Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Denoyelle, Thibaud
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Kulachenko, Artem
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Galland, Sylvain
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites.
    Lindström, Stefan B.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Elastic properties of cellulose nanopaper versus conventional paper2011In: Progress in Paper Physics Seminar 2011 Conference Proceedings / [ed] U. Hirn, Graz, Austria: Verlag der Technischen Universität Graz , 2011, p. 131-133Conference paper (Refereed)
  • 2.
    Fall, Andreas
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Lindström, Stefan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Sundman, Ola
    Department of Forest Products Technology, Aalto, Finland.
    Ödberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Colloidal Stability of Aqueous Nanofibrillated Cellulose Dispersions2011In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 27, no 18, p. 11332-11338Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibrils constitute an attractive raw material for carbon-neutral, biodegradable, nanostructured materials. Aqueous suspensions of these nanofibrils are stabilized by electrostatic repulsion arising from deprotonated carboxyl groups at the fibril surface. In the present work, a new model is developed for predicting colloidal stability by considering deprotonation and electrostatic screening. This model predicts the fibril-fibril interaction potential at a given pH in a given ionic strength environment. Experiments support the model predictions that aggregation is induced by decreasing the pH, thus reducing the surface charge, or by increasing the salt concentration. It is shown that the primary mechanism for aggregation upon the addition of salt is the surface charge reduction through specific interactions of counterions with the deprotonated carboxyl groups, and the screening effect of the salt is of secondary importance.

  • 3.
    Lindström, Tom
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC. Innventia AB, Sweden.
    Aulin, Christian
    Gimåker, Magnus
    Persson, Torgny
    The emergence of practical nanocellulose applications for a more sustainable paper/board industry2014In: IPPTA: Quarterly Journal of Indian Pulp and Paper Technical Association, ISSN 0379-5462, Vol. 26, no 1, p. 53-61Article in journal (Refereed)
    Abstract [en]

    There has been extensive research and development activities in the field of nanofibrillated cellulose (NFC) materials during recent years, although microfibrillated cellulose was developed already during the late 1970s at ITT-Rayonier in USA. A major impediment for the large-scale use of NFC has been the high-energy use (excess of 30000 kWh/ton NFC in energy consumption). This problem has now been alleviated by a series of different pre-treatment procedures of the fibres prior to the subsequent mechanical cell wall delamination. The focus in practical papermaking applications of NFC is in the reinforcement of paper/board materials (dry strength wet-end additive) and in barrier coating applications. The driving forces in these applications are resource and energy efficiency in papermaking and the vision of substituting fossil-based films with nanocellulose barriers. Nanocellulose has excellent oil, fat and oxygen barrier properties in the dry state, but the oxygen barrier properties deteriorate at high relative humidities and the approaches to alleviate the moisture sensitivity will be discussed. Today, there are many companies in the process of commercializing NFC and several of them have pilot plants/pre-commercial operations and are planning for up scaling. A pilot plant for the nominal production of 100 kg/day (dry based NFC) was also taken into operation at Innventia AB in 2010. The current contribution will highlight critical issues in the production of NFC and discuss various applications and hurdles to be overcome in order to make NFC production for paper/board based end-use applications viable.

  • 4.
    Linvill, Eric
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Paper materials have a long history of use in packaging products, although traditional paper-based packaging is limited in its shape and design. In order to enable more advanced paper-based packaging, various 3-D forming processes for paper materials have been studied. Since 3-D forming processes typically include the application of moisture and/or temperature, the effects of moisture and temperature on the mechanical response of paper have also been investigated.

    In Paper A, an experimental study of the combined effects of moisture and temperature on the uniaxial mechanical properties of paper was conducted. These experiments provided new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. These experiments also provided the framework from which the effects of moisture and temperature were modelled in Paper C.

    In Paper B, an explicit finite element model of the paperboard deep-drawing process was developed. An orthotropic material model with in-plane quadrant hardening was developed and verified for paper. The simulation results matched the trends from experimental deep-drawing up to when micro-scale wrinkling occured. Since most experimental failures occur prior to wrinkling, this model provided quantitative understanding of failure in the paperboard deep-drawing process.

    In Paper C, an explicit finite element model of paper hydroforming, utilizing the same material model for paper materials as in Paper B, was developed and verified. The simulation results matched well with experimental results, and a parametric study with the finite element model produced quantitative understanding of the hydroforming process for paper materials. Additionally, drying was identified as an important phenomenon for determining the extent of formability of paper materials.

  • 5.
    Linvill, Eric
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Larsson, Per
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. TU Dresden, Fakultät Maschinenwissen, Institut für Verarbeitungsmaschinen und Mobile Arbeitsmaschinen .
    Östlund, Sören
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Advanced Three-Dimensional Paper Structures: Mechanical Characterization and Forming of Sheets Made from Modied Cellulose Fibers2017Report (Other academic)
  • 6.
    Linvill, Eric
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Wallmeier, Malte
    TU Dresden, Fakultät Maschinenwissen, Institut für Verarbeitungsmaschinen und Mobile Arbeitsmaschinen .
    Östlund, Sören
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    A Constitutive Model for Paperboard Including Wrinkle Prediction and Post-Wrinkle Behavior Applied to Deep Drawing2017Report (Other academic)
  • 7.
    Linvill, Eric
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Östlund, Sören
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Parametric Study of Hydroforming of Paper Materials using the Explicit Finite Element Method with a Moisture-and Temperature-Dependent Constitutive Model2015Report (Other academic)
  • 8.
    Linvill, Eric
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Östlund, Sören
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Parametric Study of Hydroforming of Paper Materials Using the Explicit Finite Element Method with a Moisture-dependent and Temperature-dependent Constitutive Model2016In: Packaging technology & science, ISSN 0894-3214, E-ISSN 1099-1522, Vol. 29, no 3, p. 145-160Article in journal (Refereed)
    Abstract [en]

    A moisture-dependent and temperature-dependent constitutive model for paper materials was proposed and implemented into a finite element model of the paper hydroforming process. Experimental hydroforming was conducted at temperatures of 23°C and 110 °C and moisture contents of 6.9 and 10.6 (respectively corresponding to 50 and 80% relative humidity). The proposed model, which also included the effects of drying, captured the extent of forming of all experimental results within reasonable accuracy. For the moisture content and temperature conditions in this study, the phenomenon of drying was found to be the reason why the application of temperature had a much greater effect on the degree of forming than hydroforming at various moisture contents. A simulation-based parametric study was conducted in order to identify the importance of various process and material parameters. This parametric study confirmed many previous empirical findings and was capable of quantifying the extent to which these process and material parameters affect the three-dimensional formability of paper. The coefficient of friction was identified as one of the most important factors when determining the extent of forming.

  • 9.
    Linvill, Eric
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Östlund, Sören
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    The Combined Effects of Moisture and Temperature on the Mechanical Response of Paper2014In: Experimental mechanics, ISSN 0014-4851, E-ISSN 1741-2765, Vol. 54, no 8, p. 1329-1341Article in journal (Refereed)
    Abstract [en]

    To model advanced 3-D forming strategies for paper materials, the effects of environmental conditions on the mechanical behavior must be quantitatively and qualitatively understood. A tensile test method has been created, verified, and implemented to test paper at various moisture content and temperature levels. Testing results for one type of paper for moisture contents from 6.9 to 13.8 percent and temperatures from 23 to 168 degrees Celsius are presented and discussed. Coupled moisture and temperature effects have been discovered for maximum stress. Uncoupled effects have been discovered for elastic modulus, tangent modulus, hardening modulus, strain at break, tensile energy absorption (TEA), and approximate plastic strain. A hyperbolic tangent function is also utilized which captures the entire one-dimensional stress-strain response of paper. The effects of moisture and temperature on the three coefficients in the hyperbolic tangent function may be assumed to be uncoupled, which may simplify the development of moisture- and temperature-dependent constitutive models. All parameters were affected by both moisture and temperature with the exception of TEA, which was found to only be significantly dependent on temperature.

  • 10.
    Liu, Andong
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Clay nanopaper composites of nacre-like structure based on montmorrilonite and cellulose nanofibers-Improvements due to chitosan addition2012In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 87, no 1, p. 53-60Article in journal (Refereed)
    Abstract [en]

    Clay nanopaper are nanocomposites with nacre-like structure and multifunctional characteristics including high modulus, significant strength and toughness as well as fire retardancy and low oxygen transmission rate (OTR). Montmorrilonite (MTM) and nanofibrillated cellulose (NFC) hydrocolloids are combined with a chitosan (CS) solution to form high MTM content nanopaper structures by the use of a previously developed papermaking approach. Chitosan functions as flocculation agent and decreases dewatering time to less than 10% compared with MTM-NFC clay nanopaper. The effect of chitosan on the clay nanopaper structure was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Properties were measured by uniaxial tensile testing, thermogravimetric analysis (TGA), OTR and moisture adsorption experiments. A nacre-like multilayered structure was confirmed and the chitosan-clay nanopaper showed favorable mechanical properties at clay contents as high as 44-48 wt%.

  • 11.
    Marais, Andrew
    KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Xyloglucan modification using controlled polymer grafting for biocomposite applications2010Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
  • 12. Naderi, Ali
    et al.
    Lindström, Tom
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Sundstrom, Jonas
    Carboxymethylated nanofibrillated cellulose: rheological studies2014In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 21, no 3, p. 1561-1571Article in journal (Refereed)
    Abstract [en]

    The rheological properties of carboxymethylated nanofibrillated cellulose (NFC), investigated with controlled shear rate- and oscillatory measurements, are reported for the first time. It was shown that the rheological properties of the studied system are similar to those reported for other NFC systems. The carboxymethylated NFC systems showed among other things high elasticity and a shear thinning behaviour when subjected to increasing shear rates. Further, the shear viscosity and storage modulus of the system displayed power-law relations with respect to the dry content of the NFC suspension. The exponential values, 2 and 2.4 respectively, were found to be in good agreement with both theoretical predictions and published experimental work. Furthermore, it was found that the pulp consistency at which NFC is produced affects the properties of the system. The rheological studies imply that there exists a critical pulp concentration below which the efficiency of the delamination process diminishes; the same adverse effect is also observed when the critical concentration is significantly exceeded due to a lower energy input during delamination.

  • 13. Wallmeier, Malte
    et al.
    Linvill, Eric
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.
    Hauptmann, Marek
    Majschak, Jens-Peter
    Östlund, Sören
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Explicit FEM analysis of the deep drawing of paperboard2015In: Mechanics of materials (Print), ISSN 0167-6636, E-ISSN 1872-7743, Vol. 89, p. 202-215, article id 2441Article in journal (Refereed)
    Abstract [en]

    An explicit finite element model of the deep-drawing of paperboard has been developed utilizing a custom yet simple material model which describes the anisotropy and plasticity of paperboard. The model was verified with a variety of tests and was then utilized to compare the punch force that was measured during the deep-drawing experiments to the punch force that was calculated during the deep-drawing simulations. All material parameters were calibrated based on individual experiments; thus, no parameter fitting was utilized to match the experimental deep-drawing results. The model was found to predict the experimental results with reasonable accuracy up to the point when wrinkling began to dominate the material response. Since most failures during paperboard deep-drawing occur before wrinkling begins to play a major role, this model can probably be utilized to study and predict the failure of deep-drawn paperboard cups. The overall trends and the effects of major process parameters are predicted by the model. The process parameters that were varied and compared for both experiments and simulations were: blankholder force, die temperature, and thickness. The model was utilized to discover that friction of the blankholder and die have significant effects on the punch force and thus the stress, implying that low-friction dies and blankholders can considerably reduce the failure probability and thus also improve the quality of deep-drawn paperboard cups.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf