Change search
Refine search result
12 1 - 50 of 81
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abramson, Alex
    et al.
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA..
    Caffarel-Salvador, Ester
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA.;MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA..
    Khang, Minsoo
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA..
    Dellal, David
    MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA..
    Silverstein, David
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA..
    Gao, Yuan
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA..
    Frederiksen, Morten Revsgaard
    Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Vegge, Andreas
    Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Hubalek, Frantisek
    Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Water, Jorrit J.
    Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Friderichsen, Anders V.
    Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Fels, Johannes
    Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Kirk, Rikke Kaae
    Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Cleveland, Cody
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA.;Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Collins, Joy
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA..
    Tamang, Siddartha
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA..
    Hayward, Alison
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA.;MIT, Div Comparat Med, Cambridge, MA 02139 USA..
    Landh, Tomas
    Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Buckley, Stephen T.
    Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Roxhed, Niclas
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Rahbek, Ulrik
    Novo Nordisk AS, Global Res Technol, Global Drug Discovery & Device R&D, Copenhagen, Denmark..
    Langer, Robert
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA.;MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA.;MIT, Media Lab, Cambridge, MA 02139 USA..
    Traverso, Giovanni
    MIT, Dept Chem Engn, Cambridge, MA 02139 USA.;MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA.;MIT, Dept Mech Engn, Cambridge, MA 02139 USA.;Harvard Med Sch, Brigham & Womens Hosp, Div Gastroenterol, Boston, MA 02115 USA..
    An ingestible self-orienting system for oral delivery of macromolecules2019In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 363, no 6427, p. 611-+Article in journal (Refereed)
    Abstract [en]

    Biomacromolecules have transformed our capacity to effectively treat diseases; however, their rapid degradation and poor absorption in the gastrointestinal (GI) tract generally limit their administration to parenteral routes. An oral biologic delivery system must aid in both localization and permeation to achieve systemic drug uptake. Inspired by the leopard tortoise's ability to passively reorient, we developed an ingestible self-orienting millimeter-scale applicator (SOMA) that autonomously positions itself to engage with GI tissue. It then deploys milliposts fabricated from active pharmaceutical ingredients directly through the gastric mucosa while avoiding perforation. We conducted in vivo studies in rats and swine that support the applicator's safety and, using insulin as a model drug, demonstrated that the SOMA delivers active pharmaceutical ingredient plasma levels comparable to those achieved with subcutaneous millipost administration.

  • 2.
    Anoshkin, Ilya V.
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Campion, James
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Lioubtchenko, Dmitri V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Freeze-Dried Carbon Nanotube Aerogels for High-Frequency Absorber Applications2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, ISSN 1944-8244, Vol. 10, no 23, p. 19806-19811Article in journal (Refereed)
    Abstract [en]

    A novel technique for millimeter wave absorber material embedded in a metal waveguide is proposed. The absorber material is a highly porous carbon nanotube (CNT) aerogel prepared by a freeze-drying technique. CNT aerogel structures are shown to be good absorbers with a low reflection coefficient, less than -12 dB at 95 GHz. The reflection coefficient of the novel absorber is 3-4 times lower than that of commercial absorbers with identical geometry. Samples prepared by freeze-drying at -25 degrees C demonstrate resonance behavior, while those prepared at liquid nitrogen temperature (-196 degrees C) exhibit a significant decrease in reflection coefficient, with no resonant behavior. CNT absorbers of identical volume based on wet-phase drying preparation show significantly worse performance than the CNT aerogel absorbers prepared by freeze-drying. Treatment of the freeze-dried CNT aerogel with n- and p-dopants (monoethanolamine and iodine vapors, respectively) shows remarkable improvement in the performance of the waveguide embedded absorbers, reducing the reflection coefficient by 2 dB across the band.

  • 3.
    Asadollahi, Ali
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems. KTH.
    A Study of Surface Treatments and Voids Formation in Low Temperature Wafer BondingManuscript (preprint) (Other academic)
  • 4.
    Baghban, Mohammad Amin
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Schollhammer, Jean
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Errando-Herranz, Carlos
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Gylfason, Kristinn B.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Gallo, Katia
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Waveguide Gratings in Thin-Film Lithium Niobate on Insulator2017In: 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), IEEE , 2017Conference paper (Refereed)
  • 5.
    Banovic, Vladimir
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Real-Time Monitoring of Neurovascular Cells2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Organs-on-a-chip devices are perfused cell culture systems aimed at creating the minimal functional unit of an organ - suchas the neurovascular unit (NVU) of the brain. NVU-on-a-chip platforms can provide an effective framework for studyingcentral nervous system physiology, disease etiology and provide a mean for drug development.In this work, we investigated the possibility of developing NVU-on-a-chip devices, with real-time sensing capabilitiesof glucose - intended for monitoring the metabolic activity of neurovascular cells. This was done by evaluating theperformance and applicability of in-house ultra-miniaturized glucose sensor technology and commercial DropSence (DS)electrodes, as well as studying astrocytoma characteristics.Firstly the performance of the amperometric microsensors was assessed - demonstrating a sufficient linear detectionrange (6, 2±0, 7 mM) for monitoring normal glucose levels of the brain (0, 5−1, 5 mM) and a high sensitivity (0, 09±0, 02mA/mM/mm2) . Limit of detection (LOD) ranged between 0, 04 mM for the 3_2 model microsensor to up to to 0, 14±0, 05mM for the DS electrodes. Limit of detectable change (LO4S), obtained from deviations between repeated measurements,was found to be approximately 0, 6 mM for all the sensors - close to the normal glucose concentrations of the brain. Limitof detectable change (LO4N), obtained from signal-noise within single measurements, was smallest for the biggest DSelectrodes (0, 04 mM).Secondly the compatibility of sensor materials (substrate and functional membranes) with astrocytoma cells was tested.Cell viability and growth, in conjunction with test materials, were assessed and compared to that of glass and/or cellculturetreated polystyrene (plastic). The materials tested were: Nafion; polyurethane (PU); Glucose Oxidase/bovineserum albumin/glutaraldehyde (GOx/GA); and silicon substrate with SiO2 surface. Cell viability and growth provedalmost as good on nafion membrane as on plastic and glass, while the enzyme containing layer proved to be toxic - mostlikely due to the protein-reactive crosslinker glutaraldehyde. PU-membrane showed significantly lower performance thanglass but demonstrated the best ability to encapsulate the toxic effect of the innermost enzyme layer. In contrast, nafioncoverage resulted in a lack of cells adjacent to the membrane - suggesting partial permeability to the harmful compoundsof the innermost layer. The SiO2surface of the silicon substrate, demonstrated significantly lower performance than plasticin terms of cell viability and growth.Thirdly glucose uptake rates of astrocytoma cell were determined. Depending on glucose availability in the the test wellsthe cells demonstrated a wide range of uptake rates: between 6, 5 · 10

  • 6. Beck, O.
    et al.
    Kenan Modén, N.
    Seferaj, S.
    Lenk, Gabriel
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Helander, A.
    Study of measurement of the alcohol biomarker phosphatidylethanol (PEth) in dried blood spot (DBS) samples and application of a volumetric DBS device2018In: Clinica Chimica Acta, ISSN 0009-8981, E-ISSN 1873-3492, Vol. 479, p. 38-42Article in journal (Refereed)
    Abstract [en]

    Phosphatidylethanol (PEth) is a group of phospholipids formed in cell membranes following alcohol consumption. PEth measurement in whole blood samples is established as a specific alcohol biomarker with clinical and medico-legal applications. This study further evaluated the usefulness of dried blood spot (DBS) samples collected on filter paper for PEth measurement. Specimens used were surplus volumes of venous whole blood sent for routine LC–MS/MS quantification of PEth 16:0/18:1, the major PEth homolog. DBS samples were prepared by pipetting blood on Whatman 903 Protein Saver Cards and onto a volumetric DBS device (Capitainer). The imprecision (CV) of the DBS sample amount based on area and weight measurements of spot punches were 23–28%. Investigation of the relationship between blood hematocrit and PEth concentration yielded a linear, positive correlation, and at around 1.0–1.5 μmol/L PEth 16:0/18:1, the PEth concentration increased by ~ 0.1 μmol/L for every 5% increase in hematocrit. There was a close agreement between the PEth concentrations obtained with whole blood samples and the corresponding results using Whatman 903 (PEthDBS = 1.026 PEthWB + 0.013) and volumetric device (PEthDBS = 1.045 PEthWB + 0.016) DBS samples. The CV of PEth quantification in DBS samples at concentrations ≥ 0.05 μmol/L were ≤ 15%. The present results further confirmed the usefulness of DBS samples for PEth measurement.

  • 7.
    Beuerle, Bernhard
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Campion, James
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Low-Loss Silicon Micromachined Waveguides Above 100 GHz Utilising Multiple H-plane Splits2018In: Proceedings of the 48th European Microwave Conference, Madrid, October 1-3, 2018, Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 1041-1044, article id 8541605Conference paper (Refereed)
    Abstract [en]

    For sub-millimeter and millimeter wave applications rectangular waveguides are an ideal transmission medium. Compared to conventional, metal-milled rectangular waveguides, silicon micromachined waveguides offer a number of advantages. In this paper we present a low-loss silicon micromachined waveguide technology based on a double H-plane split for the frequency bands of 110 – 170 GHz and 220 – 330 GHz. For the upper band a reduced height waveguide is presented, which achieves a loss per unit length of 0.02 – 0.10 dB/mm. This technology has been further adapted to implement a full height waveguide for the lower frequency band of 110 – 170 GHz. The full height waveguide takes advantage of the benefits of the double H-plane split technique to overcome the challenges of fabricating micromachined waveguides at lower frequencies. With measured insertion loss of 0.007 – 0.013 dB/mm, averaging 0.009 dB/mm over the whole band, this technology offers the lowest insertion loss of any D-band waveguide to date. The unloaded Q factor of the D-band waveguide technology is estimated to be in excess of 1600, while a value of 750 has been measured for the reduced height upper band waveguide.

  • 8.
    Beuerle, Bernhard
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Micromachined Waveguides with Integrated Silicon Absorbers and Attenuators at 220–325 GHz2018In: IEEE MTT-S International Microwave Symposium, IEEE conference proceedings, 2018 / [ed] IEEE, IEEE, 2018Conference paper (Refereed)
    Abstract [en]

    This paper reports for the first time on micromachined waveguides with integrated micromachined silicon absorbers. In contrast to epoxy-based microwave absorbers, micromachined lossy silicon absorbers are fully compatible with high temperature fabrication and assembly processes for micromachined waveguides. Furthermore, micromachining enables the fabrication of exact, near ideal taper tips for the silicon absorbers, whereas the tip of epoxy-based absorbers cannot be shaped accurately and reproducibly for small waveguides. Silicon of different conductivity is a very well understood and characterized dielectric material, in contrast to conventional absorber materials which are not specified above 60 GHz. Micromachined silicon waveguides with integrated absorbers and attenuators were designed, fabricated and characterized in the frequency band of 220 – 325 GHz. The return and insertion loss for various taper-geometry variations of double-tip tapered absorbers and attenuators was studied. The average return loss for the best investigated device is 19 dB over the whole band. The insertion loss of the two-port attenuators is 16 – 33 dB for different designs and shows an excellent agreement to the simulated results. The best measured devices of the one-port absorbers exhibit an average and worst-case return loss of 22 dB and 14 dB, respectively, over the whole band. The return loss is not characterized by a good simulation-measurement match, which is most likely attributed to placement tolerances of the absorbers in the waveguide cavities affecting the return but not the insertion loss.

  • 9.
    Beuerle, Bernhard
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Micromachined Waveguides with Integrated Silicon Absorbers and Attenuators at 220-325 GHz2018In: IEEE MTT-S International Microwave Symposium Digest, Institute of Electrical and Electronics Engineers Inc. , 2018, p. 579-582Conference paper (Refereed)
    Abstract [en]

    This paper reports for the first time on micromachined waveguides with integrated micromachined silicon absorbers. In contrast to epoxy-based microwave absorbers, micromachined lossy silicon absorbers are fully compatible with high temperature fabrication and assembly processes for micromachined waveguides. Furthermore, micromachining enables the fabrication of exact, near ideal taper tips for the silicon absorbers, whereas the tip of epoxy-based absorbers cannot be shaped accurately and reproducibly for small waveguides. Silicon of different conductivity is a very well understood and characterized dielectric material, in contrast to conventional absorber materials which are not specified above 60 GHz. Micromachined silicon waveguides with integrated absorbers and attenuators were designed, fabricated and characterized in the frequency band of 220 - 325 GHz. The return and insertion loss for various taper-geometry variations of double-tip tapered absorbers and attenuators was studied. The average return loss for the best investigated device is 19 dB over the whole band. The insertion loss of the two-port attenuators is 16 - 33 dB for different designs and shows an excellent agreement to the simulated results. The best measured devices of the one-port absorbers exhibit an average and worst-case return loss of 22 dB and 14 dB, respectively, over the whole band. The return loss is not characterized by a good simulation-measurement match, which is most likely attributed to placement tolerances of the absorbers in the waveguide cavities affecting the return but not the insertion loss.

  • 10.
    Campion, James
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Beuerle, Bernhard
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Krivovitca, Aleksandr
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
    Low-Loss Hollow and Silicon-Core Micromachined Waveguide Technologies Above 100 GHz2018Conference paper (Other academic)
  • 11.
    Campion, James
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Glubokov, Oleksandr
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Gomez-Torrent, Adrian
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Krivovitca, Aleksandr
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Bolander, L.
    Li, Y.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    An Ultra Low-Loss Silicon-Micromachined Waveguide Filter for D-Band Telecommunication Applications2018In: IEEE MTT-S International Microwave Symposium Digest, Institute of Electrical and Electronics Engineers Inc. , 2018, p. 583-586Conference paper (Refereed)
    Abstract [en]

    Ahstract-A very low-loss micromachined waveguide bandpass filter for use in D-band (110-170 GHz) telecommunication applications is presented. The 134-146 GHz filter is implemented in a silicon micromachined technology which utilises a double H-plane split, resulting in significantly lower insertion loss than conventional micromachined waveguide devices. Custom split-blocks are designed and implemented to interface with the micromachined component. Compact micromachined E-plane bends connect the split-blocks and DUT. The measured insertion loss per unit length of the waveguide technology (0.008-0.016dB/mm) is the lowest reported to date for any micromachined waveguide at D-band. The fabricated 6-pole filter, with a bandwidth of 11.8 GHz (8.4 %), has a minimum insertion loss of 0.41 dB, averaging 0.5 dB across its 1 dB bandwidth, making it the lowest-loss D-band filter reported to date in any technology. Its return loss is better than 20 dB across 85 % of the same bandwidth. The unloaded quality factor of a single cavity resonator implemented in this technology is estimated to be 1600.

  • 12.
    Campion, James
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Glubokov, Oleksandr
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Gomez-Torrent, Adrian
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Krivovitca, Aleksandr
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Bolander, Lars
    Ericsson Research.
    Li, Yinggang
    Ericsson Research.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems. KTH Royal Institute of Technology.
    An Ultra Low-Loss Silicon-Micromachined Waveguide Filter for D-Band Telecommunication Applications2018Conference paper (Refereed)
    Abstract [en]

    A very low-loss micromachined waveguide bandpassfilter for use in D-band (110–170GHz) telecommunication applicationsis presented. The 134–146GHz filter is implemented in a silicon micromachined technology which utilises a double H-plane split, resulting in significantly lower insertion loss than conventional micromachined waveguide devices. Custom split-blocks are designed and implemented to interface with the micromachined component. Compact micromachined E-plane bends connect the split-blocks and DUT. The measured insertion loss per unit length of the waveguide technology (0.008–0.016 dB/mm) is the lowest reported to date for any micromachined waveguide at D-band. The fabricated 6-pole filter, with a bandwidth of 11.8 GHz (8.4%), has a minimum insertion loss of 0.41 dB, averaging 0.5 dB across its 1 dB bandwidth, making it the lowest-loss D-band filter reported to date in any technology. Its return loss is better than 20 dB across 85% of the same bandwidth. The unloaded quality factor of a single cavity resonator implemented in this technology is estimated to be 1600.

  • 13.
    da Silva Granja, Carlos
    et al.
    Centre for Biological Engineering, Loughborough University, UK.
    Sandström, Niklas
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Efimov, Igor
    Centre for Biological Engineering, Loughborough University, UK.
    Ostanin, Victor
    Department of Chemistry, University of Cambridge, UK.
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Klenerman, David
    Department of Chemistry, University of Cambridge, UK.
    Ghosh, Sourav
    Centre for Biological Engineering, Loughborough University, UK.
    Characterisation of particle-surface interactions via anharmonic acoustic transduction2018In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 272, p. 175-184Article in journal (Refereed)
  • 14.
    Demchenko, P.
    et al.
    ITMO Univ, St Petersburg 197101, Russia..
    Gomon, D.
    ITMO Univ, St Petersburg 197101, Russia..
    Anoshkin, Ilya V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Lioubtchenko, Dmitri
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems. ITMO Univ, St Petersburg 197101, Russia..
    Khodzitsky, M.
    ITMO Univ, St Petersburg 197101, Russia..
    Influence of optical pumping on properties of carbon nanotubes with different geometric parameters in THz frequency range2018In: 2018 43RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), IEEE , 2018Conference paper (Refereed)
    Abstract [en]

    Impact of infrared radiation illumination (980 nm) on the properties of cabon nanotubes (CNT), such as complex conductivity and permittivity, with different geometric parameters (lengths, diameters and with presence/absence graphene oxide layer) in the frequency range of 0.2-1.0 THz was studied.

  • 15. Demchenko, P.
    et al.
    Gomon, D.
    Anoshkin, Ilya V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Smirnov, Serguei
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Lioubtchenko, Dmitri
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Khodzitsky, M.
    Study of influence of densification on control of conductivity and spectral characteristics of thin films of carbon nanotubes in terahertz frequency range2018In: EPJ Web of Conferences, EDP Sciences, 2018, article id 06022Conference paper (Refereed)
  • 16. Demchenko, P.
    et al.
    Gomon, D.
    Anoshkin, Ilya V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Lioubtchenko, Dmitri
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Khodzitsky, M.
    Study of optical pumping influence on carbon nanotubes permittivity in THz frequency range2018In: Journal of Physics: Conference Series, Institute of Physics Publishing , 2018, no 5Conference paper (Refereed)
    Abstract [en]

    Equivalent complex permittivity of carbon nanotubes (CNT) was measured with/without light illumination at the frequency range of 0.2-1 THz. It was shown that we can tune the dispersion of the CNT complex conductivity during varying of optical pumping (wavelength of 980 nm). These results mean that CNT is perspective candidate for development of THz tunable attenuators and phase shifters. 

  • 17.
    Dubois, Valentin
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Crack-junctions: Bridging the gap between nano electronics and giga manufacturing2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Obtaining both nanometer precision of patterning and parallel fabrication on wafer-scale is currently not possible in conventional fabrication schemes. Just as we are looking beyond semiconductor technologies for next-generation electronics and photonics, our efforts turn to new ways of producing electronic and photonic interfaces with the nanoscale. Nanogap electrodes, with their accessible free-space and connection to electronic circuits, have attracted a lot of attention recently as scaffolds to study, sense, or harness the smallest stable structures found in nature: molecules. The main achievement of this thesis is the development of a novel type of nanogap electrodes, the so called crack-junction (CJ). Crack-junctions are unparalleled at realizing nanogap widths smaller than 10 nm and can be fabricated based exclusively on conventional wafer-scale microfabrication equipment and processes. These characteristics of crack-junctions stem from the sequence of two entirely self-induced steps participating in the formation of the nanogaps: 1./ a splitting step, during which a pre-strained electrode-bridge structure fractures to generate two new electrode surfaces facing one another, followed by 2./ a dividing step during which mechanical relaxation of the elastic strain induces displacement of these surfaces away from one another in a precisely controlled way. The positions of the resulting nanogaps are precisely controlled by designing the electrode-bridges with notched constrictions that localize crack formation. Based on the crack-junction methodology, two continuation concepts are developed and demonstrated. In the first concept, the crack-junction methodology is extended to electrode materials that are ductile, rather than brittle. This led to the development of a new type of break junction, the so called crack-defined break junction (CDBJ). In the second concept, the crack-defined nanogap structures realized by the crack-junction methodology are utilized as a shadow mask for the fabrication of single nanowire devices. The optical-lithography-compatible processes developed here to produce high-density arrays of individually-adjusted crack-junctions, crack-defined break junctions, and single-nanowire devices, provide viable solutions to bridge 10−9 nanoelectronics and 109 giga manufacturing.

  • 18.
    Dubois, Valentin J.
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Bleiker, Simon J.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Niklaus, Frank
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Scalable Manufacturing of Nanogaps2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 46, article id 1801124Article, review/survey (Refereed)
    Abstract [en]

    The ability to manufacture a nanogap in between two electrodes has proven a powerful catalyst for scientific discoveries in nanoscience and molecular electronics. A wide range of bottom-up and top-down methodologies are now available to fabricate nanogaps that are less than 10 nm wide. However, most available techniques involve time-consuming serial processes that are not compatible with large-scale manufacturing of nanogap devices. The scalable manufacturing of sub-10 nm gaps remains a great technological challenge that currently hinders both experimental nanoscience and the prospects for commercial exploitation of nanogap devices. Here, available nanogap fabrication methodologies are reviewed and a detailed comparison of their merits is provided, with special focus on large-scale and reproducible manufacturing of nanogaps. The most promising approaches that could achieve a breakthrough in research and commercial applications are identified. Emerging scalable nanogap manufacturing methodologies will ultimately enable applications with high scientific and societal impact, including high-speed whole genome sequencing, electromechanical computing, and molecular electronics using nanogap electrodes.

  • 19.
    Dubois, Valentin J.
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Raja, Shyamprasad Natarajan
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Gehring, Pascal
    Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands..
    Caneva, Sabina
    Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands..
    van der Zant, Herre S. J.
    Delft Univ Technol, Kavli Inst Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands..
    Niklaus, Frank
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems. KTH Royal Inst Technol, Sch Elect Engn & Comp Sci EECS, Dept Micro & Nanosyst MST, SE-10044 Stockholm, Sweden..
    Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, article id 3433Article in journal (Refereed)
    Abstract [en]

    Break junctions provide tip-shaped contact electrodes that are fundamental components of nano and molecular electronics. However, the fabrication of break junctions remains notoriously time-consuming and difficult to parallelize. Here we demonstrate true parallel fabrication of gold break junctions featuring sub-3 nm gaps on the wafer-scale, by relying on a novel self-breaking mechanism based on controlled crack formation in notched bridge structures. We achieve fabrication densities as high as 7 million junctions per cm(2), with fabrication yields of around 7% for obtaining crack-defined break junctions with sub-3 nm gaps of fixed gap width that exhibit electron tunneling. We also form molecular junctions using dithiol-terminated oligo(phenylene ethynylene) (OPE3) to demonstrate the feasibility of our approach for electrical probing of molecules down to liquid helium temperatures. Our technology opens a whole new range of experimental opportunities for nano and molecular electronics applications, by enabling very large-scale fabrication of solid-state break junctions.

  • 20.
    Dubois, Valentin
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Niklaus, Frank
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm electrode nanogapsIn: Article in journal (Refereed)
  • 21.
    Edinger, Pierre
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Errando-Herranz, Carlos
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Gylfason, Kristinn
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Low-loss MEMS phase shifter for large scale reconfigurable silicon photonics2019Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate a silicon MEMS phase shifter achieving more than π phase shift with sub-dB insertion loss (IL).  The phase is tuned by reducing the gap between a static suspended waveguide and a free silicon beam, via comb-drive actuation.  Our device reaches 1.2π phase shift at only 20 V, with only 0.3 dB insertion loss – an order of magnitude improvement over previously reported MEMS devices.  The device has a small footprint of 50×70 µm2 and its power consumption is 5 orders of magnitude lower than that of traditional thermal phase shifters.  Our new phase shifter is a fundamental building block of the next-generation large scale reconfigurable photonic circuits which will find applications in datacenter interconnects, artificial intelligence (AI), and quantum computing.

  • 22.
    Enrico, Alessandro
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Dubois, Valentin
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Niklaus, Frank
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Scalable fabrication of single nanowire devices using crack-defined shadow mask lithographyIn: Article in journal (Refereed)
  • 23.
    Enrico, Alessandro
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Dubois, Valentin J.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Niklaus, Frank
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Scalable Manufacturing of Single Nanowire Devices Using Crack-Defined Shadow Mask Lithography2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 8, p. 8217-8226Article in journal (Refereed)
    Abstract [en]

    Single nanowires (NWs) have a broad range of applications in noelectronics, nanomechanics, and nano photonics, but, to date, no chnique can produce single sub 20 nm wide NWs with electrical nnections in a scalable fashion. In this work, we combine conventional tical and crack lithographies to generate single NW devices with ntrollable and predictable dimensions and placement and with dividual electrical contacts to the NWs. We demonstrate NWs made of ld, platinum, palladium, tungsten, tin, and metal oxides. We have used nventional i-line stepper lithography with a nominal resolution of 365 to define crack lithography structures in a shadow mask for rge-scale manufacturing of sub-20 nm wide NWs, which is a 20-fold provement over the resolution that is possible with the utilized epper lithography. Overall, the proposed method represents an fective approach to generate single NW devices with useful plications in electrochemistry, photonics, and gas- and biosensing.

  • 24.
    Errando-Herranz, Carlos
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Edinger, Pierre
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems. KTH Royal Institute of technology.
    Colangelo, Marco
    KTH.
    Björk, Joel
    KTH.
    Ahmed, Samy
    KTH.
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Niklaus, Frank
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Gylfason, Kristinn B.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    New dynamic silicon photonic components enabled by MEMS technology2018In: Proceedings Volume 10537, Silicon Photonics XIII, SPIE - International Society for Optical Engineering, 2018, Vol. 10537, article id 1053711Conference paper (Refereed)
    Abstract [en]

    Silicon photonics is the study and application of integrated optical systems which use silicon as an optical medium, usually by confining light in optical waveguides etched into the surface of silicon-on-insulator (SOI) wafers. The term microelectromechanical systems (MEMS) refers to the technology of mechanics on the microscale actuated by electrostatic actuators. Due to the low power requirements of electrostatic actuation, MEMS components are very power efficient, making them well suited for dense integration and mobile operation. MEMS components are conventionally also implemented in silicon, and MEMS sensors such as accelerometers, gyros, and microphones are now standard in every smartphone. By combining these two successful technologies, new active photonic components with extremely low power consumption can be made. We discuss our recent experimental work on tunable filters, tunable fiber-to-chip couplers, and dynamic waveguide dispersion tuning, enabled by the marriage of silicon MEMS and silicon photonics.

  • 25.
    Errando-Herranz, Carlos
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Le Thomas, Nicolas
    Univ Ghent, Photon Res Grp, INTEC Dept, Imec, Technol Pk Zwijnaarde 15, B-9052 Ghent, Belgium.;Univ Ghent, Ctr Nano & Biophoton, Technol Pk Zwijnaarde 15, B-9052 Ghent, Belgium..
    Gylfason, Kristinn
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Low-power optical beam steering by microelectromechanical waveguide gratings2019In: Optics Letters, ISSN 0146-9592, E-ISSN 1539-4794, Vol. 44, no 4, p. 855-858Article in journal (Refereed)
    Abstract [en]

    Optical beam steering is key for optical communications, laser mapping (lidar), and medical imaging. For these applications, integrated photonics is an enabling technology that can provide miniaturized, lighter, lower-cost, and more power-efficient systems. However, common integrated photonic devices are too power demanding. Here, we experimentally demonstrate, for the first time, to the best of our knowledge, beam steering by microelectromechanical (MEMS) actuation of a suspended silicon photonic waveguide grating. Our device shows up to 5.6 degrees beam steering with 20 V actuation and power consumption below the mu W level, i.e., more than five orders of magnitude lower power consumption than previous thermo-optic tuning methods. The novel combination of MEMS with integrated photonics presented in this work lays ground for the next generation of power-efficient optical beam steering systems.

  • 26.
    Fan, Xuge
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Wagner, Stefan
    Faculty of Electrical Engineering and Information Technology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany.
    Schädlich, Philip
    Institute of Physics, Chemnitz University of Technology, Reichenhainer Straße 70, 09126 Chemnitz, Germany.
    Speck, Florian
    Institute of Physics, Chemnitz University of Technology, Reichenhainer Straße 70, 09126 Chemnitz, Germany.
    Satender, Kataria
    Faculty of Electrical Engineering and Information Technology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany.
    Haraldsson, Tommy
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Seyller, Thomas
    Institute of Physics, Chemnitz University of Technology, Reichenhainer Straße 70, 09126 Chemnitz, Germany.
    Lemme, Max C.
    Faculty of Electrical Engineering and Information Technology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany ; Gesellschaft für angewandte Mikro- und Optoelektronik mbH (AMO GmbH), Advanced Microelectronic Center Aachen, Otto-Blumenthal Str. 25, 52074 Aachen, Germany.
    Niklaus, Frank
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Direct observation of grain boundaries in graphene through vapor hydrofluoric acid (VHF) exposure2018In: Science advances, ISSN 2375-2548, Vol. 4, no 5, article id eaar5170Article in journal (Refereed)
    Abstract [en]

    The shape and density of grain boundary defects in graphene strongly influence its electrical, mechanical, and chemical properties. However, it is difficult and elaborate to gain information about the large-area distribution of grain boundary defects in graphene. An approach is presented that allows fast visualization of the large-area distribution of grain boundary–based line defects in chemical vapor deposition graphene after transferring graphene from the original copper substrate to a silicon dioxide surface. The approach is based on exposing graphene to vapor hydrofluoric acid (VHF), causing partial etching of the silicon dioxide underneath the graphene as VHF diffuses through graphene defects. The defects can then be identified using optical microscopy, scanning electron microscopy, or Raman spectroscopy. The methodology enables simple evaluation of the grain sizes in polycrystalline graphene and can therefore be a valuable procedure for optimizing graphene synthesis processes.

  • 27.
    Gatty, Hithesh K.
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Roxhed, Niclas
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    A Miniaturized Amperometric Hydrogen Sulfide Sensor Applicable for Bad Breath Monitoring2018In: Micromachines, ISSN 2072-666X, E-ISSN 2072-666X, Vol. 9, no 12, article id 612Article in journal (Refereed)
    Abstract [en]

    Bad breath or halitosis affects a majority of the population from time to time, causing personal discomfort and social embarrassment. Here, we report on a miniaturized, microelectromechanical systems (MEMS)-based, amperometric hydrogen sulfide (H2S) sensor that potentially allows bad breath quantification through a small handheld device. The sensor is designed to detect H2S gas in the order of parts-per-billion (ppb) and has a measured sensitivity of 0.65 nA/ppb with a response time of 21 s. The sensor was found to be selective to NO and NH3 gases, which are normally present in the oral breath of adults. The ppb-level detection capability of the integrated sensor, combined with its relatively fast response and high sensitivity to H2S, makes the sensor potentially applicable for oral breath monitoring.

  • 28.
    Glubokov, Oleksandr
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Xinghai, Zhao
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Campion, James
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Micromachined Filters at 450 GHz With 1% Fractional Bandwidth and Unloaded Q Beyond 7002019In: IEEE Transactions on Terahertz Science and Technology, ISSN 2156-342X, E-ISSN 2156-3446, Vol. 9, no 1Article in journal (Refereed)
    Abstract [en]

    This letter presents two silicon-micromachined narrowband fourth-order waveguide filter concepts with center frequency of 450 GHz, which are the first narrowband submillimeter-wave filters implemented in any technology with a fractional bandwidth as low as 1%. Both filters designs are highly compact and have axial port arrangements, so that they can be mounted directly between two standard waveguide flanges without needing any split-block interposers. The first filter concept contains two TM 110 dual-mode cavities of circular shape with coupling slots and perturbations arranged in two vertically stacked layers, while the second filter concept is composed of four TE 101 series resonators arranged in a folded, two-level topology without crosscouplings. Prototype devices are fabricated in a multilayer chip platform by high-precision, low-surface roughness deep-silicon etching on silicon-on-insulator wafers. The measured passband insertion loss of two prototype devices of the dual-mode circular-cavity filters is 2.3 dB, and 2.6 dB for three prototypes of the folded filter design. The corresponding extracted unloaded quality factors of the resonators are 786 ± 7 and 703 ± 13, respectively, which are the best so far reported for submillimeter-wave filters in any technology. The presented filters are extremely compact in terms of size; their footprints have areas of only 0.53 and 0.55 mm 2 , respectively, and the thickness between the waveguide flanges is 0.9 mm.

  • 29.
    Gomez-Torrent, Adrian
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Compact silicon-micromachined wideband 220 – 330 GHz turnstile orthomode transducer2018In: IEEE Transactions on Terahertz Science and Technology, ISSN 2156-342X, E-ISSN 2156-3446Article in journal (Refereed)
    Abstract [en]

    This paper reports on a turnstile-junction orthomode transducer (OMT) implemented by silicon micromachiningin the 220 – 330 - GHz band. Turnstile OMTs are very widebandand allow for co-planar ports, but require accurate and complex geometries which makes their fabrication challenging at higher frequencies. The compact 10 mm x 10 mm x 0.9 mm OMT-chip presented in this paper is the first micromachined full-band OMT in any frequency range, and only the second turnstile OMT implemented above 110 GHz. The measured insertion loss(0.3 dB average, 0.6 dB worst-case) and the cross-polarization (60 dB average, 30 dB worst-case) over the whole waveguide band represent the best performance of any wideband OMT, regardless of design or fabrication technology, in the 220 –330 - GHz band. The return loss with 22 dB average (16 dB worst case) is comparable or better than previous work. The paper discusses design considerations and compromises of this complex 9 layer silicon micromachined device, including the influence of sidewall slopes, underetching, and post-bonding misalignment between the chips. It is shown that for a device which is very sensitive to geometrical variations, such as a turnstile OMT, it is necessary to anticipate and compensate for any fabrication imperfections in the design to achieve high RF performance.

  • 30.
    Gomez-Torrent, Adrian
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Wideband 220 – 330 GHz Turnstile OMT Enabled by Silicon Micromachining2018In: 2018 IEEE MTT-S International Microwave Symposium (IMS), 2018Conference paper (Refereed)
    Abstract [en]

    This paper is the first publication on the first turnstile-junction orthogonal mode transducer (OMT) above110GHz, which is enabled by silicon micromachining. Incontrast to other OMT concepts, turnstile OMTs are wideband and allow for co-planar ports, but require accurate and complex fabrication and have therefore, to the best of our knowledge,not been implemented above 110GHz in any technology. As shown in this paper, the fabrication and assembly accuracy of silicon micromachining enables the realization of such complex OMT designs at 220 – 330GHz with excellent performance. The measured insertion loss is better than 0.7dB for the whole waveguide band, with mean values of 0.34dB and 0.48 dB for the vertical and horizontal polarizations, respectively. The measured return loss for both polarizations, even with an open ended common port, is better than 14dB for the whole waveguide band, and an average level of 18dB. An estimation of the worst-case cross-polarization level, derived from measurements, results in at least 20dB for the whole waveguide band, with an average of 25dB for the upper half of the band.

  • 31.
    Gomez-Torrent, Adrian
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Wideband 220 - 330 GHz Turnstile OMT Enabled by Silicon Micromachining2018In: IEEE MTT-S International Microwave Symposium Digest, Institute of Electrical and Electronics Engineers Inc. , 2018, p. 1511-1514Conference paper (Refereed)
    Abstract [en]

    This paper is the first publication on the first turnstile-junction orthogonal mode transducer (OMT) above 110 GHz, which is enabled by silicon micromachining. In contrast to other OMT concepts, turnstile OMTs are wideband and allow for co-planar ports, but require accurate and complex fabrication and have therefore, to the best of our knowledge, not been implemented above 110 GHz in any technology. As shown in this paper, the fabrication and assembly accuracy of silicon micromachining enables the realization of such complex OMT designs at 220 - 330 GHz with excellent performance. The measured insertion loss is better than 0.7 dB for the whole waveguide band, with mean values of 0.34 dB and 0.48 dB for the vertical and horizontal polarizations, respectively. The measured return loss for both polarizations, even with an open-ended common port, is better than 14 dB for the whole waveguide band, and an average level of 18 dB. An estimation of the worst-case cross-polarization level, derived from measurements, results in at least 20 dB for the whole waveguide band, with an average of 25 dB for the upper half of the band.

  • 32.
    Guha, Arnab
    et al.
    Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Epinal Way, Loughborough, Loughborough University, LE11 3TU, UK.
    Sandström, Niklas
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics.
    Ostanin, Victor
    Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW , UK.
    van der Wijngaart, Wouter
    KTH, Superseded Departments (pre-2005), Signals, Sensors and Systems. KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Klenerman, David
    Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW , UK.
    Ghosh, Sourav
    Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Epinal Way, Loughborough, Loughborough University, LE11 3TU, UK.
    Measurement of protein binding with vastly improved time resolution using a quartz crystal microbalance driven at a fixed frequency2017Conference paper (Other academic)
    Abstract [en]

    Introduction: Quartz crystal microbalance (QCM) is commonly used to study biomolecular binding by measuring shifts in resonance frequency of a quartz-crystal-oscillator. However, the currently used methods like impedance analysis or QCM-D, which require repeated sweeps or ringing, are limited in time resolution (~1 second) due to the need for averaging. This restricts our ability to study transient biomolecular processes, which occur in sub-millisecond time scale. A novel technique has been reported here that allows quantification of resonance frequency of a quartz-crystal-oscillator with significantly improved time resolution by driving and measuring continuously at a constant frequency within the resonance bandwidth. 

    Method: The reactive component of the experimentally obtained impedance is utilized for the estimation of resonance frequency from the Butterworth Van-dyke (BVD) model of a quartz-crystal-oscillator, assuming that changes in motional inductance and capacitance around resonance are negligible. Triplicate sets of experiments involving the binding of streptavidin with a biotin functionalized 14.3 MHz quartz oscillator surface were performed. Intermittent frequency sweeps and fixed frequency drives, both of 0.1 second duration and around 14.3 MHz, were taken at intervals of 2 minutes under the flow of phosphate-buffer-saline (PBS buffer) before and after injection of streptavidin. 

    Results: The average shift in resonance frequency from the baseline (measurements before streptavidin injection) due to streptavidin-biotin binding, calculated from the fixed frequency drive or FFD (148 Hz) was within 1% of that estimated from the frequency sweep method by fitting the experimentally recorded impedance employing the BVD model (149 Hz). 

    Discussion: The agreement of the FFD with conventional frequency sweep method suggests that protein binding can be quantified with reasonable accuracy from each impedance data point, which with our set-up is recorded at 30 kHz sampling rate. This gives a time resolution of 0.03 millisecond, which is about 4 orders of magnitude improvement over the state-of-the-art.

  • 33.
    Guha, Arnab
    et al.
    Centre for Biological Engineering, Loughborough University, Loughborough, UK.
    Sandström, Niklas
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Ostanin, Victor
    Department of Chemistry, University of Cambridge, Cambridge, UK.
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Klenerman, David
    Department of Chemistry, University of Cambridge, Cambridge, UK.
    Ghosh, Sourav
    Centre for Biological Engineering, Loughborough University, Loughborough, UK.
    Simple and ultrafast resonance frequency and dissipation shift measurements using a fixed frequency drive2018In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 281, p. 960-970Article in journal (Refereed)
    Abstract [en]

    A new method for determination of resonance frequency and dissipation of a mechanical oscillator is presented. Analytical expressions derived using the Butterworth-Van Dyke equivalent electrical circuit allow the determination of resonance frequency and dissipation directly from each impedance datapoint acquired at a fixed amplitude and frequency of drive, with no need for numerical fitting or measurement dead time unlike the conventional impedance or ring-down analysis methods. This enables an ultrahigh time resolution and superior noise performance with relatively simple instrumentation. Quantitative validations were carried out successfully against the impedance analysis method for inertial and viscous loading experiments on a 14.3 MHz quartz crystal resonator (QCR). Resonance frequency shifts associated with the transient processes of quick needle touches on a thiol self-assembled-monolayer functionalised QCR in liquid were measured with a time resolution of 112 μs, which is nearly two orders of magnitude better than the fastest reported quartz crystal microbalance. This simple and fast fixed frequency drive (FFD) based method for determination of resonance frequency and dissipation is potentially more easily multiplexable and implementable on a single silicon chip delivering economies of scale.

  • 34.
    Guo, Maoxiang
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Hernández-Neuta, Iván
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Tomtebodavagen 23 A, SE-17165 Solna, Sweden.
    Madaboosi, Narayanan
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Tomtebodavagen 23 A, SE-17165 Solna, Sweden.
    Nilsson, Mats
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Tomtebodavagen 23 A, SE-17165 Solna, Sweden.
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Efficient DNA-assisted synthesis of trans-membrane gold nanowires2018In: Microsystems & Nanoengineering, ISSN 2055-7434, Vol. 4, p. 1-8, article id UNSP 17084Article in journal (Refereed)
    Abstract [en]

    Whereas electric circuits and surface-based (bio)chemical sensors are mostly constructed in-plane due to ease of manufacturing, 3D microscale and nanoscale structures allow denser integration of electronic components and improved mass transport of the analyte to (bio)chemical sensor surfaces. This work reports the first out-of-plane metallic nanowire formation based on stretching of DNA through a porous membrane. We use rolling circle amplification (RCA) to generate long single-stranded DNA concatemers with one end anchored to the surface. The DNA strands are stretched through the pores in the membrane during liquid removal by forced convection. Because the liquid–air interface movement across the membrane occurs in every pore, DNA stretching across the membrane is highly efficient. The stretched DNA molecules are transformed into trans-membrane gold nanowires through gold nanoparticle hybridization and gold enhancement chemistry. A 50 fM oligonucleotide concentration, a value two orders of magnitude lower than previously reported for flat surface-based nanowire formation, was sufficient for nanowire formation. We observed nanowires in up to 2.7% of the membrane pores, leading to an across-membrane electrical conductivity reduction from open circuit to o20 Ω. The simple electrical read-out offers a high signal-to-noise ratio and can also be extended for use as a biosensor due to the high specificity and scope for multiplexing offered by RCA.

  • 35.
    Guo, Weijin
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Gustafsson, Linnea
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Jansson, Ronnie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Hedhammar, My
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology. KTH, School of Biotechnology (BIO), Centres, Centre for Bioprocess Technology, CBioPT.
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Formation of a thin-walled Spider Silk Tube on a Micromachined Scaffold2018In: Proceeding of 2018 IEEE 31st International Conference on Micro Electro Mechanical Systems (MEMS), Institute of Electrical and Electronics Engineers (IEEE), 2018, Vol. 2018, p. 83-85Conference paper (Refereed)
    Abstract [en]

    This paper reports on the first formation of a thin bio-functionalized spider silk tube, supported by an internal micromachined scaffold, in which both the inside and outside of the tube wall are freely accessible. The silk tube could potentially be used as an artificial blood vessel in an in vitro tissue scaffold, where endothelial cells and tissue cells can grow on both sides of the silk tube.

  • 36.
    Haraldsson, Klas Tommy
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Synthetic paper - a microstructured coating developed for medical diagnostics2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 256Article in journal (Other academic)
  • 37.
    Hauser, Janosch
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Lenk, Gabriel
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Hansson, Jonas
    Beck, Olof
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Roxhed, Niclas
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    High yield passive plasma filtration from human finger prick bloodManuscript (preprint) (Other academic)
  • 38.
    Hauser, Janosch
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Lenk, Gabriel
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Hansson, Jonas
    Beck, Olof
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Roxhed, Niclas
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    High yield passive plasma filtration from human fingerprick bloodManuscript (preprint) (Other academic)
  • 39.
    Hauser, Janosch
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Lenk, Gabriel
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Hansson, Jonas
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Beck, Olof
    Karolinska Inst, Dept Lab Med, S-14186 Stockholm, Sweden..
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Roxhed, Niclas
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    High-Yield Passive Plasma Filtration from Human Finger Prick Blood2018In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 90, no 22, p. 13393-13399Article in journal (Refereed)
    Abstract [en]

    Whole-blood microsampling provides many benefits such as remote, patient-centric, and minimally invasive sampling. However, blood plasma, and not whole blood, is the prevailing matrix in clinical laboratory investigations. The challenge with plasma microsampling is to extract plasma volumes large enough to reliably detect low-concentration analytes from a small finger prick sample. Here we introduce a passive plasma filtration device that provides a high extraction yield of 65%, filtering 18 mu L of plasma from 50 mu L of undiluted human whole blood (hematocrit 45%) within less than 10 min. The enabling design element is a wedge-shaped connection between the blood filter and the hydrophilic bottom surface of a capillary channel. Using finger prick and venous blood samples from more than 10 healthy volunteers, we examined the filtration kinetics of the device over a hematocrit range of 35-55% and showed that 73 +/- 8% of the total protein content was successfully recovered after filtration. The presented plasma filtration device tackles a major challenge toward patient-centric blood microsampling by providing high-yield plasma filtration, potentially allowing reliable detection of low-concentration analytes from a blood microsample.

  • 40.
    Hauser, Janosch
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Lenk, Gabriel
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Ullah, Shahid
    Beck, Olof
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Roxhed, Niclas
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    An Autonomous microfluidic device for generating volume-defined dried plasma spots (DPS)Manuscript (preprint) (Other academic)
  • 41.
    He, Zhongxia Simon
    et al.
    Chalmers Univ Technol, Dept Microtechnol & Nanosci, Microwave Elect Lab, S-41296 Gothenburg, Sweden..
    Bao, Mingquan
    Ericsson Res, Stockholm, Sweden..
    Li, Yinggang
    Ericsson Res, Stockholm, Sweden..
    Hassona, Ahmed
    Chalmers Univ Technol, Dept Microtechnol & Nanosci, Microwave Elect Lab, S-41296 Gothenburg, Sweden..
    Campion, James
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Zirath, Herbert
    Chalmers Univ Technol, Dept Microtechnol & Nanosci, Microwave Elect Lab, S-41296 Gothenburg, Sweden.;Ericsson Res, Stockholm, Sweden..
    A 140 GHz Transmitter with an Integrated Chip-to-Waveguide Transition using 130nm SiGe BiCMOS Process2018In: 2018 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS (APMC), IEEE , 2018, p. 28-30Conference paper (Refereed)
    Abstract [en]

    This paper presents a 140 GHz transmitter chipset realized in a 130 nm SiGe BiCMOS technology with f(t)/f(max) values of 250 GHz/ 370 GHz. This design comprises of a frequency sixtupler, a balanced transconductance mixer, an amplifier and chip-to-waveguide transition. The frequency multiplier operates in wide frequency band from 110-147 GHz, while the amplifier operates between 115-155 GHz. The total DC power consumption of the chipset is 420 mW. The chip size is 3 mm x 0.73 mm including chip-to-waveguide transition. The transmitter gives -4 dBm output power at 140 GHz and can operate between 129-148 GHz. Wireless data transmission up to 6 Gbps is measured using PSK and QAM modulation schemes.

  • 42.
    Hussain, Muhammad Waqar
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Elahipanah, Hossein
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    Zumbro, John E.
    University of Arkansas.
    Schröder, Stephan
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Rodriguez, Saul
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    Malm, B. Gunnar
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    Mantooth, H. Alan
    University of Arkansas.
    Rusu, Ana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    A 500 °C Active Down-Conversion Mixer in Silicon Carbide Bipolar Technology2018In: IEEE Electron Device Letters, ISSN 0741-3106, E-ISSN 1558-0563, Vol. 39, no 6, p. 855-858Article in journal (Refereed)
    Abstract [en]

    This letter presents an active down-conversion mixer for high-temperature communication receivers. The mixer is based on an in-house developed 4H-SiC BJT and down-converts a narrow-band RF input signal centered around 59 MHz to an intermediate frequency of 500 kHz. Measurements show that the mixer operates from room temperature up to 500 °C. The conversion gain is 15 dB at 25 °C, which decreases to 4.7 dB at 500 °C. The input 1-dB compression point is 1 dBm at 25 °C and −2.5 dBm at 500 °C. The mixer is biased with a collector current of 10 mA from a 20 V supply and has a maximum DC power consumption of 204 mW. High-temperature reliability evaluation of the mixer shows a conversion gain degradation of 1.4 dB after 3-hours of continuous operation at 500 °C.

  • 43.
    Imani Jajarmi, Ramin
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics.
    Ladhani, Laila
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Pardon, Gaspar
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Robert, Etienne
    The Influence of Air Flow Velocity and Particle Size on the Collection Efficiency of Passive Electrostatic Aerosol Samplers2019In: Aerosol and Air Quality Research, ISSN 1680-8584, E-ISSN 2071-1409, Vol. 19, no 2, p. 192-203Article in journal (Refereed)
    Abstract [en]

    Electrostatic sampling is a promising method for the collection of bioaerosol particles. Although the underlying physics responsible for particle collection are well understood, the collection efficiency of simple passive electrostatic samplers is difficult to predict. Under these conditions, the collection efficiency becomes very sensitive to ambient air current and particle size, especially for submicron particles relevant for airborne virus transmission. In this paper, we compare two electrostatic aerosol sampler designs, a commercial product consisting of a flat collector plate located in the same plane as the charging needles and an axisymmetric design sampling directly to a liquid droplet. The aerosol particle collection efficiency of the samplers is investigated for particle size ranging from 0.25 to 2 µm while the air flow velocity surrounding the samplers is varied from 0.3 to 1 m s–1. For the planar design, at all ambient flow velocities, the submicron fraction of the particles captured originates in streamlines up to a maximum of 75 mm above the surface of the device collector, which greatly limits the volume of air being effectively sampled. The axisymmetric design features a non-monotonic capture efficiency as a function of particle size, with a minimum between 0.4 and 0.8 µm. The flow field in the inter-electrode region, captured using particle image velocimetry (PIV) reveals the presence of strong recirculation zones that can be responsible for the increased collection efficiency for very small particles.

  • 44.
    Krivovitca, Aleksandr
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Shah, Umer
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Glubokov, Oleksandr
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Oberhammer, Joachim
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Micromachined Silicon-core Substrate-integrated Waveguides with Coplanar-probe Transitions at 220-330 GHz2018In: Transmission-line structures: Advances in Millimeter-Wave Integrated Waveguide Components and Transitions, IEEE, 2018, p. 190-193Conference paper (Refereed)
    Abstract [en]

    Abstract—In this paper, we present for the first time on, to the best of our knowledge, the first silicon-core micromachined substrate-integrated waveguide (SIW) in the 220-325 GHz frequency range. In contrast to the fabrication methods used for conventional SIW known from substantially lower frequencies, micromachining allows for a full-height waveguide and near-ideal and arbitrarily shaped sidewalls. The silicon dielectric core allows for downscaling the waveguide and components by a factor of 3.4 as compared to an air-filled waveguide. At 330 GHz, the measured waveguide insertion loss is as low as 0.43 dB/mm (0.14 dB/λg, normalized to the guided wavelength). Devices were manufactured using a two-mask micromachining process. Furthermore, a low-loss ultra-wideband coplanar-waveguide (CPW) transition was successfully implemented, which comprises the very first CPW-to-SIW transitions in this frequency range. The measured transition performance is better than 0.5 dB insertion loss (average of 0.43 dB in the band above 15% above the waveguide-cutoff frequency), which is lower than previously reported CPW-to-SIW transitions even at 3 times lower frequencies, and the return loss is better than 14 dB for 75% of the waveguide band.

  • 45.
    Laakso, Miku
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Bleiker, Simon J.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Liljeholm, Jessica
    Silex Microsystems AB.
    Mårtensson, Gustaf
    Mycronic AB.
    Asiatici, Mikhail
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems. EPFL École polytechnique fédérale de Lausanne, Processor Architecture Laboratory.
    Fischer, Andreas C.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems. Silex Microsystems AB.
    Stemme, Göran
    KTH, Superseded Departments (pre-2005), Signals, Sensors and Systems. KTH, Superseded Departments (pre-2005), Biotechnology. KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Ebefors, Thorbjörn
    Silex Microsystems AB.
    Niklaus, Frank
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Through-Glass Vias for MEMS Packaging2018Conference paper (Other academic)
    Abstract [en]

    Novelty / Progress Claims We have developed a new method for fabrication of through-glass vias (TGVs). The method allows rapid filling of via holes with metal rods both in thin and thick glass substrates.

    Background Vertical electrical feedthroughs in glass substrates, i.e. TGVs, are often required in wafer-scale packaging of MEMS that utilizes glass lids. The current methods of making TGVs have drawbacks that prevent the full utilization of the excellent properties of glass as a package material, e.g. low RF losses. Magnetic assembly has been used earlier to fabricate through-silicon vias (TSVs), and in this work we extend this method to realize TGVs [1].

    Methods The entire TGV fabrication process is maskless, and the processes used include: direct patterning of wafer metallization using femtosecond laser ablation, magnetic-fieldassisted self-assembly of metal wires into via holes, and solder-paste jetting of bump bonds on TGVs.

    Results We demonstrate that: (1) the magnetically assembled TGVs have a low resistance, which makes them suitable even for low-loss and high-current applications; (2) the magneticassembly process can be parallelized in order to increase the wafer-scale fabrication speed; (3) the magnetic assembly produces void-free metal filling for TGVs, which allows solder placement directly on top of the TGV for the purpose of high integration density; and (4) good thermal-expansion compatibility between TGV metals and glass substrates is possible with the right choice of materials, and several suitable metals-glass pairs are identified for possible improvement of package reliability [2].

    [1] M. Laakso et al., IEEE 30th Int. Conf. on MEMS, 2017. DOI:10.1109/MEMSYS.2017.7863517

    [2] M. Laakso et al., “Through-Glass Vias for Glass Interposers and MEMS Packaging Utilizing Magnetic Assembly of Microscale Metal Wires,” manuscript in preparatio

  • 46.
    Laakso, Miku J.
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Bleiker, Simon J.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Liljeholm, Jessica
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Mårtensson, Gustaf E.
    Mycronic AB, S-18353 Taby, Sweden..
    Asiatici, Mikhail
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems. Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland..
    Fischer, Andreas C.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Stemme, Göran
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Ebefors, Thorbjorn
    Silex Microsyst AB, S-17543 Jarfalla, Sweden.;MyVox AB, S-12938 Hagersten, Sweden..
    Niklaus, Frank
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires2018In: IEEE Access, E-ISSN 2169-3536, Vol. 6, p. 44306-44317Article in journal (Refereed)
    Abstract [en]

    A through-glass via (TGV) provides a vertical electrical connection through a glass substrate. TGVs are used in advanced packaging solutions, such as glass interposers and wafer-level packaging of microelectromechanical systems (MEMS). However, TGVs are challenging to realize because via holes in glass typically do not have a sufficiently high-quality sidewall profile for super-conformal electroplating of metal into the via holes. To overcome this problem, we demonstrate here that the via holes can instead be filled by magnetically assembling metal wires into them. This method was used to produce TGVs with a typical resistance of 64 m Omega, which is comparable with other metal TGV types reported in the literature. In contrast to many TGV designs with a hollow center, the proposed TGVs can be more area efficient by allowing solder bump placement directly on top of the TGVs, which was demonstrated here using solder-paste jetting. The magnetic assembly process can be parallelized using an assembly robot, which was found to provide an opportunity for increased wafer-scale assembly speed. The aforementioned qualities of the magnetically assembled TGVs allow the realization of glass interposers and MEMS packages in different thicknesses without the drawbacks associated with the current TGV fabrication methods.

  • 47.
    Ladhani, Laila
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    An electrostatic sampling device for point-of-care detection of bioaerosols2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Bioaerosols are not only a significant factor of air quality but contribute greatly to the spread of infectious diseases, specifically through expired pathogen-laden aerosols. Clear examples of airborne transmission include: the recent influenza pandemic of 2009, the ongoing tuberculosis epidemic, and yearly norovirus out- breaks, which affect millions of people worldwide and pose serious threats to public healthcare systems. Given these acute concerns and the critical lack of knowledge of the field, it is important to develop methods for sampling and detecting these air- borne pathogens. Specifically, detection at the point-of-care can play an important role in improving the outcome of patient care by providing rapid and convenient diagnostics.

    Electrostatic precipitation has emerged as a promising sampling tool for bio- aerosols, which together with a rapid analysis technique, can provide a powerful and integrated approach to pathogen detection or disease diagnosis at the point- of-care. Moreover, such a sampling-detection scheme could be a potentialy non- invasive breath sampling tool for diagnosis of respiratory infectious diseases.

    This thesis presents a sampling device based on electrostatic precipitation, for capture of bioaerosols, and designed for use at point-of-care settings. A multi-point- to-plane electrode configuration allows charging of aerosol particles and direct air- to-liquid capture within a miniaturized volume with potentential for concatenation with on-site detection methods. Performance of the device was evaluated, using non-biological aerosols, for geometric (inter-electrode distance), electrical (inter- electrode potential and corona current), and aerosol parameters (particle size and gas velocity). Moreover, four different collector designs were investigated for im- proved collection efficiency and other features suitable for point-of-care settings (e.g. easy sample extraction and minimized volume).

    The device was then validated, using bioaerosols, both in vitro and in vivo. In vitro validation was performed by capturing aerosolized influenza virus and analyz- ing the device collection efficiency. Lastly, prototype devices, designed for point- of-care, were validated in vivo with patients at the clinical setting. A pilot study was performed to capture exhaled pathogens from infected patients, with success- ful capture of exhaled bacteria.

  • 48.
    Ladhani, Laila
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Alsved, Malin
    Lund University.
    Löndahl, Jakob
    Lund University.
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Efficient electrostatic sampling of aerosols into liquidManuscript (preprint) (Other academic)
    Abstract [en]

    Despite an increasing demand for the identification and quantification of airborne pathogens, there is an unmet need for point-of-care instruments that provide both capture and analysis of bioaerosols. The integration of electrostatic precipitation of aerosol particles directly into liquid with lab-on-a-chip-based biomolecular analysis has been previously suggested as a promising solution for this purpose.

    This work investigates liquid collector designs for such instruments. We hypothesize that the geometry of the collector; and the position of its air-liquid interface with respect to the electrostatic field and aerosol flow, can be optimized for a maximum sample concentration.

    We designed four liquid collectors with a small form factor, adapted for concatenating point-to-plane electrostatic precipitators with integrated downstream analysis. The collectors were evaluated for their absolute mass collection and their sample concentration, by sampling radioactive aerosol and color dye aerosol. 

    Collectors with their air-liquid surface parallel to the charged aerosol flow performed significantly better than those shaped as a cup with an air-liquid surface perpendicular to the flow. Whereas the electrostatic precipitators with the best performing collector designs captured only 32% of the aerosol mass compared to a commercial impinger, their resulting sample concentration was 4 times higher.    

  • 49.
    Ladhani, Laila
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Pardon, Gaspard
    Stanford University.
    Moons, Pieter
    University of Antwerp.
    Goossens, Herman
    University of Antwerp.
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Sampling pathogens from breath using electrostatic and filter methods for diagnosis of lower respiratory tract infections– pilot study2018Report (Refereed)
    Abstract [en]

    A pilot study at a primary care center in Belgium sampled exhaled breath from patients presenting with flu-like symptoms. Electrostatic sampling methods revealed S. aureus, while filter sampling revealed virus. Additionally, for the first time, an electrostatic device was verified for exhaled breath at a clinical point-of-care setting.

  • 50. Larsson, S.
    et al.
    Johannisson, P.
    Kolev, D.
    Ohlsson, F.
    Nik, S.
    Liljeholm, Jessica
    KTH, School of Electrical Engineering and Computer Science (EECS), Micro and Nanosystems.
    Ebefors, T.
    Rusu, C.
    Simple method for quality factor estimation in resonating MEMS structures2018In: Journal of Physics: Conference Series, Institute of Physics Publishing (IOPP), 2018, Vol. 1052, no 1, article id 012100Conference paper (Refereed)
    Abstract [en]

    The quality factor of a packaged MEMS resonating structure depends on both the packaging pressure and the structure's proximity to the walls. This type of mechanical constraints, which causes energy dissipation from the structure to the surrounding air, are applicable for oscillating energy harvesters and should be considered in the design process. However, the modelling of energy losses or the measurements of their direct influence inside a packaged chip is not trivial. In this paper, a simple experimental method to quantify the energy loss in an oscillating MEMS structures due to the surrounding air is described together with preliminary results. The main advantage of the method is the ability to characterize the damping contributions under different vacuum and packaging conditions without requiring any packaging of the harvester chip or fabrication of multiple devices with different cavity depths.

12 1 - 50 of 81
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf