Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Näslund, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Speech, Music and Hearing, TMH, Speech Communication and Technology.
    Artificial Neural Networks in Swedish Speech Synthesis2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Text-to-speech (TTS) systems have entered our daily lives in the form of smart assistants and many other applications. Contemporary re- search applies machine learning and artificial neural networks (ANNs) to synthesize speech. It has been shown that these systems outperform the older concatenative and parametric methods.

    In this paper, ANN-based methods for speech synthesis are ex- plored and one of the methods is implemented for the Swedish lan- guage. The implemented method is dubbed “Tacotron” and is a first step towards end-to-end ANN-based TTS which puts many differ- ent ANN-techniques to work. The resulting system is compared to a parametric TTS through a strength-of-preference test that is carried out with 20 Swedish speaking subjects. A statistically significant pref- erence for the ANN-based TTS is found. Test subjects indicate that the ANN-based TTS performs better than the parametric TTS when it comes to audio quality and naturalness but sometimes lacks in intelli- gibility.

  • 2.
    Stefanov, Kalin
    KTH, School of Electrical Engineering and Computer Science (EECS), Speech, Music and Hearing, TMH, Speech Communication and Technology. University of Southern California.
    Salvi, Giampiero (Contributor)
    KTH, School of Electrical Engineering and Computer Science (EECS), Speech, Music and Hearing, TMH, Speech Communication and Technology.
    Self-Supervised Vision-Based Detection of the Active Speaker as Support for Socially-Aware Language Acquisition2019In: IEEE Transactions on Cognitive and Developmental Systems, ISSN 2379-8920Article in journal (Refereed)
    Abstract [en]

    This paper presents a self-supervised method for visual detection of the active speaker in a multi-person spoken interaction scenario. Active speaker detection is a fundamental prerequisite for any artificial cognitive system attempting to acquire language in social settings. The proposed method is intended to complement the acoustic detection of the active speaker, thus improving the system robustness in noisy conditions. The method can detect an arbitrary number of possibly overlapping active speakers based exclusively on visual information about their face. Furthermore, the method does not rely on external annotations, thus complying with cognitive development. Instead, the method uses information from the auditory modality to support learning in the visual domain. This paper reports an extensive evaluation of the proposed method using a large multi-person face-to-face interaction dataset. The results show good performance in a speaker dependent setting. However, in a speaker independent setting the proposed method yields a significantly lower performance. We believe that the proposed method represents an essential component of any artificial cognitive system or robotic platform engaging in social interactions.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf