Change search
Refine search result
123 1 - 50 of 109
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmadi, Mozhgan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Technology.
    Knoef, Harrie
    Van De Beld, Bert
    Liliedahl, Truls
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Engvall, Klaus
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Development of a PID based on-line tar measurement method: Proof of concept2013In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 113, p. 113-121Article in journal (Refereed)
    Abstract [en]

    In this study, a proof of concept was conducted for an on-line tar analyzer based on photo ionization detection (PID). Tar model compounds (naphthalene, acenaphthene, acenaphthylene, fluorene, indane and indene) were used for the initial investigation of the analysis method. It was found that the analysis method has a high sensitivity and a linear behavior was observed between the PID response and the tar concentration over a wide concentration span. The on-line tar analysis method was successfully validated against the solid phase adsorption (SPA) method using a real producer gas.

  • 2.
    Ahmadi, Mozhgan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Svensson, Erik Elm
    Engvall, Klas
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Application of solid phase microextraction (SPME) as a tar sampling method during real gasificationManuscript (preprint) (Other academic)
  • 3.
    Ahmadi, Mozhgan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Svensson, Erik Elm
    Engvall, Klas
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Application of Solid-Phase Microextraction (SPME) as a Tar Sampling Method2013In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 27, no 7, p. 3853-3860Article in journal (Refereed)
    Abstract [en]

    This paper presents the result of an investigation of the potential use of solid-phase microextraction (SPME) as a tar sampling method. The SPME stationary phase used was 50 mu m of polydimethylsiloxane (PDMS) coated on a fused silica fiber. Tar model compounds normally present in a producer gas from gasifiers, benzene, toluene, indane, indene, naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, and pyrene, were used in the investigation. The adsorbed compounds were analyzed by injection into gas chromatography coupled to a flame ionization detector (GC- FID). The amount of adsorbed tar on the SPME fiber determined the detection and quantification limits for the method. The results showed that adsorption of tar model compounds on the SPME fiber increased with decreasing polarity. The adsorption of compounds increased with a decreasing temperature, enabling a possibility to tune the sensitivity of the method by changing the sampling temperature. Conclusively, SPME has a very high potential as a tar sampling method and, in combination with GC- FID trace analysis of tar, is a feasible application.

  • 4.
    Ahmadi Svensson, Mozhgan
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Sampling and Analysis of Tars by Means of Photo Ionization Detection and Solid Phase Micro Extraction2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Gasification of biomass will likely play an important role in the production of energy and chemicals in a future sustainable society. However, during gasification impurities, such as tars, will be formed. Tars may cause fouling and blockages of equipment downstream the gasifier. It is therefore important to minimize the formation of tars, alternatively to remove the formed tars. These processes need to be monitored, which makes it necessary to develop tar analysis methods suitable for this task.

    This work describes the development of two tar analysis methods, an on-line method based on a photoionization detector (PID) and an off-line method based on solid phase microextraction (SPME). Both methods were successfully validated against the established solid phase adsorption (SPA) method.

    The method based on PID was shown to have a very fast response time. Furthermore, the PID method is selective towards tar, but only limited information will be obtained regarding the composition of the tar compounds. The PID method is suitable for applications where it is important to detect fast changes of the tar concentration, i.e. process monitoring.

    The SPME method was shown to be a very sensitive method for qualitative and quantitative tar analysis. The sampling temperature was shown to be crucial for obtaining analysis results with the wanted detection limit. The SPME method is suitable for applications where extremely low detection and quantification limits are needed, i.e. for syngas production.

     

  • 5.
    André, Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    New Methods for the Determination of Sorption Capacities and Sorption-Related Properties of Intact Rock2009Doctoral thesis, comprehensive summary (Other academic)
  • 6.
    André, Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Malmström, Maria
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    Neretnieks, Ivar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Determination of sorption properties of intact rock samples: New methods based on electromigration2009In: Journal of Contaminant Hydrology, ISSN 0169-7722, E-ISSN 1873-6009, Vol. 103, no 3-4, p. 71-81Article in journal (Refereed)
    Abstract [en]

    Two new methods for determining sorption coefficients in large rock samples have been developed. The methods use electromigration as a means to speed up the transport process, allowing for fast equilibration between rock sample and tracer solution. An electrical potential gradient acts as a driving force for transport in addition to the concentration gradient and forces the cations through the rock sample towards the cathode. The electrical potential gradient induces both electromigration and electroosmotic flow with a resulting solute transport that is large compared to diffusive fluxes. In one of the methods, the solute is driven through the sample and collected at the cutlet side. In the other, simpler method, the rock sample is equilibrated by circulating the solute through the sample. The equilibration of rock samples, up to 5 cm in length, with an aqueous solution has been accomplished within days to months. Experiments using cesium as a sorbing tracer yield results consistent with considerably more time demanding in-diffusion experiments. These methods give lower distribution coefficients than those obtained using traditional batch experiments with crushed rock. (C) 2008 Elsevier B.V. All rights reserved.

  • 7.
    André, Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Malmström, Maria
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    Neretnieks, Ivar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Rapid surface area determination of crystalline rock using impedance spectroscopyManuscript (preprint) (Other academic)
  • 8.
    André, Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Malmström, Maria
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    Neretnieks, Ivar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Specific surface area determinations on intact drillcores and evaluation of extrapolation methods for rock matrix surfaces2009In: Journal of Contaminant Hydrology, ISSN 0169-7722, E-ISSN 1873-6009, Vol. 110, no 1-2, p. 1-8Article in journal (Refereed)
    Abstract [en]

    Permanent storage of spent nuclear fuel in crystalline bedrock is investigated in several countries. For this storage scenario, the host rock is the third and final barrier for radionuclide migration. Sorption reactions in the crystalline rock matrix have strong retardative effects on the transport of radionuclides. To assess the barrier properties of the host rock it is important to have sorption data representative of the undisturbed host rock conditions. Sorption data is in the majority of reported cases determined using crushed rock. Crushing has been shown to increase a rock samples sorption capacity by creating additional surfaces. There are several problems with such an extrapolation. In studies where this problem is addressed, simple models relating the specific surface area to the particle size are used to extrapolate experimental data to a value representative of the host rock conditions. In this article, we report and compare surface area data of five size fractions of crushed granite and of 100 mm long drillcores as determined by the Brunauer Emmet Teller (BET)-method using N-2-gas. Special sample holders that could hold large specimen were developed for the BET measurements. Surface area data on rock samples as large as the drillcore has not previously been published. An analysis of this data show that the extrapolated value for intact rock obtained from measurements on crushed material was larger than the determined specific surface area of the drillcores, in some cases with more than 1000%. Our results show that the use of data from crushed material and current models to extrapolate specific surface areas for host rock conditions can lead to over estimation interpretations of sorption ability. The shortcomings of the extrapolation model are discussed and possible explanations for the deviation from experimental data are proposed.

  • 9.
    André, Magnus
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivar
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Malmström, Maria
    KTH, School of Industrial Engineering and Management (ITM), Industrial Ecology.
    Measuring sorption coefficients and BET surface areas on intact drillcore and crushed granite samples2008In: Radiochimica Acta, ISSN 0033-8230, E-ISSN 2193-3405, Vol. 96, no 9-11, p. 673-677Article in journal (Refereed)
    Abstract [en]

    In general sorption coefficients, K-d cat ion exchange capacity, CEC, and BET surface areas are measured on crushed rock samples because it is very time consuming to measure K-d and CEC on larger rock pieces as it takes a long time for the sorbing species to penetrate into and equilibrate a large sample. Also conventional sample holders for BET measurements are too small to hold a large sample. We have manufactured large sample holders for BET measurements and modified the equipment so that it is possible to measure BET surface areas on samples with 50 mm diameter and LIP to 100 mm length. Results are presented for intact pieces and compared to results on crushed material from the same drillcore. For K-d and CEC measurements we have developed a technique and equipment by which ions can be made to rapidly intrude into and equilibrate the internal surfaces of the same size samples as mentioned above. The method is based on electro-migration where the sample is placed between two vessels one with an anode and other with a cathode. The electric potential gradient drives the ions into and through the sample very much faster than molecular diffusion does. With Cs as the sorbing ion a few weeks were sufficient to equilibrate the 50 mm long sample. In previous diffusion experiments it took more than a year to equilibrate a 15 mm thick sample. A special mixing technique eliminates the development of low and high PH in the electrode compartments. K-d results from measurements on an intact drillcore are presented and comparison is made with results obtained on crushed material from the same bore core. The results from the sorption experiments are compared with the results from the BET surface area determinations in an attempt to evaluate the use of the BET surface area as a proxy for sorption behaviour.

  • 10.
    Arjmand, Mehdi
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Liu, Longcheng
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Exergetic efficiency of high-temperature-lift chemical heat pump (CHP) based on CaO/CO2 and CaO/H2O working pairs2013In: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 37, no 9, p. 1122-1131Article in journal (Refereed)
    Abstract [en]

    The use of reversible chemical reactions in recuperation of heat has gained significant interest due to higher magnitude of reaction heat compared to that of the latent or sensible heat. To implement chemical reactions for upgrading heat, a chemical heat pump (CHP) may be used. A CHP uses a reversible chemical reaction where the forward and the reverse reactions take place at two different temperatures, thus allowing heat to be upgraded or degraded depending on the mode of operation. In this work, an exergetic efficiency model for a CHP operating in the temperature-level amplification mode has been developed. The first law and the exergetic efficiencies are compared for two working pairs, namely, CaO/CO2 and CaO/H2O for high-temperature high-lift CHPs. The exergetic efficiency increases for both working pairs with increase in task, TH, decrease in heat source, TM, and increase in condenser, TL, temperatures. It is also observed that the difference in reaction enthalpies and specific heats of the involving reactants affects the extent of increase or decrease in the exergetic efficiency of the CHP operating for temperature-level amplification.

  • 11.
    Arjmand, Mehdi
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Liu, Longcheng
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Energy Saving in Crude Oil Atmospheric Distillation Columns by Modifying the Vapor Feed Inlet Tray2011In: Chemical Engineering & Technology, ISSN 0930-7516, E-ISSN 1521-4125, Vol. 34, no 8, p. 1359-1367Article in journal (Refereed)
    Abstract [en]

    Optimization of a typical crude oil atmospheric distillation unit and reduction of energy conservation were carried out through modifying the implementation and change in the flash zone of the tower. A conventional procedure in such units involves the combination of liquid and vapor product of the prefractionation train surge drum upon introduction to the tower. However, it is theoretically illustrated and represented by simulation means that introducing the vapor feed into the upper stages of the distillation column separately can lead to an energy saving of 12.6% in the condenser duty, an increased liquid-to-gas flow (L/G) at certain points of the column, and hence to a reduction in diameter and investment costs of new tower designs of approximately US$ 0.7 million a(-1). The proposal can be put into practice without the need of additional equipments or additional cost of difficult rerouting the streams. An industrial case study of a steadystate crude oil distillation unit is given by simulation provision of AspenHysys (TM).

  • 12.
    Benavente, Martha
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena. National University of Engineering (UNI), Nicaragua.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Martinez, Joaquin
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Sorption of heavy metals from gold mining wastewater using chitosan2011In: Journal of the Taiwan Institute of Chemical Engineers / Elsevier, ISSN 1876-1070, E-ISSN 1876-1089, Vol. 42, no 6, p. 976-988Article in journal (Refereed)
    Abstract [en]

    This study is concerned with the use of chitosan produced from shrimp shell waste for the removal of Cu(II), Hg(II), Pb(II) and Zn(II) from gold ore tailing solutions containing cyanide. This work involved the study of equilibrium and kinetic adsorption, the physicochemical characterization of mining effluents and desorption using different regenerating solutions. The experimental results showed that the adsorption capacity of chitosan is a function of the solution pH and that the optimum pH for these metallic ions is 6, except for Hg (pH 4). The equilibrium data were described using the Langmuir, Freundlich, Redlich-Peterson and SIPS isotherm models. The Langmuir equation was used to find the maximum adsorption capacity for Cu (79.94 mg/g), Hg (109.55 mg/g), Pb (58.71 mg)g) and Zn (47.15 mg/g). To determine the rate-controlling mechanism for metallic ion adsorption, pseudo-first-order, pseudo-second-order and the Elovich equation kinetic models were tested with experimental adsorption kinetic data. Tests conducted with gold ore tailing solutions indicated that chitosan is effective to remove these metallic ions above 70%. Desorption studies revealed that the regeneration of chitosan saturated with these metallic ions depends on the type and concentration of the regenerating solution ((NH(4))(2)SO(4), H(2)SO(4), HCl, NaOH and NaCl).

  • 13.
    Benavente, Martha
    et al.
    Faculty of Chemical Engineering, National University of Engineering (UNI), Managua, Nicaragua.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Martínez, Joaquín
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Adsorption Kinetic of Copper and Zinc from Binary Solutions using Chitosan2010In: Hydro Process 2010: Proceedings of the 3rd International Workshop on Process Hydrometallurgy / [ed] Marcelo Jo, Juan Patricio Ibáñez, Jesús Casas, Santiago, Chile: GECAMIN, 2010, p. 22-23Conference paper (Refereed)
  • 14.
    Benavente, Martha
    et al.
    Faculty of Chemical Engineering, National University of Engineering (UNI), Managua, Nicaragua.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Martínez, Joaquín
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Biosorption of Lead using Chitosan2009In: Advances in Chitin Science, Volumen XI: EUCHIS 2009 / [ed] Franco Rustichelli, Carla Caramella, Sevda Senel, Kjell M. Vaarum, Venice, Italy, 2009, p. 487-492Conference paper (Refereed)
  • 15.
    Benavente, Martha
    et al.
    Faculty of Chemical Engineering, National University of Engineering (UNI), Managua, Nicaragua.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Martínez, Joaquín
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Production of Glucosamine Hydrochloride from Crustacean Shell2011In: Advances in Chitin Science, Volume XIII: EUCHIS 2011 / [ed] Valery Varlamov, Svetlana Bratskaya, Irina Yakovleva, Sevda Senel, SAINT-PETERSBURG, RUSSIA, 2011, p. 29-35Conference paper (Refereed)
  • 16.
    Benavente, Martha
    et al.
    National University of Engineering, Nicaragua.
    Sjörén, Anna
    KTH, School of Chemical Science and Engineering (CHE).
    Westergren, Robin
    KTH, School of Chemical Science and Engineering (CHE).
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Martinez, Joaquin
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Biosorption of Heavy Metals on Chitosan2007In: Hydro Copper 2007 / [ed] Jorge M. Menacho and Jesús M. Casas de Prada, Santiago, Chile: GECAMIN Ltda. , 2007, p. 283-290Conference paper (Refereed)
  • 17.
    Benavente, Martha
    et al.
    National University of Engineering, Nicaragua.
    Álvarez, Erick
    National University of Engineering, Nicaragua.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Martinez, Joaquin
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Removal of Copper and Zinc from Gold Ore Tailings Solutions using Chitosan2008In: Hydro Process 2008 / [ed] Jorge M. Menacho and Jesús M. Casas de Prada, Santiago, Chile: GECAMIN Ltda. , 2008, p. 139-152Conference paper (Refereed)
  • 18. Bond, A. E.
    et al.
    Bruský, I.
    Chittenden, N.
    Feng, X. -T
    Kolditz, O.
    Lang, P.
    Lu, R.
    McDermott, C.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Pan, P. -Z
    Šembera, J.
    Shao, H.
    Yasuhara, H.
    Zheng, H.
    Development of approaches for modelling coupled thermal–hydraulic–mechanical–chemical processes in single granite fracture experiments2016In: Environmental Earth Sciences, ISSN 1866-6280, E-ISSN 1866-6299, Vol. 75, no 19, article id 1313Article in journal (Refereed)
    Abstract [en]

    The geological formation immediately surrounding a nuclear waste disposal facility has the potential to undergo a complex set of physical and chemical processes starting from construction and continuing many years after closure. The DECOVALEX project (DEvelopment of COupled models and their VALidation against EXperiments) was established and maintained by a variety of waste management organizations, regulators and research organizations to help improve capabilities in experimental interpretation, numerical modelling and blind prediction of complex coupled systems. In the present round of DECOVALEX (D-2015), one component of Task C1 has considered the detailed experimental work of Yasuhara et al. (Appl Geochem 26:2074–2088, 2011), wherein three natural fractures in Mizunami granite are subject to variable fluid flows, mechanical confining pressure and different applied temperatures. This paper presents a synthesis of the completed work of six separate research teams, building on work considering a single synthetic fracture in novaculite. A range of approaches are presented including full geochemical reactive transport modelling and 2D and 3D high-resolution coupled thermo–hydro–mechanical–chemical (THMC) models. The work shows that reasonable fits can be obtained to the experimental data using a variety of approaches, but considerable uncertainty remains as to the relative importance of competing process sets. The work also illustrates that a good understanding of fracture topography, interaction with the granite matrix, a good understanding of the geochemistry and the associated multi-scale THMC process behaviours is a necessary pre-cursor to considering predictive models of such a system.

  • 19.
    Burks, Terrance
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Application of Nanomaterials for the Removal of Hexavalent Chromium and their Biological Implications2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The International Agency for Research on Cancer (IARC) stated that chromium in the form of Cr(VI) has been deemed to be a class-A human carcinogen. It has been a major contaminant associated with wastewater. Moreover, the existence of heavy metals in aquatic systems is a critical concern for the environment as well as industries that manufacture or consume these particular elements. In order to remove these particular toxic metals, several well-known conventional methods including ion-exchange, filtration and adsorption are used. Amongst these methods, adsorption offers significant advantages such as the low-cost materials, ease of operation and efficiency in comparison to the other conventional methods.

    The aim of this work was to develop nanomaterials (particles and fibers) to address some critical issues for the treatment of heavy metals, especially chromium in aqueous systems. Furthermore, the use of nanomaterials and how they relate to nanoscale operations at the biological level has generated considerable concerns in spite of their novel properties.

    The first part of this thesis deals with the synthesis and characterizations of Fe3O4, magnetite, as nanoparticles which were further coated with surfactants bis(2,4,4-trimethylpentyl)dithiophosphinic acid, Cyanex-301, and 3-Mercaptopropionic acid with the active compound being the thiol (SH) groups, that will suffice as a viable material for Cr(VI) removal from aqueous solutions. The proposed mechanism was the complexation between the thiol group on Cyanex-301 and 3-Mercaptopropionic acid, respectively. The effect of different parameters on the adsorption including contact time, initial and final Cr(VI) ion concentration and solution pH was investigated.

    The second part of this thesis encompassed the fabrication of flexible nanocomposite materials, with a large surface area and architecture for the removal of Cr(VI) in batch and continuous flow mode. A technique known as electrospinning was used to produce the nanofibers. The flexible yet functional materials architecture has been achieved by growing ZnO nanorod arrays through chemical bath deposition on synthesized electrospun poly-L-lactide nanofibers. Moreover, polyacrylonitrile nanofibers (PAN) were synthesized and adapted by the addition of hydroxylamine hydrochloride to produce amidoxime polyacrylonitrile nanofibers (A-PAN). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to identify the morphologies and particle sizes whereas Fourier-Transform Infrared spectroscopy (FT-IR) was used to identify either the presence or absence of functional groups for the formation of PAN and A-PAN nanofibers. The optimization of functionalized nanoadsorbents to adsorb Cr(VI) was also carried out to investigate the effect of experimental parameters: contact time, solution pH, initial, final and other metal ion concentration. Commercially manufactured pristine engineered (TiO2, ZnO and SiO2) nanoparticles and lab-made functionalized (Fe3O4 and CeO2) nanoparticles were studied while the powders were suspended in appropriate media by Dynamic Light Scattering (DLS) to identify their cytotoxicity effects.

  • 20.
    Casas, Jesús M.
    et al.
    Dept of Chemical Engineering, University of Chile (UChile), Santiago, Chile.
    Martínez, Joaquín
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Speciation of Copper Mine Solutions1994In: CONAMET'94 & ALAMET III, Vol. 1: Proceedings of the 8th Chilean Congress of Metallurgy and the 3rd Congress of the Latin-American Association of Metallurgy and Materials, Antofagasta, Chile: Catholic University of North , 1994, p. 1-10Conference paper (Refereed)
  • 21.
    Casas, Jesús M.
    et al.
    Dept of Chemical Engineering, University of Chile (UChile), Santiago, Chile.
    Martínez, Joaquín
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Vargas, T.
    Dept of Chemical Engineering, University of Chile (UChile), Santiago, Chile.
    Influence of Bacterial Activity on Temperature, Oxygen Profiles and Leaching Rates in the Bioleaching of Copper Sulfide Ore Beds1997In: IBS 97: Proceedings of the International Biohydrometallurgy Symposium, Sydney, Australia: Australian Mineral Foundation , 1997, p. M5-3.1Conference paper (Refereed)
  • 22.
    Casas, Jesús M.
    et al.
    Dept of Chemical Engineering, University of Chile (UChile), Santiago, Chile.
    Martínez, Joaquín
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Vargas, T.
    Dept of Chemical Engineering, University of Chile (UChile), Santiago, Chile.
    Two-Dimensional Model of Heat and Gas Transport and Mineral Oxidation in Copper Bioleaching Dump1995In: Biohydrometallurgical Processing, Vol. 1: Proceedings of the International Biohydrometallurgy Symposium (IBS-95) / [ed] Vargas, T., Jerez, C.A., Wiertz, J.V., Toledo, H., Santiago, Chile: University of Chile , 1995, p. 447-457Conference paper (Refereed)
  • 23.
    Casas, Jesús M.
    et al.
    Dept of Mining Engineering, University of Chile, Santiago, Chile.
    Vargas, T.
    Dept of Chemical Engineering, University of Chile, Santiago, Chile.
    Martínez, Joaquín
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Bioleaching model of a copper-sulfide ore bed in heap and dump configurations1998In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 29, no 4, p. 899-909Article in journal (Refereed)
    Abstract [en]

    A two-dimensional (2-D) model for a heap or dump bioleaching of a copper ore containing mainly chalcocite and pyrite has been developed. The rate of the mineral sulfide dissolution was related to the rate of oxidation by bacteria attached onto the ore surface. The latter was calculated using the model of Michaelis-Menten, where both temperature and dissolved oxygen in the leach solution were taken into account by the kinetic equation. Oxygen transport through the ore bed was associated with natural air convection originating from the decrease in gas density inside the ore bed, which was attributable not only to heating, but also to humidification and decrease in the oxygen concentration. The model was used to estimate air-velocity fields and profiles of temperature and oxygen concentrations as well as mineral conversions during the bioleaching operation for ore beds with different pyrite contents, bacterial populations, widths, heights, and permeabilities. The model provides a useful tool for the design, improvement, and optimization of industrial operating conditions.

  • 24.
    Casas, Jesús M.
    et al.
    Dept of Chemical Engineering, University of Chile (UChile), Santiago, Chile.
    Vargas, T.
    Dept of Chemical Engineering, University of Chile (UChile), Santiago, Chile.
    Martínez, Joaquín
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Modelling of Bioleaching from Low Grade Copper Sulphide Ore1993In: Biohydrometallurgical Technologies, Vol. 1: Proceedings of an International Biohydrometallurgy Symposium (IBS'93) / [ed] A.E. Torma, J.E. Wey, V.I. Lakshmanan, The Minerals, Metals & Materials Society , 1993, p. 249-258Conference paper (Refereed)
  • 25.
    Forsberg, Kerstin M.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Rasmuson, Åke C.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    The influence of hydrofluoric acid and nitric acid on the growth kinetics of iron(III) fluoride trihydrate2015In: Journal of Crystal Growth, ISSN 0022-0248, E-ISSN 1873-5002, Vol. 423, p. 16-21Article in journal (Refereed)
    Abstract [en]

    The influence of hydrofluoric acid and nitric acid concentration on the growth rate of beta-FeF3 center dot 3H(2)O crystals has been studied in different hydrofluoric acid (4.7-10.7 mol/(kg H2O)) and nitric acid (2.1-4.6 mol/(kg H2O)) mixtures at 50 degrees C. Seeded desupersaturation experiments were performed and the results were evaluated by considering the chemical speciation using two different speciation programs. The growth rate at 50 degrees C at a supersaturation ratio of 2, expressed in terms of free FeF3, was found to be in the range of (0.4-3.8) x 10(-11) m/s. The growth rate order was found to be two or higher in all experiments. The low growth rate and high growth rate order indicate that the growth rate is governed by the surface integration step. The growth rate was found to be independent of variations in acid concentrations: this is in accordance with the assumption of a surface integration controlled growth rate.

  • 26. Galvez, Edelmira D.
    et al.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Mellado, Mario E.
    Ordonez, Javier I.
    Cisternas, Luis A.
    Heap leaching of caliche minerals: Phenomenological and analytical models - Some comparisons2012In: Minerals Engineering, ISSN 0892-6875, E-ISSN 1872-9444, Vol. 33, p. 46-53Article in journal (Refereed)
    Abstract [en]

    Antofagasta, Chile, has one of the most important deposits of saltpetre in the world, which is called caliche. These deposits are mainly composed of nitrate, halite, sodium anorthite, and quartz. Minor species include anhydrite, glauberite, loeweite, calcite, polyhalite, probertite, and gypsum. Recently, several operations began to use heap leaching for the extraction of saltpetre. Modelling the heap leaching of caliche is not straightforward because of the many minerals and their different dissolution rates. Moreover, caliche may have a large fraction of soluble minerals, approximately 40%, which causes the heap to slump. In this work, we present two models. The first, which is a phenomenological model, is an extension of the model published by Valencia et al. (2008). The system is modelled as a column comprised of N small columns, and in each of these small columns, the height of the solids varies with time when the soluble minerals are dissolved. The liquid in each small column has the same composition (well-stirred reactor). The second model, which is an analytical model, is an extension of that published by Mellado et al. (2009) for low-grade minerals, such as copper and gold, which considers that the leaching phenomenon occurs on different scales of size and time. However, in this work, the time scale at the particle level is based on the Bruner and Tolloczko dissolution model. The objective of this work is to test the suitability of the analytical model as a tool for use in optimisation, for which the model needs to be solved many times. The phenomenological model was used to generate simulated experimental data. The results show that the analytical model may be a useful tool in optimisation.

  • 27.
    Garcia, Indiana
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Removal of Natural Organic Matter to reduce the presence of Trihalomethanes in drinking water2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In countries located in tropical zones, a critical task in drinking water plants is the removal of the natural organic matter (NOM), particularly during the rainy season when a lot of organic matter is transported by run-off into the water bodies. It provokes overloaded in the plants and they have often needed to be shut down. In the dry season, the NOM removal is also difficult due to its low concentration, and greater coagulant dosages are needed to destabilize the negative charge of the NOM.

    In order to increase the NOM removal, synthetic polymers based on acrylamide are sometimes used as coagulant aids. However, they have been associated with Alzheimerand are carcinogenic. Therefore, the present requirement is to find new treatments affordable for the conditions existing in tropical countries. The application of green compounds has become a responsibility to guarantee the health of the population.

    The situation in Nicaragua is similar to that in many tropical countries. At present, there are ten drinking water plants which use conventional treatment. Nine of them use surface water supplied by rivers, and one uses water from a lake. Many of these plants have problems of continuity, quantity, water quality, and coverage, although the water cost is low.

    The removal of natural organic matter by conventional or enhanced coagulation using aluminium sulphate or chitosan as coagulant while reducing the formation of trihalomethanes (THM) was the aim of this work. Chitosan is an environment-friendly compound that can act as coagulant, flocculant and adsorbent. Adsorption with activated carbon and chitosan has also been studied. The natural organic matter in the source waters was fractionated in order to determine which fractions are removed more easily by coagulation and which are recalcitrant.

    The experimental works was carried out with a period of sampling between 2003 and 2010, taking into consideration the dry and rainy seasons. The results show that conventional coagulation with aluminium sulphate is not sufficient to reduce the presenceof NOM sufficiently to avoid a high level of THM in the disinfection step. The NOM removal is greatly improved by treatment with enhanced coagulation, but a significant amount of NOM is not removed, with a high THM concentration as a consequence. High NOM removal can however be achieved by enhanced coagulation and subsequent adsorption with granular activated carbon.

    Chitosan has good properties as a coagulant in water with a high NOM content and performs well as flocculant. It also has a high adsorption capacity for NOM. Therefore, chitosan could be a good option as a substitute for aluminium sulphate compounds. However, since chitosan does not work properly in the dry season, when the NOM content is low, the use of aluminium sulphate in combination with chitosan should bestudied in more detail. A field with a large potential is the modification of the chitosan structure to increase its capacity for NOM removal and decrease the need for aluminium sulphate. Another advantage of using chitosan is the reduction of the negative impact of shrimp and squat lobster shells on the environment.

  • 28.
    Garcia, Indiana
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Benavente, Martha
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Sorption kinetics of fulvic and humic acid onto chitosan of different molecular weightsArticle in journal (Other academic)
  • 29.
    Garcia, Indiana
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Benavente, Martha
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Use of chitosan as coagulant in the removal of natural organic matter from four different raw waters2011In: Proceedings of the 10th International Conference of the European Chitin Society (EUCHIS 2011), 2011, p. 106-110Conference paper (Other academic)
  • 30.
    Garcia, Indiana
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Removal of humic acid by coagulation and flocculation with chitosan2010Article in journal (Other academic)
  • 31.
    Garcia, Indiana
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Removal of natural organic matter from water in Nicaragua to reduce the total exposure cancer riskArticle in journal (Other academic)
  • 32.
    Garcia, Indiana
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Removal of nitrogen and carbon organic matter by chitosan and aluminium sulphate2012In: Water Science and Technology: Water Supply, ISSN 1606-9749, E-ISSN 1607-0798, Vol. 12, no 1, p. 1-10Article in journal (Refereed)
    Abstract [en]

    River and lake waters were separated into four fractions to study the removal of nitrogen and carbon organic matter using chitosan (CH) and aluminium sulphate (AS). The fractions were very hydrophobic acid, slightly hydrophobic acid, charged hydrophilic acid and neutral hydrophilic. The results showed that the whole and fractionated water from both sources have a markedly hydrophobic character. However, lake water had a lower NOM concentration than river water. The ratio of dissolved organic carbon and dissolved organic nitrogen (DOC/DON) and dissolved inorganic nitrogen to total dissolved nitrogen (DIN/TDN) were higher in the hydrophobic fraction from both sources. Similarly DOC, colour and ultraviolet absorbance at 254 nm (UV254) also presented higher values in the same fraction. Chitosan achieved the better results in the removal of NOM from Boaco water, whole and fractionated, whereas aluminium sulphate achieved better removal from Juigalpa water. DON and DIN were removed by aluminium to about 30%. The DOC/DON and DIN/TDN ratios decreased with both coagulants in whole waters from both sources. The hydrophobic fraction contributed most to the formation of trihalomethanes, slightly hydrophobic acid being the biggest contributor. Lake water led to less THM formation than river water.

  • 33.
    García, Indiana
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Use of GAC after enhanced coagulation for the removal of natural organic matter from water for purification2009In: Water Science and Technology: Water Supply, ISSN 1606-9749, E-ISSN 1607-0798, Vol. 9, no 2, p. 173-180Article in journal (Refereed)
    Abstract [en]

    Filtration with granular activated carbon (GAC) after an enhanced coagulation (EC) process was evaluated in order to determine the effectiveness of GAC in the reduction of natural organic matter (NOM), which should result in much lower formation of trihalomethane in the disinfection step. The results show that a combination of EC and GAC considerably reduces the organic matter content, which is mainly fulvic acid. This type of organic matter is removed with high coagulant dosages which neutralize their high anionic charge. A further reduction of NOM is achieved due the adsorption of NOM by GAC. As a result, the average trihalomethane (THM) concentration was only 14.5±5 mg L-1. Enhanced coagulation alone decreased the NOM concentration by 50%, but the remaining NOM reacted in the chlorination step and a higher average THM concentration was found (38±23 mg L-1). An average THM concentration of 73.8±41.2 mg L-1 was found at the drinking water plant of Boaco when conventional treatment was used. This THM concentration sometimes exceeds the maximum contaminant level of 80 mg L-1 established by the United States Environmental Protection Agency (USEPA), but not the Nicaraguan threshold of 460 mg L-1.

  • 34. Hudson, John A.
    et al.
    Bäckström, Ann
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Engineering Geology and Geophysics.
    Rutqvist, J.
    Jing, Lanru
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Engineering Geology and Geophysics.
    Backers, T.
    Chijimatsu, M.
    Christiansson, R.
    Feng, X. T.
    Kobayashi, A.
    Koyama, Tomofumi
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Engineering Geology and Geophysics.
    Lee, H. S.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Pan, P. Z.
    Rinne, M.
    Shen, B. T.
    Characterising and modelling the excavation damaged zone in crystalline rock in the context of radioactive waste disposal2009In: Environmental Geology, ISSN 0943-0105, E-ISSN 1432-0495, Vol. 57, no 6, p. 1275-1297Article in journal (Refereed)
    Abstract [en]

    This paper describes current knowledge about the nature of and potential for thermo-hydro-mechanical-chemical modelling of the excavation damaged zone (EDZ) around the excavations for an underground radioactive waste repository. In the first part of the paper, the disturbances associated with excavation are explained, together with reviews of Workshops that have been held on the subject. In the second part of the paper, the results of a DECOVALEX [DEmonstration of COupled models and their VALidation against EXperiment: research funded by an international consortium of radioactive waste regulators and implementers (http://www.decovalex.com)] research programme on modelling the EDZ are presented. Four research teams used four different models to simulate the complete stress-strain curve for Avro granite from the Swedish A"spo Hard Rock Laboratory. Subsequent research extended the work to computer simulation of the evolution of the repository using a 'wall-block model' and a 'near-field model'. This included assessing the evolution of stress, failure and permeability and time-dependent effects during repository evolution. As discussed, all the computer models are well suited to sensitivity studies for evaluating the influence of their respective supporting parameters on the complete stress-strain curve for rock and for modelling the EDZ.

  • 35. Koyama, T.
    et al.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Jing, Lanru
    KTH, School of Architecture and the Built Environment (ABE), Land and Water Resources Engineering, Engineering Geology and Geophysics.
    A numerical study on differences in using Navier-Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear2008In: International Journal of Rock Mechanics And Mining Sciences, ISSN 1365-1609, E-ISSN 1873-4545, Vol. 45, no 7, p. 1082-1101Article in journal (Refereed)
    Abstract [en]

    The study on fluid flow and transport processes of rock fractures in most practical applications involves two fundamental issues: the validity of Reynolds equation for fluid flow (as most often assumed) and the effects of shear displacements on the magnitudes and anisotropy of the fluid flow velocity field. The reason for such concerns is that the impact of the surface roughness of rock fractures is still an unresolved challenging issue. The later has been systematically investigated with results showing that shear displacement plays a dominant role on evolutions of fluid velocity fields, for both magnitudes and anisotropy, but the former has not received examinations in details due to the numerical complexities involving solution of the Navier-Stokes (NS) equations and the representations of fracture geometry during shear. The objective of this paper aims to solve this problem through a FEM modeling effort. Applying the COMSOL Multiphysics code (FEM) and assuming a 2D problem, we consider the coupled hydromechanical effect of fracture geometry change due to shear on fluid flow (velocity patterns) and particle transport (streamline/velocity dispersion), using measured topographical data of natural rock fracture surfaces. The fluid flow in the vertical 2D cross-sections of single rock fractures was simulated by solving both the Navier-Stokes and the Reynolds equation, and the particle transport was predicted by the streamline particle tracking method with calculated flow velocity fields (vectors) from the flow simulations, obtaining results such as flow velocity profiles, total flow rates, particle travel time, breakthrough curves and the Peclet number, Pe, respectively. The results obtained using NS and Reynolds equations were compared to illustrate the degree of the validity of the Reynolds equation for general applications in practice since the later is mush more computationally efficient for solving large-scale problems. The flow simulation results show that both the total flow rate and the flow velocity fields in a rough rock fracture predicted by the NS equation were quite different from those predicted by the Reynolds equation. The results show that a roughly 5-10% overestimation on the flow rate is produced when the Reynolds equation is used, and the ideal parabolic velocity profiles defined by the local cubic law, when Reynolds equation is used, is no longer valid, especially when the roughness feature of the fracture surfaces changes with shear. These deviations of flow rate and flow velocity profiles across the fracture aperture have a significant impact on the particle transport behavior and the associated properties, such as the travel time and Peclet number. The deviations increase with increasing flow velocity and become more significant when fracture aperture geometry changes with shear.

  • 36.
    Larsson, Magnus
    et al.
    KTH.
    Yan, Jinying
    KTH. Vattenfall AB, Sweden.
    Nordenskjöld, C.
    Forsberg, Kerstin
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Liu, Longcheng
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Characterisation of stormwater in biomass-fired combined heat and power plants: Impact of biomass fuel storage2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 170, p. 116-129Article in journal (Refereed)
    Abstract [en]

    Characteristics of stormwater in industrial areas are evaluated, specifically based on a biomass-fired combined heat and power (CHP) plant with on-site biomass fuel storage. An evaluation method is developed to combine general methodology applied for stormwater characterisation with the on-site features of the biomass-fired CHP plant. Investigations were carried out through on-site monitoring and laboratory experiments with the defined methodology. Recycled wood chips as biomass fuel currently used in Swedish biomass-fired CHP plants have been used as an example for this study. The impacts of outdoor biomass fuel storage have been analysed for both runoff water quantity and quality. The results indicate that the properties of stored biomass fuels will significantly affect the runoff quantity by its water absorption capability. The overall runoff quality is highly depended on precipitation intensity and the runoff volume from the biomass storage piles, which is influenced by the water retention capacity and leaching ability of biomass fuels. The practical data and information presented in this paper can be used to understand the principal issues and the most important factors for internal control of contamination sources in order to achieve sustainable Energy-Water systems for bioenergy conversion in biomass-fired CHP plants.

  • 37. Larsson, Martin
    et al.
    Oden, Magnus
    Niemi, Auli
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Tsang, Chin-Fu
    A new approach to account for fracture aperture variability when modeling solute transport in fracture networks2013In: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 49, no 4, p. 2241-2252Article in journal (Refereed)
    Abstract [en]

    A simple yet effective method is presented to include the effects of fracture aperture variability into the modeling of solute transport in fracture networks with matrix diffusion and linear sorption. Variable apertures cause different degrees of flow channeling, which in turn influence the contact area available for these retarding processes. Our approach is based on the concept of specific flow-wetted surface (sFWS), which is the fraction of the contact area over the total fracture surface area. Larsson et al. (2012) studied the relationship between sFWS and the standard deviation sigma ln K of the conductivity distribution over the fracture plane. Here an approach is presented to incorporate this into a fracture network model. With this model, solute transport through fracture networks is then analyzed. The cases of S=0 and S=1 correspond to those of no matrix diffusion and full matrix diffusion, respectively. In between, a sFWS breakpoint value can be defined, above which the median solute arrival time is proportional to the square of sFWS. For values below the critical sFWS (more channeled cases), the change is much slower, converging to that of no matrix diffusion. Results also indicate that details of assigning sFWS values for individual fractures in a network are not crucial; results of tracer transport are essentially identical to a case where all fractures have the mean sigma ln K (or corresponding mean sFWS) value. This is obviously due to the averaging effect of the network.

  • 38.
    Liu, Longcheng
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    A model for the viscosity of dilute smectite gels2011In: Physics and Chemistry of the Earth, ISSN 1474-7065, E-ISSN 1873-5193, Vol. 36, no 17-18, p. 1792-1798Article in journal (Refereed)
    Abstract [en]

    A simple yet accurate model describing the viscosity of dilute suspensions of sodium montmorillonite in dilute homoionic solutions is presented. Taking the clay particle and the surrounding clouds of ions as a whole as an uncharged but soft, coin-like particle, the Huggins’ equation for a suspension of uncharged particles is extended in the model to account for not only the primary and the secondary electroviscous effects, but also the multi-particle interaction. The agreements between the predicted and measured results are excellent. The Huggins’ coefficient obtained compares favorably with available data, while the intrinsic viscosity reduces to the Simha’s equation in the large limit of ionic strength, suggesting that the model is robust.

  • 39.
    Liu, Longcheng
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Counterion-only electrical double layers: An application of density functional theory2015In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 143, no 6, article id 064902Article in journal (Refereed)
    Abstract [en]

    Within the framework of density functional theory, a self-consistent approach of weighted correlation approximation is developed to give an accurate account of the cross correlations between the Coulombic interaction and the hard-sphere exclusion in the counterion-only electrical double layers. Application of the approach to the cases of practical interest, against the Monte Carlo simulations, shows that it is excellent in describing the structural properties and the pressures of the confined solutions involving both mono-and divalent counterions between two planar charged walls. In particular, the study suggests that the relative importance of electrostatic correlations in comparison to the effects of ionic excluded volume and direct Coulomb interactions depends on the valency of the counterions and the surface charge density. In a clay system with mixed counterions, the competition between the mono-and divalent ions results in a large swelling when the fraction of surface charge compensated by monovalent counterions is greater than 30%. In the opposite situation involving mostly divalent counterions, a limited swelling is found and the attraction between the clay particles favors the formation of stacks incorporating a water layer of about 1.0 nm. These findings are consistent with experimental observations, giving insight into some mechanisms governing the stability of colloidal clay in salt-free or dilute solutions. (C) 2015 AIP Publishing LLC.

  • 40.
    Liu, Longcheng
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Permeability and expansibility of sodium bentonite in dilute solutions2010In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 358, no 1-3, p. 68-78Article in journal (Refereed)
    Abstract [en]

    In developing the dynamic force balance model for colloidal expansion, it was acknowledged that accurate description of the viscous drag force, or equivalently the permeability, is very important to describe the swelling process of compacted bentonite as it expands and eventually turns from a gel into a sol in low ionic strength waters. We therefore developed a Kozeny-Carman-like equation to quantify the permeability of the purified and fully Na-exchanged bentonite in dilute homoionic solutions, based on a set of permeability measurements. The force balance model, together with a friction model derived from the permeability, is then validated against accurate observations of the expansion process of the Na-exchanged bentonite in a water filled vertical test tube. The expansion is followed in detail over a month, by use of the magnetic resonance imaging technique with a spatial resolution of 0.2 mm. as an initially compacted tablet of Na-bentonite expands in water. The model accurately predicts not only the expansion rate and the general features of the expansion but also the basic behaviour at the expanding gel/sol interface. In addition, the use of the developed Kozeny-Carman-like equation substantiates that the expansion rate depends strongly on the friction of the particles against the water.

  • 41.
    Liu, Longcheng
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Prediction of swelling pressures of different types of bentonite in dilute solutions2013In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 434, p. 303-318Article in journal (Refereed)
    Abstract [en]

    A mechanistic model is developed to predict the swelling pressure of fully saturated, bentonite-based materials in distilled water or dilute saline solutions over a large range of final dry densities of bentonite. It applies a thermodynamic relationship between swelling pressure and suction to describe the contribution of crystalline swelling, while using a diffuse double-layer model to explain the behavior of osmotic swelling. In addition, it accounts for the demixing of exchangeable cations and the disintegration of the montmorillonite particles into small stacks of unit layers upon water uptake.Comparison of the model predictions with a great number of experimental results of swelling pressures of different types of bentonites and bentonite-aggregate mixtures in both distilled water and saline solutions suggests that the model works excellently in the cases tested. It is found that the water chemistry, the montmorillonite content, the type and amount of exchangeable cations in the interlayers are important in determining the extent to which the montmorillonite particles are delaminated and hence the swelling behavior of saturated, bentonite-based materials.On the other hand, the applicability of the model in predicting the water retention curves of unsaturated bentonites is also tested. The results show that the predicted curves are in good agreement with the measured data and that the montmorillonite particles are more difficult to disintegrate into small pieces in the case of unsaturated bentonites than would otherwise be possible.

  • 42.
    Liu, Longcheng
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    A Dynamic Force Balance Model for Colloidal Expansion and Its DLVO-Based Application2009In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 25, no 2, p. 679-687Article in journal (Refereed)
    Abstract [en]

    A force balance model that describes the dynamic expansion of colloidal bentonite gels/sols is presented. The colloidal particles are assumed to consist of one or several thin sheets with the other dimensions much larger than their thickness. The forces considered include van der Waals force, diffuse double layer force, thermal force giving rise to Brownian motion, gravity, as well as friction force. The model results in an expression resembling the instationary diffusion equation but with an immensely variable diffusivity. This diffusivity is strongly influenced by the concentration of counterions as well as by the particle concentration in the colloid gel/sol. The properties of the model are explored and discussed, exemplified by the upward expansion of an originally highly compacted bentonite tablet in a test tube. Examples are presented for a number of cases with ionic concentrations varying between very dilute waters up to several molar of counterions. The volume fraction of particles ranges from 40% to very dilute sols.

  • 43.
    Liu, Longcheng
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    A Novel Approach to Determine the Critical Coagulation Concentration of a Colloidal Dispersion with Plate-like Particles2009In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 25, no 2, p. 688-697Article in journal (Refereed)
    Abstract [en]

    The critical coagulation concentration (ccc) of counterions is commonly described by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory on the basis of a static force balance. It can, however, also be estimated from a kinetic point of view by studying the process of colloidal coagulation, or from a dynamic point of view by considering colloidal transport in nonequilibrium systems where other processes such as diffusion and the influence of gravity come into play. In particular, in a test tube where colloidal expansion takes place, the ccc can be interpreted as the electrolyte concentration below which expansion of colloids would always lead to full access to the entire volume of the test tube and above which a sharp boundary is established between a colloidal gel and pure water. On the basis of this perception and the dynamic force balance model that we developed to describe colloidal expansion in a test tube, accounting for the effects of particle diffusion and gravity in contrast to the DLVO theory, we propose an alternative way to assess the ccc of counterions. We also derive an approximate expression for the case of homointeraction at constant charge for montmorillonite. The estimated ccc values agree quite well with those observed experimentally for both Na+ and Ca2+ counterions for montmorillonite dispersions, at pH similar to 6.5. This is in contrast to the DLVO theory, which overpredicts the ccc by about 2 orders of magnitude. In addition, the detailed analyses suggest that the ccc of counterions decreases with increasing surface area and with the thickness of the particles. For montmorillonite, the ccc is nearly independent of the surface charge density of the particles for the range of typical charge densities.

  • 44.
    Liu, Longcheng
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Analysis of fluid flow and solute transport in a fracture intersecting a canister with variable aperture fractures and arbitrary intersection angles2005In: Nuclear Technology, ISSN 0029-5450, E-ISSN 1943-7471, Vol. 150, no 2, p. 132-144Article in journal (Refereed)
    Abstract [en]

    A multitude of simulations have been made for different types of rough-walled fractures, by using FEM-LAB((R)), to evaluate the mass transfer to and from water flowing through a fracture with spatially variable apertures and with an arbitrary angle of intersection to a canister that contains spent nuclear fuel. This paper presents and discusses only the results obtained for the Gaussian fractures. The simulations suggest that the intersection angle has only a minor influence on both the volumetric and the equivalent flow rates. The standard deviation of the distribution of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of the aperture field, and so does that of the equivalent flow rates. The mean of the distribution of the volumetric flow rates is determined, however, solely by the hydraulic aperture, while that of the equivalent flow rates is determined by the mechanical aperture. Based upon the analytical solutions for the parallel plate model, it has been found that the distributions of both the volumetric and the equivalent flow rates are close to the Normal. Thus, two simple expressions can be devised to quantify the stochastic properties of fluid flow and solute transport through spatially variable fractures without making detailed calculations in every fracture intersecting a deposition hole or a tunnel.

  • 45.
    Liu, Longcheng
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Analysis of fluid flow and solute transport through a single fracture with variable apertures intersecting a canister: Comparison between fractal and Gaussian fractures2006In: Physics and Chemistry of the Earth, ISSN 1474-7065, E-ISSN 1873-5193, Vol. 31, no 14-okt, p. 634-639Article in journal (Refereed)
    Abstract [en]

    Canisters with spent nuclear fuel will be deposited in fractured crystalline rock in the Swedish concept for a final repository. The fractures intersect the canister holes at different angles and they have variable apertures and therefore locally varying flowrates. Our previous model with fractures with a constant aperture and a 90 degrees intersection angle is now extended to arbitrary intersection angles and stochastically variable apertures. It is shown that the previous basic model can be simply amended to account for these effects. More importantly, it has been found that the distributions of the volumetric and the equivalent flow rates are all close to the Normal for both fractal and Gaussian fractures, with the mean of the distribution of the volumetric flow rate being determined solely by the hydraulic aperture, and that of the equivalent flow rate being determined by the mechanical aperture. Moreover, the standard deviation of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of the aperture field, and so does that of the equivalent flow rates. Thus, two simple statistical relations can be developed to describe the stochastic properties of fluid flow and solute transport through a single fracture with spatially variable apertures. This obviates, then, the need to simulate each fracture that intersects a canister in great detail, and allows the use of complex fractures also in very large fracture network models used in performance assessment.

  • 46.
    Liu, Longcheng
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Homo-interaction between parallel plates at constant charge2008In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 317, no 1-3, p. 636-642Article in journal (Refereed)
    Abstract [en]

    Various approximate solutions to the Poisson-Boltzmann (PB) equation have been derived to describe the interaction of electric diffuse double layers adjacent to charged surfaces. However, all these expressions are case-specific and accurate only in limited ranges of particle separations. None can cover the entire range of plate separations and/or surface charge densities generally found in real systems. In this paper, we derive an approximate expression for the force between two parallel similar plates with constant surface charge densities in a symmetrical electrolyte solution, which agrees well with the rather complex exact analytical solution over a wide range of plate separations. The method used is based on the so-called "compression" approach developed previously for the case of low surface charge densities. The results are also in good agreement with "exact" numerical solutions over a wide range where no restriction is actually required on the magnitudes of the surface charge densities, surface potentials or the distance between the plates. Furthermore, an expression for the derivative of the force is also given, which is fairly simple and is very useful in modelling, e.g. colloidal transport problems based on a force balance on particles in a colloidal system. In such cases it is very impractical to use either the exact analytical or numerical solution to the PB,equation.

  • 47.
    Liu, Longcheng
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Permeability and expansibility of natural bentonite MX-80 in distilled water2011In: Physics and Chemistry of the Earth, ISSN 1474-7065, E-ISSN 1873-5193, Vol. 36, no 17-18, p. 1783-1791Article in journal (Refereed)
    Abstract [en]

    Natural bentonite MX-80 differs from the purified and fully Na-exchanged bentonite in that it contains approximately 20.0% accessory minerals, in addition to the montmorillonite particles. Since the accessory minerals and montmorillonite particles have very different physical and chemical properties, natural bentonite MX-80 is found to expand much more slowly in distilled water, leading actually to a three-component system that has very different hydraulic properties from that of the fully Na-exchanged bentonite. To better understand and simulate the special features of expansion of natural bentonite MX-80 in distilled water, the focus is put primarily on the development of a Kozeny-Carman-like equation for its hydraulic permeability in the same way as it was done for Na-exchanged bentonite. With this permeability model, the dynamic force balance model that was originally developed for colloidal expansion of montmorillonite in a two-component system is applied to the natural MX-80 system. Without making any changes to the model, however, two strategies are used to account for both physical and chemical effects of the accessory minerals. The "lumped" strategy assumes that the accessory minerals are stuck onto the montmorillonite particles in such a way that they behave just like one solid component. The "stepwise" strategy changes the pore water chemistry gradually from initially distilled water to eventually achievement of the equilibrium condition. These strategies are simple but proved to function well. The agreement between the simulations and the experimental results indicates that the two-component dynamic force balance model works well in predicting the general features and the behavior of upward expansion of natural bentonite MX-80 in distilled water in a vertical test tube.

  • 48.
    Liu, Longcheng
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Shahkarami, Pirouz
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Meng, Shuo
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Solute transport along a single fracture in a porous rock: a simple analytical solution and its extension for modeling velocity dispersion2017In: Hydrogeology Journal, ISSN 1431-2174, E-ISSN 1435-0157Article in journal (Refereed)
    Abstract [en]

    A simple and robust solution is developed for the problem of solute transport along a single fracture in a porous rock. The solution is referred to as the solution to the single-flow-path model and takes the form of a convolution of two functions. The first function is the probability density function of residence-time distribution of a conservative solute in the fracture-only system as if the rock matrix is impermeable. The second function is the response of the fracture-matrix system to the input source when Fickian-type dispersion is completely neglected; thus, the effects of Fickian-type dispersion and matrix diffusion have been decoupled. It is also found that the solution can be understood in a way in line with the concept of velocity dispersion in fractured rocks. The solution is therefore extended into more general cases to also account for velocity variation between the channels. This leads to a development of the multi-channel model followed by detailed statistical descriptions of channel properties and sensitivity analysis of the model upon changes in the model key parameters. The simulation results obtained by the multi-channel model in this study fairly well agree with what is often observed in field experiments—i.e. the unchanged Peclet number with distance, which cannot be predicted by the classical advection-dispersion equation. In light of the findings from the aforementioned analysis, it is suggested that forced-gradient experiments can result in considerably different estimates of dispersivity compared to what can be found in natural-gradient systems for typical channel widths.

  • 49.
    Löfgren, Martin
    et al.
    Kemakta Konsult AB.
    Neretnieks, Ivars
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Through-electromigration: A new method of investigating pore connectivity and obtaining formation factors2006In: Journal of Contaminant Hydrology, ISSN 0169-7722, E-ISSN 1873-6009, Vol. 87, no 3-4, p. 237-252Article in journal (Refereed)
    Abstract [en]

    The retardation of radionuclides and other contaminants in fractured crystalline rock is strongly associated with the diffusive properties of the rock matrix. At present, the scientific community is divided concerning the question of long-range pore connectivity in intrusive igneous rock. This paper presents a fast new method, called the through-electromigration method, of obtaining formation factors and investigating pore connectivity. The method involves the migration of an ionic tracer through a rock sample with an electrical potential gradient as the main driving force. The method is analogous to the through-diffusion method but the experimental time is reduced by orders of magnitude. This enables investigations of pore connectivity, as measurements can be made on longer samples. In a preliminary investigation, the new method is compared to the traditional through-diffusion method as well as to rock resistivity methods. The diffusive properties of nine granitic rock samples from Laxemar in Sweden, ranging from 15 to 121 turn in length, have been investigated and the results are compared.

  • 50.
    Mahiques, Joan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Martínez, Joaquín
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Transport Phenomena.
    Moreno, Luis
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Chemical Engineering.
    Modelling of Leaching of Copper Oxides in Dumps and In-Situ2006In: Hydro Process 2006 / [ed] Esteban M. Domic & Jesús M. Casas de Prada, Santiago, Chile: GECAMIN Ltda. , 2006, p. 429-441Conference paper (Other academic)
123 1 - 50 of 109
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf