Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Björkholm, Eva
    et al.
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    Andrée, Maria
    Stockholms Universitet.
    Carlgren, Ingrid
    Stockholms Universitet.
    Exploring technical knowledge in the primary technology classroom2016In: Australasian Journal of Technology Education, ISSN 2382-2007, Vol. 1Article in journal (Refereed)
    Abstract [en]

    The aim of this article is to explore the use of categories and aspects of technical knowing which have been identified in specific contexts and related to specific learning objects to identify technical knowing and technical content in another teaching context. In this way, we want to contribute to the understanding of technical knowing within primary technology education, as well as to the development of analytical tools to help teachers in selecting and designing the content of technology teaching. Previous findings from two Learning Studies focusing on evaluating and constructing technical solutions were used to identify technical knowing in video material generated within a particular classroom practice (students aged 7-8 years old). The results suggest that the former categories and aspects can be used in different ways to identify and specify technical knowings related to technical content in the primary technology classroom.

  • 2.
    Björkholm, Eva
    et al.
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    Engström, Susanne
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    Norström, Per
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    Exploring Materials as Subject Content within Technology Education2016In: PATT2016: Technology Education for 21st Century, 2016Conference paper (Refereed)
    Abstract [en]

    Within technology education in compulsory school in Sweden, materials are part of the core contents. What kinds of materials, and which characteristics that should be highlighted is open to interpretation. The study includes three sub-studies: 1/ An analysis of classroom activities during two lessons about materials in primary school, 2/ A Delphi study (Osborne et al. 2003) with experts on materials to gather their thoughts about materials in elementary technology education, and 3/ A review of documents (syllabus, teachers’ handbooks). The purpose of this study is to put light on the field of materials as a content area by investigating what aspects of materials are highlighted in the three contexts. Two teaching sessions were video recorded. The data analysis focused on the objects of teachers and students. Results suggest that the teachers highlight different aspects; one teacher focused on naming the materials and describing what products they are used for, while the other emphasized the materials’ properties. Ten experts participated in the first round of the Delphi study. Their responses were coded reflexively and iteratively. Results indicate the following major categories of material-related subject content: groups of materials, properties, creation and refinement, use, development over time, environmental aspects, and modern materials. The syllabus states that young pupils should study materials that they can use (wood, cardboard). Later common materials (steel, concrete) are introduced and at the end of compulsory school modern materials. Materials’ properties and use in solving technical problems is studied, and their environmental effects. Preliminary results indicate that some content emerges in all three contexts: material usage, the material’s functional properties and origin of the material, production and processing.

  • 3.
    Edström, Kristina
    et al.
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    Kolmos, Anette
    Aalborg University, Denmark.
    Malmi, L.
    Bernhard, J.
    Andersson, P.
    A bottom-up strategy for establishment of EER in three Nordic countries – the role of networks2018In: European Journal of Engineering Education, ISSN 0304-3797, E-ISSN 1469-5898, Vol. 43, no 2, p. 219-234Article in journal (Refereed)
    Abstract [en]

    This paper investigates the emergence of an engineering education research (EER) community in three Nordic countries: Denmark, Finland and Sweden. First, an overview of the current state of Nordic EER authorship is produced through statistics on international publication. Then, the history of EER and its precursor activities is described in three national narratives. These national storylines are tied together in a description of recent networking activities, aiming to strengthen the EER communities on the Nordic level. Taking these three perspectives together, and drawing on concepts from community of practice theory, network theory and learning network theory, we discuss factors behind the differences in the countries, and draw some conclusions about implications for networking activities in a heterogeneous community. Further, we discuss the role of networks for affording a joint identity.

  • 4.
    Engström, Susanne
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Learning.
    Björkholm, Eva
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    DISCOURSES OF PROGRAMMING TEACHING WITHIN COMPULSORY EDUCATION – FIXED OR CHANGEABLE?2017Conference paper (Refereed)
    Abstract [en]

    Knowledge linked to programming has recently been extensively strengthened in curricula and syllabi in the Swedish compulsory school. The introduction of this new content requires that teachers have to be trained in programming and programming teaching. The aim of this study is to investigate what content and values that emerge as important in a professional development course and in the participating teachers’ teaching in their classrooms. Data was collected by observation of the teaching sessions within the course as well as in three of the teachers´ teaching, where notes were made continuously. By using a discourse analytical perspective, content and values that emerged as important within the teaching were identified. The findings show that the content knowledge in the teacher training course is taken for granted within the school context, as well as in itself. In addition, normative values and steering strategies have been identified within the teacher training course. In the classroom studies, similar values were identified among the teachers. A potential problem within the teaching practice was found in terms of a lack of progression of the content related to programming, as well as difficulties in relating the use of programming to relevant contexts.

  • 5.
    Engström, Susanne
    et al.
    KTH, School of Education and Communication in Engineering Science (ECE), Learning.
    Björkholm, Eva
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    Norström, Per
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    A project about materials as subject content within technology education2017In: The proceedings of the XVII IOSTE Symposium released in journal ‘Conexão Ciência’. Conexão Ci. | Formiga/MG, E-ISSN 1980-7058, Vol. 12, no 2, p. 8-14Article in journal (Refereed)
    Abstract [en]

    Within technology education in compulsory school in Sweden, materials are part of the core contents. What kinds of materials, and which characteristics that should be highlighted is open to interpretation. The study includes three sub-studies: 1/ An analysis of classroom activities during two lessons about materials in primary school, 2/ A Delphi study (Osborne et al. 2003) with experts on materials to gather their thoughts about materials in elementary technology education, and 3/ A review of text books. The purpose of this study is to put light on the field of materials as a content area by investigating what aspects of materials are highlighted in the three contexts. Two teaching sessions were video recorded. The data analysis focused on the content highlighted by teachers and students. Results suggest that the teachers and students highlight different aspects of materials. Nine experts participated in the first round of the Delphi study. All data were coded reflexively and iteratively. Results indicate the following major categories of material-related subject content: materials’ usage, groups of materials, properties, creation and refinement, environmental aspects, and modern materials. The themes identified in the study could be seen as limited and concretized set of content, and thereby a guiding tool for technology teachers.

  • 6.
    Hartell, Eva
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    STEM and assessment: A Swedish perspective2016In: Education Technology Solutions, ISSN 1835-209X, Vol. 72, no jun/jul, p. 58-62Article in journal (Refereed)
  • 7.
    Hartell, Eva
    et al.
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    Strimel, Greg
    Purdue University.
    What is it called and how does it work: examining content validity and item design of teacher-made tests2018In: International journal of technology and design education, ISSN 0957-7572, E-ISSN 1573-1804, p. 1-22Article in journal (Refereed)
    Abstract [en]

    This article examines content validity in teacher made tests in elementary technology education—an interdisciplinary subject mandatory for all pupils in compulsory school in Sweden. The context of teacher-based assessments relies heavily on trust for teachers to cope with demands. Even though the system is challenged and preconditions for teachers’ assessment practices are not always adequate to support instruction, much is unknown about teachers’ assessment practices. In this explorative study, 30 teacher-designed tests in technology education from 12 elementary schools were scrutinized in regards to content validity and the types of questions used to assess student knowledge supporting technological literacy. The results present the content validity of these tests in its current form, which may call into question the validity in terms of content and ability. Furthermore, the tests indicate how the technology school subject continues to struggle with shifting epistemologies and technologies far removed from pupils’ everyday lives, which seem to contradict the aims and purpose of the subject.

  • 8.
    Leino Lindell, Tiina
    et al.
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Technology for learning.
    Hrastinski, Stefan
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Technology for learning.
    Skogh, Inga-Britt
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    Exploring students’ multimodal mobile use as support for school assignments2016In: Computers in Education Journal, Vol. 16, no 3Article in journal (Refereed)
  • 9.
    Norström, Per
    KTH, School of Education and Communication in Engineering Science (ECE), Learning, Learning in Engineering Sciences.
    The Nature of Pre-University Engineering Education2016In: Pre-University Engineering Education / [ed] Marc J. de Vries, Lena Gumaelius, Inga-Britt Skogh, Rotterdam: Sense Publishers, 2016, 1, p. 27-46Chapter in book (Refereed)
    Abstract [en]

    Engineering has been introduced as a subject area in schools all over the world during the last decades. The purpose and contents vary slightly, but are commonly based on an engineering design process – on methods for systematic problem solving and product development. Skills learnt during this work is thought to be transferable to everyday life, future careers, and other educational areas. Pre-university engineering education should also increase pupils’ interest in technology, science and/or mathematics. Engineering projects in school commonly deal with non-realistic problems, which lead to difficult challenges for teachers and pupils concerning the transfer of skills to contexts outside of school. Great hopes for engineering’s opportunities to improve pupils’ creativity, learning, initiative, collaboration, and autonomy are expressed in curricula, but no conclusive evidence for its effectiveness exists.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf