Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Chen, Gefei
    et al.
    Abelein, Axel
    Nilsson, Harriet E.
    KTH, School of Technology and Health (STH), Medical Engineering, Structural Biotechnology.
    Leppert, Axel
    Andrade-Talavera, Yuniesky
    Tambaro, Simone
    Hemmingsson, Lovisa
    Roshan, Firoz
    Landreh, Michael
    Biverstal, Henrik
    Koeck, Philip J. B.
    KTH, School of Technology and Health (STH), Medical Engineering, Structural Biotechnology.
    Presto, Jenny
    Hebert, Hans
    Fisahn, Andre
    Johansson, Jan
    Bri2 BRICHOS client specificity and chaperone activity are governed by assembly state2017In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 8, article id 2081Article in journal (Refereed)
    Abstract [en]

    . Protein misfolding and aggregation is increasingly being recognized as a cause of disease. In Alzheimer's disease the amyloid-beta peptide (A beta) misfolds into neurotoxic oligomers and assembles into amyloid fibrils. The Bri2 protein associated with Familial British and Danish dementias contains a BRICHOS domain, which reduces A beta fibrillization as well as neurotoxicity in vitro and in a Drosophila model, but also rescues proteins from irreversible nonfibrillar aggregation. How these different activities are mediated is not known. Here we show that Bri2 BRICHOS monomers potently prevent neuronal network toxicity of A beta, while dimers strongly suppress A beta fibril formation. The dimers assemble into high-molecular-weight oligomers with an apparent two-fold symmetry, which are efficient inhibitors of non-fibrillar protein aggregation. These results indicate that Bri2 BRICHOS affects qualitatively different aspects of protein misfolding and toxicity via different quaternary structures, suggesting a means to generate molecular chaperone diversity.

  • 2. Ermund, Anna
    et al.
    Meiss, Lauren N.
    Rodriguez-Pineiro, Ana M.
    Baehr, Andrea
    Nilsson, Harriet E.
    KTH, School of Technology and Health (STH), Medical Engineering. Department of Medical Biochemistry, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, and School of Technology and Health, KTH Royal Institute of Technology, Novum, SE-141 57 Huddinge, Sweden.
    Trillo-Muyo, Sergio
    Ridley, Caroline
    Thornton, David J.
    Wine, Jeffrey J.
    Hebert, Hans
    KTH, School of Technology and Health (STH), Medical Engineering, Structural Biotechnology. Department of Biosciences and Nutrition, Karolinska Institutet, and School of Technology and Health, KTH Royal Institute of Technology, Novum, SE-141 57 Huddinge, Sweden.
    Klymiuk, Nikolai
    Hansson, Gunnar C.
    The normal trachea is cleaned by MUC5B mucin bundles from the submucosal glands coated with the MUC5AC mucin2017In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 492, no 3, p. 331-337Article in journal (Refereed)
    Abstract [en]

    To understand the mucociliary clearance system, mucins were visualized by light, confocal and electron microscopy, and mucus was stained by Alcian blue and tracked by video microscopy on tracheal explants of newborn piglets. We observed long linear mucus bundles that appeared at the submucosal gland openings and were transported cephalically. The mucus bundles were shown by mass spectrometry and immunostaining to have a core made of MUC5B mucin and were coated with MUC5AC mucin produced by surface goblet cells. The transport speed of the bundles was slower than the airway surface liquid flow. We suggest that the goblet cell MUC5AC mucin anchors the mucus bundles and thus controls their transport. Normal clearance of the respiratory tree of pigs and humans, both rich in submucosal glands, is performed by thick and long mucus bundles. 

  • 3.
    Koeck, Philip J. B.
    KTH, School of Technology and Health (STH), Medical Engineering, Structural Biotechnology. Karolinska Institutet, Department of Biosciences and Nutrition, Novum, 14183 Huddinge, Sweden.
    An aperture design for single side band imaging in the transmission electron microscope2017In: Ultramicroscopy, ISSN 0304-3991, E-ISSN 1879-2723, Vol. 182, p. 81-84Article in journal (Refereed)
  • 4.
    Kuang, Qie
    et al.
    KTH, School of Technology and Health (STH).
    Purhonen, Pasi
    Alander, Johan
    Svensson, Richard
    Hoogland, Veronika
    Winerdal, Jens
    Spahiu, Linda
    Ottosson-Wadlund, Astrid
    Jegerschold, Caroline
    KTH, School of Technology and Health (STH).
    Morgenstern, Ralf
    Hebert, Hans
    KTH, School of Technology and Health (STH), Medical Engineering, Structural Biotechnology.
    Dead-end complex, lipid interactions and catalytic mechanism of microsomal glutathione transferase 1, an electron crystallography and mutagenesis investigation2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 7897Article in journal (Refereed)
    Abstract [en]

    Microsomal glutathione transferase 1 (MGST1) is a detoxification enzyme belonging to the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. Here we have used electron crystallography of two-dimensional crystals in order to determine an atomic model of rat MGST1 in a lipid environment. The model comprises 123 of the 155 amino acid residues, two structured phospholipid molecules, two aliphatic chains and one glutathione (GSH) molecule. The functional unit is a homotrimer centered on the crystallographic three-fold axes of the unit cell. The GSH substrate binds in an extended conformation at the interface between two subunits of the trimer supported by new in vitro mutagenesis data. Mutation of Arginine 130 to alanine resulted in complete loss of activity consistent with a role for Arginine 130 in stabilizing the strongly nucleophilic GSH thiolate required for catalysis. Based on the new model and an electron diffraction data set from crystals soaked with trinitrobenzene, that forms a dead-end Meisenheimer complex with GSH, a difference map was calculated. The map reveals side chain movements opening a cavity that defines the second substrate site.

  • 5.
    Zhu, Lin
    et al.
    KTH, School of Technology and Health (STH), Medical Engineering, Structural Biotechnology. Karolinska Institutet, Sweden.
    Petrlova, J.
    Gysbers, P.
    Hebert, Hans
    KTH, School of Technology and Health (STH), Medical Engineering, Structural Biotechnology. Karolinska Institutet, Sweden.
    Wallin, S.
    Jegerschöld, Caroline
    KTH, School of Technology and Health (STH). Karolinska Institutet, Sweden.
    Lagerstedt, J. O.
    Structures of apolipoprotein A-I in high density lipoprotein generated by electron microscopy and biased simulations2017In: Biochimica et Biophysica Acta - General Subjects, ISSN 0304-4165, E-ISSN 1872-8006, Vol. 1861, no 11, p. 2726-2738Article in journal (Refereed)
    Abstract [en]

    Background: Apolipoprotein A-I (apoA-I) in high-density lipoprotein (HDL) is a key protein for the transport of cholesterol from the vascular wall to the liver. The formation and structure of nascent HDL, composed of apoA-I and phospholipids, is critical to this process. Methods: The HDL was assembled in vitro from apoA-I, cholesterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at a 1:4:50 molar ratio. The structure of HDL was investigated in vitreous samples, frozen at cryogenic temperatures, as well as in negatively stained samples by transmission electron microscopy. Low resolution electron density maps were next used as restraints in biased Monte Carlo simulations of apolipoprotein A-I dimers, with an initial structure derived from atomic resolution X-ray structures. Results: Two final apoA-I structure models for the full-length structure of apoA-I dimer in the lipid bound conformation were generated, showing a nearly circular, flat particle with an uneven particle thickness. Conclusions: The generated structures provide evidence for the discoidal, antiparallel arrangement of apoA-I in nascent HDL, and propose two preferred conformations of the flexible N-termini.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf