Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Liljeblad, Jonathan F.D.
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. KTH, School of Chemical Science and Engineering (CHE), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Bulone, Vincent
    KTH, School of Biotechnology (BIO), Glycoscience. KTH, School of Chemical Science and Engineering (CHE), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. KTH, School of Chemical Science and Engineering (CHE), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Johnson, Magnus C.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. KTH, School of Chemical Science and Engineering (CHE), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Supported Phospholipid Monolayers: The Molecular Structure Investigated by Vibrational Sum Frequency Spectroscopy2011In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 115, no 21, p. 10617-10629Article in journal (Refereed)
    Abstract [en]

    The molecular structure, packing properties, and hydrating water of Langmuir-Blodgett monolayers of the phospholipids 1,2-distearoyl-sn-glyercophosphatidylcholine (DSPC, 18:0 PC), its deuterated analogue (18:0 PC-d83), and 1,2-distearoyl-sn-glyerco-phosphatidylserine (DSPC, 18:0 PS) deposited on planar calcium fluoride (CaF2) substrates have been investigated using the surface-specific nonlinear optical technique vibrational sum frequency spectroscopy (VSFS). Compression isotherms were recorded before the deposition of the monolayers at a surface pressure of 35 mN/m, mimicking the conditions of biological cell membranes. The CH and CD stretch regions, the water region, and the lower wavenumber region, containing phosphate, ester, carboxylate, and amine signals, thus partly covering the fingerprint region, were probed to obtain a complete map of the molecules. The data indicate that all deposited monolayers formed a well-ordered and stable film, and probing the water region revealed significant differences in hydration for the different headgroups. In addition, the tilt angle of the aliphatic chains relative to the surface normal was estimated to be approximately 4 degrees to 10 degrees based on orientational analysis using the antisymmetric methyl stretching vibration. Orientational analysis of the ester C=O groups was also performed, and the result was consistent with the estimated tilt angle of the aliphatic chains.

  • 2. Takahashi, Junko
    et al.
    Rudsander, Ulla J.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Hedenstrom, Mattias
    Banasiak, Alicja
    Harholt, Jesper
    Amelot, Nicolas
    Immerzeel, Peter
    Ryden, Peter
    Endo, Satoshi
    Ibatullin, Farid M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Brumer, Harry
    KTH, School of Chemical Science and Engineering (CHE), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    del Campillo, Elena
    Master, Emma R.
    Scheller, Henrik Vibe
    Sundberg, Bjorn
    Teeri, Tuula T.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Swedish Center for Biomimetic Fiber Engineering, BioMime.
    Mellerowicz, Ewa J.
    KORRIGAN1 and its Aspen Homolog PttCel9A1 Decrease Cellulose Crystallinity in Arabidopsis Stems2009In: Plant and Cell Physiology, ISSN 0032-0781, E-ISSN 1471-9053, Vol. 50, no 6, p. 1099-1115Article in journal (Refereed)
    Abstract [en]

    KORRIGAN1 (KOR1) is a membrane-bound cellulase implicated in cellulose biosynthesis. PttCel9A1 from hybrid aspen (Populus tremula L. tremuloides Michx.) has high sequence similarity to KOR1 and we demonstrate here that it complements kor1-1 mutants, indicating that it is a KOR1 ortholog. We investigated the function of PttCel9A1/KOR1 in Arabidopsis secondary growth using transgenic lines expressing 35S::PttCel9A1 and the KOR1 mutant line irx2-2. The presence of elevated levels of PttCel9A1/KOR1 in secondary walls of 35S::PttCel9A1 lines was confirmed by in muro visualization of cellulase activity. Compared with the wild type, 35S::PttCel9A1 lines had higher trifluoroacetic acid (TFA)-hydrolyzable glucan contents, similar Updegraff cellulose contents and lower cellulose crystallinity indices, as determined by C-13 solid-state nuclear magnetic resonance (NMR) spectroscopy. irx2-2 mutants had wild-type TFA-hydrolyzable glucan contents, but reduced Updegraff cellulose contents and higher than wild-type cellulose crystallinity indices. The data support the hypothesis that PttCel9A1/KOR1 activity is present in cell walls, where it facilitates cellulose biosynthesis in a way that increases the amount of non-crystalline cellulose.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf