In addition, a minimum of 20 to 60% of the mass of racemic tetraols appeared from biological origin. Thus, the SOA mass produced by isoprene in the atmosphere is less than what indicated by the 2-methyltetrols in aerosols. Our results also demonstrate that stereochemical speciation can distinguish primary and secondary organic material in atmospheric aerosols.

  • 42.
    Parmar, Varun
    et al.
    KTH, School of Electrical Engineering (EES), Microsystem Technology (Changed name 20121201).
    Redeby, Theres
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Stemme, Göran
    KTH, School of Electrical Engineering (EES), Microsystem Technology (Changed name 20121201).
    Van Der Wijngaart, Wouter
    KTH, School of Electrical Engineering (EES), Microsystem Technology (Changed name 20121201).
    ELECTRO-OSMOTIC FLOW THROUGH CLOSED-OPEN-CLOSED MICROCHANNELS: AN APPROACH TO HYPHENATION OF CAPILLARY ELECTROPHORESIS AND MALDI2006In: 19th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2006), IEEE conference proceedings, 2006, p. 406-409Conference paper (Refereed)
    Abstract [en]

    We suggest electro-osmotic driven flow (EOF) through closed-open-closed microchannels as a novel approach for spatial sample separation using capillary electrophoresis (CE) prior to matrix assisted laser desorption/ionization mass spectroscopy (MALDI-MS). For this purpose we built a system consisting of the series Coupling of a closed fused silica capillary for separation, a microfabricated open microcanal for future MS detection and a second closed fused silica capillary for downstream liquid collection. This work verifies the EOF transport of a peptide sample in such a system with low dispersion.

  • 43.
    Pettersson, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Method for analysis of polar volatile trace components in aqueous samples by gas chromatography2005In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 77, no 10, p. 3365-3371Article in journal (Refereed)
    Abstract [en]

    A new method has been developed for direct analysis of volatile polar trace compounds in aqueous samples by gas chromatography. Water samples are injected onto a short packed precolumn containing anhydrous lithium chloride. A capillary column is coupled in series with the prefractionation column for final separation of the analytes. The enrichment principle of the salt precolumn is reverse to the principles employed in conventional methods such as SPE or SPME in which a sorbent or adsorbent is utilized to trap or concentrate the analytes. Such methods are not efficient for highly polar compounds. In the LiCl pre-column concept, the water matrix is strongly retained on the hygroscopic salt, whereas polar as well as nonpolar volatile organic compounds show very low retention and are eluted ahead of the water. After transfer of the analytes to the capillary column, the retained bulk water is removed by backflushing the precolumn at elevated temperature. For direct injections of 120 μL of aqueous samples, the combined time for injection and preseparation is only 3.5 min. With this procedure, direct repetitive automated analyses of highly volatile polar compounds such as methanol or tetrahydrofuran can be performed, and a limit of quantification in the low parts-per-billion region utilizing a flame ionization detector is demonstrated.

  • 44.
    Redeby, Theres
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Carr, H.
    Björk, M.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    A screening procedure for the solubilization of chloroplast membrane proteins from the marine green macroalga Ulva lactuca using RP-HPLC-MALDI-MS2006In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 39, no 1-3, p. 29-36Article in journal (Refereed)
    Abstract [en]

    A protocol for purification and analysis of chloroplast membrane proteins in the green macroalga Ulva lactuca has been developed, including reversed phase high performance liquid chromatography (RP-HPLC) and matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Five different solvents were evaluated for extraction of membrane proteins by three methods. The highest protein yield was achieved when proteins were extracted directly from the chloroplasts using the solvent hexafluoroisopropanol. A range of proteins of increasing hydrophobicity was separated by HPLC. Analysis of both HPLC fractions and non-separated samples by MALDI-TOF-MS revealed proteins with molecular weights spanning between 1 and 376 kDa.

  • 45.
    Redeby, Theres
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Membrane protein and peptide sample handling for MS analysis using a structured MALDI target2005In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Analytical and bioanalyltical chemistry, Vol. 381, no 1, p. 225-232Article in journal (Refereed)
    Abstract [en]

    Different sample handling methods for hydrophobic proteins and peptides were evaluated in association with the utilization of a structured matrix-assisted laser/desorption ionization (MALDI) target for increased sensitivity. The fluorinated organic solvent hexafluoroisopropanol (HFIP) was used for the solubilization of both the full-length protein bacteriorhodopsin (BR) and a cyanogen bromide digest thereof, and compared to the performance of the non-ionic detergents octyl-beta-D-glucopyranoside (OG), dodecyl-beta-D-maltoside (DM), and Triton X-100. A concentrating effect was seen when using the structured MALDI plate for BR dissolved in all the different detergents, of which OG generated the best-quality spectra for the full-length integral membrane protein as well as for the hydrophobic peptides. However, the uneven analyte distribution obtained with the detergent preparations required selective and thus time-consuming acquisition of spectra. When instead HFIP was used as sample solvent, a tenfold increase in sensitivity was achieved for full-length BR. Addition of acids to the HFIP-solubilized sample, or to the MALDI matrix solution, improved the signals for a few of the peptides, while degrading the spectra of others. Consequently, the addition of acid could be used as a complementary sample preparation method for hydrophobic peptides. On-target washing to remove contaminants (e.g., salt) was performed, and a recrystallization protocol for signal improvement specifically suited for hydrophobic peptides is described. Results from digestion and solubilization in different micro centrifuge tubes were examined to determine the influence of different materials on the possible sample loss due to wall adhesion. Studies of sample solution storage times suggest immediate analysis after solubilization to obtain best results.

  • 46.
    Redeby, Theres
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Simple fabrication of a structured matrix-assisted laser desorption/ionization target coating for increased sensitivity in mass spectrometric analysis of membrane proteins2004In: Rapid Communications in Mass Spectrometry, ISSN 0951-4198, E-ISSN 1097-0231, Vol. 18, no 10, p. 1161-1166Article in journal (Refereed)
    Abstract [en]

    A new prestructured target plate for matrix-assisted laser desorption/ionization (MALDI) was developed specifically for hydrophobic integral membrane proteins. This sample support contains predefined concentrating sample spots with a focusing effect on droplets with a high content of hexafluoroisopropanol (HFIP). This fluorinated organic solvent is advantageous for solubilizing hydrophobic proteins that are not soluble in water or the organic solvents normally used in sample preparation protocols for MALDI-MS. The prestructured plate was constructed by coating a regular steel plate with a thin layer of a silicone polymer, leaving sample spots of bare steel. Fabrication of the concentrating silicone structure was fast and very straightforward, without expensive or complicated equipment. Removing the layer, and thus regenerating the steel plate, was done by a simple washing procedure. The application and cleaning procedure are not constrained by a particular design of sample support or to any specific brand of mass spectrometer. When using the prestructured MALDI plate with HFIP as the sample solvent for 17 pmol of a cyanogen bromide digest of the highly hydrophobic membrane protein bacteriorhodopsin, an improved focusing effect and an increase of more than five-fold in average sensitivity were observed, compared with a regular steel target. Experimental results show a two-fold increase in average sensitivity when the new prestructured target plate was used, compared with a commercially available concentrating support

  • 47.
    Rojas, Orlando J.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
    Macakova, Lubica
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
    Blomberg, Eva
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Claesson, Per Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface Chemistry.
    Fluorosurfactant self-assembly at solid/liquid interfaces2002In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 18, no 21, p. 8085-8095Article in journal (Refereed)
    Abstract [en]

    Fluorosurfactants have some unique properties that are advantageously used in a range of applications. Their solutions are commonly in contact with solid surfaces onto which the molecules adsorb. Despite this, the adsorption behavior of fluorosurfactants at solid/liquid interfaces is not sufficiently understood, and there is a need for more information. In this study we focus on cationic fluorosurfactant adsorption on negatively charged hydrophilic surfaces, especially with respect to the adsorbed layer structure, long-range interactions, and adhesion forces. To this end we combined results obtained from bimorph and interferometric surface force instruments and ellipsometry techniques. The initial adsorption to the oppositely charged surfaces occurs due to the electrostatic attraction between the charged headgroups and the surface. Further adsorption, driven by hydrophobic interactions, occurs readily as the surfactant concentration is increased. Surface force and ellipsometric experiments indicate that the surfactants self-assemble in the form of bilayer aggregates. The thickness of the bilayer aggregates was found to be consistent with the molecular structure. Further, ellipsometric measurements indicate that no complete bilayers were formed but rather that bilayer aggregates were present on the surface even at concentrations well above the cmc. Surface force data for low fluorosurfactant concentrations demonstrate that upon compression the bilayer aggregates assembled on the isolated surfaces are transformed, and as a result monolayer structures build up between the surfaces in contact. The force required to attain bilayer-bilayer contact increases with the surfactant bulk concentration due to an increase in the repulsive double-layer force. The force required to drive out surfactant molecules to achieve monolayer-monolayer contact also increases with surfactant concentration. Above the cmc some additional aggregates are present on top of the bilayer aggregates coating the surface. The adhesion found between the monolayer aggregates is an order of magnitude larger than between the bilayer aggregates. However, it is an order of magnitude lower than the corresponding value for Langmuir-Blodgett monolayer films of similar fluorosurfactants.

  • 48. Sjodahl, Johan
    et al.
    Lindberg, Peter
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Separation of oligonucleotides in N-methyl-formamide-based polymer matrices by capillary electrophoresis2007In: Journal of Separation Science, ISSN 1615-9306, E-ISSN 1615-9314, Vol. 30, no 1, p. 104-109Article in journal (Refereed)
    Abstract [en]

    N-Methylformamide (NMF)-based matrices for capillary electrophoretic separation of nucleic acids have been developed. The use of an organic solvent as liquid base for the separation matrices allowed a hydrophobic polymer, C-16-derivatized 2-hydroxyethyl cellulose (HEC), to be employed as structural element in the sieving medium. With a matrix consisting of 5% w/v of this polymer dissolved in NMF containing 50 mM ammonium acetate, p(dA)(12-18) and p(dA)(40-60) oligonucleoticles were baseline separated. The addition of ammonium acetate to the buffer and separation matrix resulted in enhanced separation efficiency. Furthermore, it was possible to tailor the sieving performance of the separation medium by the use of a binary mixture of C16-derivatized HEC and PVP. Differences in sieving behavior of the various matrices evaluated are discussed.

  • 49.
    Sjödahl, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Kempka, Martin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Hermansson, Kersti
    KTH, School of Biotechnology (BIO), Theoretical Chemistry.
    Thorsén, Anders
    Roeraade, Johan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Chip with twin anchors for reduced ion suppression and improved mass accuracy in MALDI-TOF mass spectrometry2005In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 77, no 3, p. 827-832Article in journal (Refereed)
    Abstract [en]

    A new sample target for matrix-assisted laser desorption/ionization mass spectrometry is described. The target consists of pairs of elevated hydrophilic anchor surfaces, positioned in proximity onto a microchip. The anchors are used to obtain separate preparations of sample and external standard, while both anchor surfaces are irradiated simultaneously by the laser pulse. Using a standard, based on six peptides, a 2-fold improvement in mass accuracy is observed. Also, ion suppression is significantly reduced. With a one peptide calibration standard, 22 tryptic fragments from a BSA digest are detected using the twin-anchor concept, whereas only 14 fragments are detected when the sample and standard are laser-ablated as a mixture from a conventional anchor target. A volume of similar to30 pL of sample solution of angiotensin I is transferred to the anchor surface, under a thin layer of a perfluorocarbon, to prevent a concentration bias due to evaporation. With this arrangement, a detection limit of 1.5 amol was achieved with a signal-to-noise ratio of 22:1.

  • 50.
    Stjernström, Mårten
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Laurell, Fredrik
    KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.
    Brismar, Hjalmar
    Diode-pumped solid state laser light sources for confocal laser scanning fluorescence microscopy2008In: Journal of laser applications, ISSN 1042-346X, E-ISSN 1938-1387, Vol. 20, no 3, p. 160-164Article in journal (Refereed)
    Abstract [en]

    Diode-pumped solid-state lasers (DPSSLs) have been integrated as light sources in confocal laser scanning microscopy (CLSM). The standard argon ion laser at 488 rim is compared with a DPSSL operating at 473 run in terms of noise and CLSM image characteristics. The equally high fluorescence image quality together with the many advantageous characteristics inherent to solid-state lasers suggest that excitation using a DPSSL is favored. The application of a dual-line DPSSL emitting at 491 and 532 nm for high resolution CLSM fluorescence imaging is shown for the first time.

12 1 - 50 of 58
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf