Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ashour, Radwa M.
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM. Nuclear Materials Authority, Egypt.
    El-sayed, R.
    Abdel-Magied, A. F.
    Abdel-khalek, A. A.
    Ali, M. M.
    Forsberg, Kerstin
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology.
    Uheida, Abdusalam
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Selective separation of rare earth ions from aqueous solution using functionalized magnetite nanoparticles: kinetic and thermodynamic studies2017In: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 327, p. 286-296Article in journal (Refereed)
    Abstract [en]

    Separation of rare earth ions (RE3+) from aqueous solution is a tricky problem due to their physico-chemical similarities of properties. In this study, we investigate the influence of the functionalized ligands on the adsorption efficiency and selective adsorption of La3+, Nd3+, Gd3+ and Y3+ from aqueous solution using Magnetite (Fe3O4) nanoparticles (NPs) functionalized with citric acid (CA@Fe3O4 NPs) or L-cysteine (Cys@Fe3O4 NPs). The microstructure, thermal behavior and surface functionalization of the synthesized nanoparticles were studied. The general adsorption capacity of Cys@Fe3O4 NPs was found to be high (98 mg g−1) in comparison to CA@Fe3O4 NPs (52 mg g−1) at neutral pH 7.0. The adsorption kinetic studies revealed that the adsorption of RE3+ ions follows a pseudo second-order model and the adsorption equilibrium data fits well to the Langmuir isotherm. Thermodynamic studies imply that the adsorption process was endothermic and spontaneous in nature. Controlled desorption within 30 min of the adsorbed RE3+ ions from both Cys@Fe3O4 NPs and CA@Fe3O4 NPs was achieved with 0.5 M HNO3. Furthermore, Cys@Fe3O4 NPs exhibited a higher separation factor (SF) in the separation of Gd3+/La3+, Gd3+/Nd3+, Gd3+/Y3+ ions compared to CA@Fe3O4 NPs.

  • 2.
    Doddapaneni, Venkatesh
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Gati, Rudolf
    ABB Switzerland.
    Toprak, Muhammet S.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Engineered PMMA-CuO nanocomposites for improving the electric arc interruption process in electrical switching applicationsManuscript (preprint) (Other academic)
    Abstract [en]

    Polymer-based nanocomposites (PNCs) display fascinating functionalities to be useful in electrical switching applications like circuit breakers, switch gears, etc. These PNCs are fabricated by incorporating nanoparticles (NPs) into a polymer by in-situ polymerization. When the PNCs interrupt the high energetic fault currents generate between the two contacts in a circuit breaker, they outgas (ablation) chemical species and cooling gases, which change the thermodynamic properties of the arcing environment leading to quench the electrical arcs quickly. Two PNCs are fabricated with different wt% of oleic acid modified CuO NPs and a polymer matrix i.e. poly methyl methacrylate (PMMA). These PNCs are tested with the electrical arcs of a prospective current of 1.6 kA generated in the test-setup. The electrical signals (arc current and voltage) and computed dissipated enegy i.e., ∫𝑖(𝑡)𝑉(𝑡)𝑑𝑡 help to understand the effect of PNCs on the electrical arcs. In addition to that, the computed joule integral and mass loss of the PNCs due to outgassing is reported. The re-depositions of the chemical species are analyzed by using Fourier transform infrared spectroscopy (FTIR) and the morphological changes on the surface of outgassed PNCs are analyzed by using scanning electron microscopy (SEM). These results help to understand the effect of PNCs on the arc interruption process in circuit breakers.

  • 3. El-Sayed, R.
    et al.
    Ye, F.
    Asem, Heba
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Ashour, Radwa
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Zheng, W.
    Muhammed, Mamoun
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM. Alexandria University, Egypt.
    Hassan, M.
    Importance of the surface chemistry of nanoparticles on peroxidase-like activity2017In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 491, no 1, p. 15-18Article in journal (Refereed)
    Abstract [en]

    We report the studies on origin of peroxidase-like activity for gold nanoparticles, as well as the impact from morphology and surface charge of nanoparticles. For this purpose, we have synthesized hollow gold nanospheres (HAuNS) and gold nanorods (AuNR) with different morphology and surface chemistry to investigate their influence on the catalytic activity. We found that citrate-capped HAuNS show catalyzing efficiency in oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) and it is superior to that of cetyltrimethylammonium bromide (CTAB)-capped AuNR. The kinetics of catalytic activities from HAuNS and AuNR were respectively studied under varied temperatures. The results indicated that surface chemistry rather than morphology of nanoparticles plays an important role in the catalytic reaction of substrate. Furthermore, influencing factors such as pH, amount of nanoparticle and H2O2 concentration were also investigated on HAuNS-catalyzed system. The great impact of nanoparticle surface properties on catalytic reactions makes a paradigm in constructing nanozymes as peroxidase mimic for sensing application.

  • 4.
    Ergül, Adem Björn
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM. Jet Propulsion Laboratory, Caltech.
    Magnesium Diboride (MgB2) & Molybdenum Silicide (MoSi) Superconducting Nanowires2016Book (Other academic)
  • 5. Kyaw, Htet Htet
    et al.
    Myint, Myo Tay Zar
    Al-Harthi, Salim Hamood
    Maekawa, Toru
    Yanagisawa, Keiichi
    Sellai, Azzouz
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Observation of exchanging role of gold and silver nanoparticles in bimetallic thin film upon annealing above the glass transition temperature2017In: MATERIALS RESEARCH EXPRESS, ISSN 2053-1591, Vol. 4, no 8, article id 086409Article in journal (Refereed)
    Abstract [en]

    The exchange role of gold (Au) and silver (Ag) in bimetallic films co-evaporated onto soda-lime glass substrates with Au-Ag volume ratios of 1:2, 1:1 and 2:1 have been demonstrated. Annealing of the films above the glass transition temperature in air led to non-alloying nature of the films, silver neutrals (Ag-0) and gold nanoparticles (AuNPs) on the surface, along with silver nanoparticles (AgNPs) inside the glass matrix. Moreover, the size distribution and interparticle spacing of the AuNPs on the surface were governed by the Ag content in the deposited film. In contrast, the content of Au in the film played an opposite role leading to the migration of Ag ions (i.e. Ag-0 being transformed to Ag ions after annealing in oxygen ambient) to form AgNPs inside the glass matrix. The higher the Au content in the film is, the more likely Ag-0 to stay on the surface and impacts on the size distribution of AuNPs and consequently on the refractive index sensitivity measurements. Experimental realisation of this fact was reflected from the best performance for localized surface plasmon resonance (LSPR) sensitivity test achieved with Au-Ag ratio of 1:2. The Au/Ag/glass bimetallic dynamic results of this study can be pertinent to sensor applications integrated with optical devices.

  • 6.
    Laxman, Karthik
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Husain, Afzal
    Sultan Qaboos Univ, Coll Engn, Dept Mech & Ind Engn, POB 33, Muscat 123, Oman..
    Nasser, Asma
    Sultan Qaboos Univ, Nanotechnol Res Ctr, POB 17, Muscat 123, Oman..
    Al Abri, Mohammed
    Sultan Qaboos Univ, Nanotechnol Res Ctr, POB 17, Muscat 123, Oman.;Sultan Qaboos Univ, Petr & Chem Engn Dept, Coll Engn, POB 33, Muscat 123, Oman..
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Tailoring the pressure drop and fluid distribution of a capacitive deionization device2019In: Desalination, ISSN 0011-9164, E-ISSN 1873-4464, Vol. 449, p. 111-117Article in journal (Refereed)
    Abstract [en]

    The performance of a capacitive deionization (CDI) device is governed by complex relations between the electrode material properties, fluid velocity and fluid distribution within the device. In order to maximize fluid (water) interaction with the electrodes, the relationships between fluid flow and electrode material properties are explored here to develop novel CDI architectures which reduce the pressure drop, improve surface utilization factor and improve the electrode salt adsorption capacity. Using activated carbon cloth (ACC) as the electrode material, the pressure drop across the CDI device is quantified with respect to flow scheme (flow-between and flow-through CDI modes) used. Computational fluid dynamic (CFD) models are developed to study and optimize the fluid velocity and distribution in order to minimize the device fluid pressure losses. The model predictions are verified by constructing the conceptualized CDI devices and correlating the theoretical and experimentally obtained pressure drops, salt adsorption capacities and fluid flow parameters. The results indicate that up to 60% reduction in pressure drop and similar to 35% increase in specific salt adsorption capacity can be achieved by simple changes to the input-output port architecture of the CDI units. The results describe a method to considerably lower energy consumption in commercial CDI devices.

  • 7. Sathe, P.
    et al.
    Laxman, Karthik
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Myint, M. T. Z.
    Dobretsov, S.
    Richter, J.
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics, Functional Materials, FNM.
    Bioinspired nanocoatings for biofouling prevention by photocatalytic redox reactions2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, no 1, article id 3624Article in journal (Refereed)
    Abstract [en]

    Aquaculture is a billion dollar industry and biofouling of aquaculture installations has heavy economic penalties. The natural antifouling (AF) defence mechanism of some seaweed that inhibits biofouling by production of reactive oxygen species (ROS) inspired us to mimic this process by fabricating ZnO photocatalytic nanocoating. AF activity of fishing nets modified with ZnO nanocoating was compared with uncoated nets (control) and nets painted with copper-based AF paint. One month experiment in tropical waters showed that nanocoatings reduce abundances of microfouling organisms by 3-fold compared to the control and had higher antifouling performance over AF paint. Metagenomic analysis of prokaryotic and eukaryotic fouling organisms using next generation sequencing platform proved that nanocoatings compared to AF paint were not selectively enriching communities with the resistant and pathogenic species. The proposed bio-inspired nanocoating is an important contribution towards environmentally friendly AF technologies for aquaculture.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf