Change search
Refine search result
123456 1 - 50 of 270
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abbadessa, Anna
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Oinonen, Petri
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Ecohelix AB, Teknikringen 38, SE-10044 Stockholm, Sweden..
    Henriksson, Gunnar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Characterization of Two Novel Bio-based Materials from Pulping Process Side Streams: Ecohelix and CleanFlow Black Lignin2018In: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 13, no 4, p. 7606-7627, article id GYROPOULOS DS, 1994, JOURNAL OF WOOD CHEMISTRY AND TECHNOLOGY, V14, P45 dsten Petri, 2008, ENZYME AND MICROBIAL TECHNOLOGY, V42, P293 jado A., 2007, BIORESOURCE TECHNOLOGY, V98, P1655 n Heiningen A., 2006, PULP & PAPER-CANADA, V107, P38 kamura K, 2005, CELLULAR AND MOLECULAR LIFE SCIENCES, V62, P2050 llet S., 2017, GREEN CHEMISTRY, V19, P4200 eldon Roger A., 2014, GREEN CHEMISTRY, V16, P950 ll Daniel L., 2017, CURRENT OPINION IN BIOTECHNOLOGY, V45, P120 dif A, 2002, BIORESOURCE TECHNOLOGY, V84, P49 Mi, 2016, FRONTIERS IN CHEMISTRY, V4, val Antoine, 2016, HOLZFORSCHUNG, V70, P11 ikgor Furkan H., 2015, POLYMER CHEMISTRY, V6, P4497 n Elena, 2015, JOURNAL OF APPLIED POLYMER SCIENCE, V132, ekhina Marina, 2015, INDUSTRIAL CROPS AND PRODUCTS, V66, P220 nonen Petri, 2015, PHYTOCHEMISTRY, V111, P177 val Antoine, 2014, REACTIVE & FUNCTIONAL POLYMERS, V85, P78 Chunping, 2014, CHEMICAL SOCIETY REVIEWS, V43, P7485 gauskas Arthur J., 2014, SCIENCE, V344, P709 riana Rosana, 2014, CARBOHYDRATE POLYMERS, V106, P60 eskogh Dimitri, 2010, HOLZFORSCHUNG, V64, P21 lander Mikaela, 2013, BIORESOURCES, V8, P2270 adi Pooya, 2013, RENEWABLE & SUSTAINABLE ENERGY REVIEWS, V21, P506 nonen Petri, 2013, CARBOHYDRATE POLYMERS, V95, P690 nteil-Rivera Fanny, 2013, INDUSTRIAL CROPS AND PRODUCTS, V41, P356 rcia-Ubasart Jordi, 2012, BIORESOURCE TECHNOLOGY, V112, P341 atak Himadri Roy, 2011, RENEWABLE & SUSTAINABLE ENERGY REVIEWS, V15, P4042 mani Per, 2011, CELLULOSE CHEMISTRY AND TECHNOLOGY3rd Nordic Wood Biorefinery Conference, MAR 22-24, 2011, Stockholm, SWEDEN, V45, P533 hoo S., 2011, BIOMASS & BIOENERGY, V35, P4230 shtal Alexey, 2011, BIORESOURCES, V6, P3547 eskogh Dimitri, 2011, PROCESS BIOCHEMISTRY, V46, P1071 rcia-Ubasart Jordi, 2011, BIORESOURCE TECHNOLOGY, V102, P2799 eskogh Dimitri, 2010, INDUSTRIAL CROPS AND PRODUCTS, V32, P458 tzPatrick Michael, 2010, BIORESOURCE TECHNOLOGY, V101, P8915 mani Per, 2010, CELLULOSE CHEMISTRY AND TECHNOLOGY2nd Nordic Wood Biorefinery Conference, SEP 02-04, 2009, Helsinki, FINLAND, V44, P53Article in journal (Refereed)
    Abstract [en]

    The characteristics of two novel types of technical lignin, namely Ecohelix (EH) and CleanFlow black lignin (CFBL), isolated from two different pulping process side streams, were analyzed. EH and CFBL were analyzed in terms of general composition, chemical functionalities, molar mass distribution, and thermal stability. For comparison, two relevant types of commercially available lignosulfonate and kraft lignin were used. The results showed that EH contains a large amount of sulfonated lignin, together with carbohydrates and ash. As such, it can be considered a lignin-carbohydrate hybrid molecule. CFBL was found to contain 91.5% Klason lignin and the lowest amount of carbohydrates (0.3%). EH showed the highest content of aliphatic OH groups (5.44 mmol/g) and CFBL a high content of phenols (4.73 mmol/g). EH had a molecular weight of 31.4 kDa and a sufficient thermal stability. CFBL had the lowest molecular weight (M-w = 2.0 kDa) and thermal stability of all kraft lignins analyzed in this study. These properties highlighted that EH is a suitable building block for material development and that CFBL is a promising material for the production of biofuel and biochemicals.

  • 2.
    Adolfsson, Karin H.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lin, Chia-feng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Microwave Assisted Hydrothermal Carbonization and Solid State Postmodification of Carbonized Polypropylene2018In: ACS SUSTAINABLE CHEMISTRY & ENGINEERING, ISSN 2168-0485, Vol. 6, no 8, p. 11105-11114Article in journal (Refereed)
    Abstract [en]

    Functional carbon materials produced through a hydrothermal treatment of waste products have gained interest. Particularly, the method is considered more facile and green compared to conventional decomposition methods. Here, we demonstrated an upcycling of polypropylene (PP) waste to carbon materials by a microwave assisted hydro thermal treatment. The solid product obtained from the hydrothermal treatment was analyzed by multiple techniques to reveal the structure and the influence of processing conditions on PP degradation and hydrothermal carbonization. Chemical analyses showed the presence of carbonaceous material independent of acid amount (20 and 30 mL), temperature (210 and 250 degrees C), and time (20-80 min). A complete transformation of PP content to amorphous carbon required 60 min at 250 degrees C. The mass yield of the solid product decreased as a function of harsher processing conditions. At the same time, thermogravimetric analysis illustrated products with increasing thermal stability and a larger amount of remaining residue at 600 degrees C. The solid products consisted of irregular fragments and sheet-like structures. A solid state microwave process in air atmosphere was performed on a product with incomplete carbonization. The modification resulted in a decreased C/O ratio, and TGA analysis in nitrogen showed high thermal stability and degree of carbonization as indicated by the remaining residue of 86.4% at 600 degrees C. The new insights provided on the hydrothermal carbonization, and postmodification in air atmosphere, can catalyze effective handling of plastic waste by enabling transformation of low quality waste into functional carbon materials.

  • 3.
    Ahlinder, Astrid
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Fuoco, Tiziana
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Finne Wistrand, Anna
    KTH, Superseded Departments (pre-2005), Polymer Technology.
    Medical grade polylactide, copolyesters and polydioxanone: Rheological properties and melt stability2018In: Polymer testing, ISSN 0142-9418, E-ISSN 1873-2348, Vol. 72, p. 214-222Article in journal (Refereed)
    Abstract [en]

    Rheological measurements have shown that lactide-based copolymers with L-lactide content between 50 and 100 mol% with varying comonomers, as well as polydioxanone (PDX), can be used in additive manufacturing analogously to poly(L-lactide) (PLLA) if their melt behaviour are balanced. The results indicate that copolymers can be melt processed if the temperature is adjusted according to the melting point, and parameters such as the speed are tuned to conteract the elastic response. Small amplitude oscillatory shear (SAOS) rheology, thermal and chemical characterisation allowed us to map the combined effect of temperature and frequency on the behaviour of six degradable polymers and their melt stability. Values of complex viscosity and Tan delta obtained through nine time sweeps by varying temperature and frequency showed that the molecular structure and the number of methylene units influenced the results, copolymers of L-lactide with D-Lactide (PDLLA) or glycolide (PLGA) had an increased elastic response, while copolymers with trimethylene carbonate (PLATMC) or epsilon-caprolactone (PCLA) had a more viscous behaviour than PLLA, with respect to their relative melting points. PDLLA and PLGA require an increased temperature or lower speed when processed, while PLATMC and PCLA can be used at a lower temperature and/or higher speed than PLLA. PDX showed an increased viscosity compared to PLLA but a similar melt behaviour. Negligible chain degradation were observed, apart from PLGA.

  • 4.
    Alander, B.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Capezza, A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 101, Alnarp, Sweden.
    Wu, Q.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Johansson, E.
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Hedenqvist, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption2018In: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 119, p. 41-48Article in journal (Refereed)
    Abstract [en]

    A novel and facile method to produce inexpensive protein biofoams suitable for sponge applications is presented. The protein used in the study was wheat gluten (WG), readily available as a by/co-product, but the method is expected to work for other cross-linkable proteins. The foams were obtained by high-speed stirring of pristine WG powder in water at room temperature followed by drying. Glutaraldehyde was used to crosslink the foam material in order to stabilize the dispersion, reduce its tackiness and improve the strength of the final foam. The foams were of medium to high density and absorbed readily both hydrophobic and hydrophilic liquids. The foam structure, consisting primarily of an open pore/channel system, led to a remarkably fast capillary-driven (pore-filling only) uptake of a hydrophobic liquid (limonene). Essentially all uptake occurred within the first second (to ca. 90% of the dry weight). In a polar liquid (water), the rapid pore-filling occurred in parallel with a more time-dependent swelling of the foam matrix material. Further improvement in the foam strength was achieved by making a denser foam or adding TEMPO-oxidized cellulose nanofibres. Soft foams were obtained by adding glycerol.

  • 5.
    Albertsson, Ann-Christine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    CELL 104-Renewable and/or degradable polymers2007In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 233, p. 796-796Article in journal (Other academic)
  • 6.
    Ali pour, Nazanin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Enebro, J.
    Strömberg, Emma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Qualitative characterization of nanoclay particle emissions from PP nanocomposites after thermal degradation2015In: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2015Conference paper (Refereed)
    Abstract [en]

    The use of nanomaterials in polymeric materials is a rapidly expanding field, and the polymer nanocomposites are being introduced into various markets. But there is still little known about the fate of nanocomposites and nanoparticles during service life and end-of-life of the materials. To avoid possible environmental, health and safety problems, simulating different scenarios for nanoparticles release from the polymer matrix plays a key role in commercialization of these advanced materials. The polymer/nanoclay nanocomposites show superior material properties in comparison with the pure polymers, such as improved mechanical properties, heat resistance, flame retardancy and decreased gas permeability. Polypropylene (PP) nanocomposites have attracted a considerable interest due to the material's low cost, low density and extensive production volumes. In this study, in order to obtain reliable results regarding the release of nanoclays from PP nanocomposites, homogenous composite with predetermined content of nanoclay was produced and characterized to obtain information regarding content, dispersion and size of the nanoclays in the matrix. The PP nanocomposite was degraded under controlled conditions and the surface morphology as well as oxidation of the material was characterized with scanning electron microscopy (SEM) and infrared spectroscopy during degradation. A prototype environmental chamber was designed in order to collect nano-sized particles in a controlled manner and subsequent characterization of the released or formed particles was performed with transmission electron microscopy (TEM) and the exposed nanocomposite was analysed with thermogravimetric analysis (TGA). 

  • 7.
    Aljure, Mauricio
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Becerra Garcia, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering.
    Karlsson, Mattias E.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Streamer Inception from Ultra-Sharp Needles in Mineral Oil Based Nanofluids2018In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 11, no 8, article id 2064Article in journal (Refereed)
    Abstract [en]

    Positive and negative streamer inception voltages from ultra-sharp needle tips (with tip radii below 0.5 m) are measured in TiO2, SiO2, Al2O3, ZnO and C-60 nanofluids. The experiments are performed at several concentrations of nanoparticles dispersed in mineral oil. It is found that nanoparticles influence positive and negative streamers in different ways. TiO2, SiO2 and Al2O3 nanoparticles increase the positive streamer inception voltage only, whilst ZnO and C-60 nanoparticles augment the streamer inception voltages in both polarities. Using these results, the main hypotheses explaining the improvement in the dielectric strength of the host oil due to the presence of nanoparticles are analyzed. It is found that the water adsorption hypothesis of nanoparticles is consistent with the increments in the reported positive streamer inception voltages. It is also shown that the hypothesis of nanoparticles reducing the electron velocity by hopping transport mechanisms fails to explain the results obtained for negative streamers. Finally, the hypothesis of nanoparticles attaching electrons according to their charging characteristics is found to be consistent with the results hereby presented on negative streamers.

  • 8.
    Aminzadeh, Selda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Valorization of Kraft Lignin by Fractionation and Chemical Modifications for Different Applications2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Abstract

    Lignin is one of the most abundant biopolymers. Approximately 70 million tons of technical lignin is generated annually, but only little is used for products other than energy. The complexity of lignin hinders full utilization in high-value products and materials. In spite of the large recent progress of knowledge of lignin structure and biosynthesis, much is still not fully understood, including structural inhomogeneity. We made synthetic lignin at different pH’s and obtained structural differences that might explain the structural inhomogeneity of lignin.

    Technical lignins from the chemical pulping are available in large scale, but the processes result in alterations, such as oxidation and condensation. Therefore, to utilize technical lignin, modifications, such as fractionation and/or chemical modifications are necessary. Fractionation with ceramic membranes is one way to lower the polydispersity of lignin. The main advantage is their tolerance towards high temperature and harsh conditions. We demonstrated that low Mw lignin was extracted from industrially produced LignoBoost lignin aiming: i) to investigate the performance of the membrane over time; ii) to analyze the antioxidant properties of the low Mw lignin.

    Chemical modification can also improve the properties of lignin. By adding moieties, different properties can be obtained. Amination and methacrylation of kraft lignin were performed, as well as lignin-silica hybrid materials with potential for the adsorption were produced and investigated.

    Non-modified and methacrylated lignin were used to synthesize lignin-St-DVB porous microspheres to be utilized as a sorbent for organic pollutants. The possibility to substitute styrene with methacrylated lignin was evaluated, demonstrating that interaction between lignin and DVB, and porosity increased.

    Lignin has certain antibacterial properties. Un-modified and modified (aminated) lignin samples and sphere nanoparticles of lignin were tested for their effect against gram-positive and gram-negative bacteria’s and an injectable hydrogel was developed with encapsulated lignin for being used as an injectable gel for the open wounds. Results demonstrated promising antibacterial efficiency of lignins against gram-positive, more especially better inhibition with aminated lignins against gram-positive and negative bacterium.

     

     

    The full text will be freely available from 2019-11-22 11:08
  • 9.
    Aminzadeh, Selda
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Haghniaz, R.
    Ottenhall, A.
    Sevastyanova, Olena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lindström, E.
    Khademhosseini, A.
    Lignin based hydrogel for the antibacterial applicationManuscript (preprint) (Other academic)
  • 10.
    Ansari, Farhan
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Berglund, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Medina, Lilian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Epoxies can solve moisture problems in nanocellulose materials2017In: International Conference on Nanotechnology for Renewable Materials 2017, TAPPI Press , 2017, p. 1220-1227Conference paper (Refereed)
  • 11.
    Ansari, Farhan
    et al.
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Ding, Yichuan
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Dauskardt, Reinhold H.
    Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA..
    Toward Sustainable Multifunctional Coatings Containing Nanocellulose in a Hybrid Glass Matrix2018In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 12, no 6, p. 5495-5503Article in journal (Refereed)
    Abstract [en]

    We report on a sustainable route to protective nanocomposite coatings, where one of the components, nanocellulose fibrils, is derived from trees and the glass matrix is an inexpensive sol-gel organic-inorganic hybrid of zirconium alkoxide and an epoxy-functionalized silane. The hydrophilic nature of the colloidal nanocellulose fibrils is exploited to obtain a homogeneous one-pot suspension of the nanocellulose in the aqueous sol-gel matrix precursors solution. The mixture is then sprayed to form nano composite coatings of a well-dispersed, random in-plane nano cellulose fibril network in a continuous organic inorganic glass matrix phase. The nanocellulose incorporation in the sol-gel matrix resulted in nanostructured composites with marked effects on salient coating properties including optical transmittance, hardness, fracture energy, and water contact angle. The particular role of the nanocellulose fibrils on coating fracture properties, important for coating reliability, was analyzed and discussed in terms of fibril morphology, molecular matrix, and nanocellulose/matrix interactions.

  • 12.
    Ansari, Farhan
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Galland, Sylvain
    Fernberg, P.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Stiff and ductile nanocomposites of epoxy reinforced with cellulose nanofibrils2013In: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2013, p. 5575-5582Conference paper (Refereed)
  • 13.
    Ansari, Farhan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Salajkova, Michaela
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Zhou, Qi
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Cellulose nanocomposites - Controlling dispersion and material properties through nanocellulose surface modification2015In: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2015Conference paper (Refereed)
    Abstract [en]

    The use of cellulosic nanofibers as reinforcement in polymer composites offers great advantages over their petroleum counterparts. Apart from being strong, stiff and low density; they are obtained from naturally occurring resources and as such are favorable from an environmental point of view. A major problem while studying nanomaterials is their tendency to agglomerate, thus leading to inhomogeneous distribution within the polymer matrix. This often results in stress concentrations in the matrix rich regions when the material is subjected to load and therefore, limits the potential application of these materials. A common approach to circumvent this is by surface modification, which facilitates the dispersion in non-polar matrices. An environmental friendly approach, inspired by clay chemistry, was used to functionalize the CNC surface. It was shown that the CNC could be modified in a rather convenient way to attach a variety of functional groups on the surface. Primarily, the problem of cellulose nanocrystal (CNC) distribution in a hydrophobic polymer matrix is investigated. Composites prepared from modified CNC were studied and compared with unmodified CNC. The distribution of the CNC is carefully monitored at different stages via UV-Vis spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the resulting materials were characterized by dynamic mechanical as well as uniaxial tensile tests. It was shown that a homogeneous distribution of the CNC exposes a tremendous amount of surface area to interact with the matrix. In such a case, the stress transfer is much more efficient and perhaps, the matrix behavior is modified, which leads to significant improvements in the mechanical properties.

  • 14.
    Arseneault, Mathieu
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden..
    Granskog, Viktor
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden..
    Khosravi, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden..
    Heckler, Ilona
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden..
    Antunez, Pablo Mesa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden..
    Hult, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden..
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden..
    Malkoch, Michael
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, SE-10044 Stockholm, Sweden..
    The Dawn of Thiol-Yne Triazine Triones Thermosets as a New Material Platform Suited for Hard Tissue Repair2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 52, article id 1804966Article in journal (Refereed)
    Abstract [en]

    The identification of a unique set of advanced materials that can bear extraordinary loads for use in bone and tooth repair will inevitably unlock unlimited opportunities for clinical use. Herein, the design of high-performance thermosets is reported based on triazine-trione (TATO) monomers using light-initiated thiol-yne coupling (TYC) chemistry as a polymerization strategy. In comparison to traditional thiol-ene coupling (TEC) systems, TYC chemistry has yielded highly dense networks with unprecedented mechanical properties. The most promising system notes 4.6 GPa in flexural modulus and 160 MPa in flexural strength, an increase of 84% in modulus and 191% in strength when compared to the corresponding TATO system based on TEC chemistry. Remarkably, the mechanical properties exceed those of polylactide (PLA) and challenge poly(ether ether ketone) PEEK and today's methacrylate-based dental resin composites. All the materials display excellent biocompatibility, in vitro, and are successfully: i) molded into medical devices for fracture repair, and ii) used as bone adhesive for fracture fixation and as tooth fillers with the outstanding bond strength that outperform methacrylate systems used today in dental restoration application. Collectively, a new era of advanced TYC materials is unfolded that can fulfill the preconditions as bone fixating implants and for tooth restorations.

  • 15.
    Arseneault, Mathieu
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Granskog, Viktor
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Khosravi, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Heckler, Ilona
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Mesa-Antunez, Pablo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Hult, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Highly crosslinked triazine-trione materials for fracture fixation based on TEC and TYC chemistryManuscript (preprint) (Other academic)
  • 16.
    Bengtsson, Andreas
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Bengtsson, Jenny
    Swerea IVF, Box 104, SE-43122 Molndal, Sweden..
    Olsson, Carina
    Swerea IVF, Box 104, SE-43122 Molndal, Sweden..
    Sedin, Maria
    RISE Innventia, Box 5604, SE-11486 Stockholm, Sweden..
    Jedvert, Kerstin
    Swerea IVF, Box 104, SE-43122 Molndal, Sweden..
    Theliander, Hans
    Chalmers Univ Technol, SE-41296 Gothenburg, Sweden..
    Sjoholm, Elisabeth
    RISE Innventia, Box 5604, SE-11486 Stockholm, Sweden..
    Improved yield of carbon fibres from cellulose and kraft lignin2018In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 72, no 12, p. 1007-1016Article in journal (Refereed)
    Abstract [en]

    To meet the demand for carbon-fibre-reinforced composites in lightweight applications, cost-efficient processing and new raw materials are sought for. Cellulose and kraft lignin are each interesting renewables for this purpose due to their high availability. The molecular order of cellulose is an excellent property, as is the high carbon content of lignin. By co-processing cellulose and lignin, the advantages of these macromolecules are synergistic for producing carbon fibre (CF) of commercial grade in high yields. CFs were prepared from precursor fibres (PFs) made from 70: 30 blends of softwood kraft lignin (SW-KL) and cellulose by dry-jet wet spinning with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) as a solvent. In focus was the impact of the molecular mass of lignin and the type of cellulose source on the CF yield and properties, while membrane-filtrated kraft lignin and cellulose from dissolving kraft pulp and fully bleached paper-grade SW-KP (kraft pulp) served as sources. Under the investigated conditions, the yield increased from around 22% for CF from neat cellulose to about 40% in the presence of lignin, irrespective of the type of SW-KL. The yield increment was also higher relative to the theoretical one for CF made from blends (69%) compared to those made from neat celluloses (48-51%). No difference in the mechanical properties of the produced CF was observed.

  • 17.
    Benselfelt, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Dynamic networks of cellulose nanofibrils as a platform for tunable hydrogels, aerogels, and chemical modifications2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 18.
    Benyahia Erdal, Nejla
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Adolfsson, Karin H.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pettersson, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Green Strategy to Reduced Nanographene Oxide through Microwave Assisted Transformation of Cellulose2018In: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 6, no 1, p. 1245-1255Article in journal (Refereed)
    Abstract [en]

    A green strategy for fabrication of biobased reduced nanographene oxide (r-nGO) was developed. Cellulose derived nanographene oxide (nGO) type carbon nanodots were reduced by microwave assisted hydrothermal treatment with superheated water alone or in the presence of caffeic acid (CA), a green reducing agent. The carbon nanodots, r-nGO and r-nGO-CA, obtained through the two different reaction routes without or with the added reducing agent, were characterized by multiple analytical techniques including FTIR, XPS, Raman, XRD, TGA, TEM, AFM, UV-vis, and DLS to confirm and evaluate the efficiency of the reduction reactions. A significant decrease in oxygen content accompanied by increased number of sp2 hybridized functional groups was confirmed in both cases. The synergistic effect of superheated water and reducing agent resulted in the highest C/O ratio and thermal stability, which also supported a more efficient reduction. Interesting optical properties were detected by fluorescence spectroscopy where nGO, r-nGO, and r-nGO-CA all displayed excitation dependent fluorescence behavior. r-nGO-CA and its precursor nGO were evaluated toward osteoblastic cells MG-63 and exhibited nontoxic behavior up to 200 μg mL-1, which gives promise for utilization in biomedical applications.

  • 19.
    Bergenstrahle, Malin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Mazeau, Karim
    CNRS, Ctr Rech Macromol Vegetales, F-38041 Grenoble, France..
    CARB 18-Thermal response in crystalline cellulose: A molecular dynamics study2008In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 235Article in journal (Other academic)
  • 20.
    Berglund, Jennie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. Wallenberg Wood Science Center.
    Wood Hemicelluloses - Fundamental Insights on Biological and Technical Properties2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Hemicelluloses are a group of heterogeneous polysaccharides representing around 30 % of wood where the dominating types are xylans, glucomannans and xyloglucans. Hemicelluloses complex molecular structure makes it difficult to understand the relationship between structure and properties entirely, and their biological role is not yet fully verified. Additionally, hemicelluloses are sensitive to chemical processing and are not utilized to their full potentials for production of value-added products such as materials, additives to food and pharmaceutical products, etc. Increased knowledge regarding their functions is important for the development of both processes and products. The aim with this work has therefore been to increase the fundamental understanding about how the structure and properties of wood hemicelluloses are correlated, and properties such as flexibility, interaction with cellulose, solubility, resistance to chemical-, thermal-, and enzymatic degradation have been explored.

    Molecular dynamics (MD) simulations were used to, in detail, study the structures found in wood hemicelluloses. The flexibility was evaluated by comparing the impact of backbone sugars on the conformational space and also the impact of side groups was considered. Based on the conformational space of backbone glycosidic linkages the flexibility order of hemicelluloses in an aqueous environment was determined to be: xylan > glucomannan > xyloglucan. Additionally, the impact of xylan structure on cellulose interaction was evaluated by MD methods.

    Hemicelluloses were extracted from birch and spruce, and were used to fabricate different composite hydrogels with bacterial cellulose. These materials were studied with regards to mechanical properties, and it was shown that galactoglucomannans mainly contributed to an increased modulus in compression, whereas the most significant effect from xylan was increased strain under uniaxial tensile testing. Besides, other polysaccharides of similar structure as galactoglucomannans were modified and used as pure, well defined, models. Acetyl groups are naturally occurring decorations of wood hemicelluloses and can also be chemically introduced. Here, mannans with different degrees of acetylation were prepared and the influence of structure on solubility in water and the organic solvent DMSO were evaluated. Furthermore, the structure and water solubility influenced the interaction with cellulose. Acetylation also showed to increase the thermal and biological stability of mannans.

    With chemical pulping processes in mind, the degradability of spruce galactoglucomannans in alkaline solution were studied with regards to the structure, and the content of more or less stable structural regions were proposed.

    The full text will be freely available from 2019-12-31 20:00
  • 21.
    Berglund, Jennie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Azhar, Shoaib
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    The structure of galactoglucomannan impacts the degradation under alkaline conditions2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882XArticle in journal (Refereed)
    Abstract [en]

    Galactoglucomannan (GGM) from sprucewas studied with respect to the degradation behavior inalkaline solution. Three reference systems includinggalactomannan from locust bean gum, glucomannanfrom konjac and the linear water-soluble carboxymethylcellulose were studied with focus onmolecular weight, sugar composition, degradationproducts, as well as formed oligomers, to identifyrelative structural changes in GGM. Initially allmannan polysaccharides showed a fast decrease inthe molecular weight, which became stable in the laterstage. The degradation of the mannan polysaccharidescould be described by a function corresponding to thesum of two first order reactions; one slow that wasascribed to peeling, and one fast that was connectedwith hydrolysis. The galactose side group wasstable under conditions used in this study (150 min,90 C, 0.5 M NaOH). This could suggest that, apartfrom the covalent connection to C6 in mannose, thegalactose substitutions also interact non-covalentlywith the backbone to stabilize the structure againstdegradation. Additionally, the combination of differentbackbone sugars seems to affect the stability of thepolysaccharides. For carboxymethyl cellulose thedegradation was linear over time which furthersuggests that the structure and sugar composition playan important role for the alkaline degradation. Moleculardynamics simulations gave details about theconformational behavior of GGM oligomers in watersolution, as well as interaction between the oligomersand hydroxide ions.

  • 22.
    Berglund, Jennie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Kishani, Saina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    de Carvalho, Danila Morais
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wohlert, Jakob
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Henriksson, Gunnar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    The influence of acetylation and sugar composition on the (in)solubility of mannans, their interaction with cellulose surfaces and thermal properties.Manuscript (preprint) (Other academic)
  • 23.
    Berglund, Jennie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Mikkelsen, Deirdre
    University of Queensland, Australia.
    Flanagan, Bernadine M.
    University of Queensland, Australia.
    Dhital, Sushil
    University of Queensland, Australia.
    Henriksson, Gunnar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Yakubov, Gleb E.
    University of Queensland, Australia.
    Gidley, Michael J.
    University of Queensland, Australia.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wood Hemicelluloses Exert Distinct Biomechanical Contributions in Bacterial Cellulose HydrogelsManuscript (preprint) (Other academic)
  • 24.
    Berglund, Lars
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Burgert, Ingo
    Swiss Fed Inst Technol, Inst Bldg Mat, Stefano Franscini Pl 3, CH-8093 Zurich, Switzerland.;EMPA Swiss Fed Labs Mat Testing & Res, Appl Wood Res Lab, CH-8600 Dubendorf, Switzerland..
    Bioinspired Wood Nanotechnology for Functional Materials2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 19, article id 1704285Article in journal (Refereed)
    Abstract [en]

    It is a challenging task to realize the vision of hierarchically structured nanomaterials for large-scale applications. Herein, the biomaterial wood as a large-scale biotemplate for functionalization at multiple scales is discussed, to provide an increased property range to this renewable and CO2-storing bioresource, which is available at low cost and in large quantities. The Progress Report reviews the emerging field of functional wood materials in view of the specific features of the structural template and novel nanotechnological approaches for the development of wood-polymer composites and wood-mineral hybrids for advanced property profiles and new functions.

  • 25.
    Berglund, Lars
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Fu, Qiliang
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Sychugov, Ilya
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Yang, Min
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
    Modification of transparent wood for photonics functions2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 26.
    Berglund, Lars
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Design of biodegradable cellulosic nanomaterials combining mechanical strength and optical transmittance2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 256Article in journal (Other academic)
  • 27.
    Blomfeldt, Thomas Olof John
    et al.
    KTH.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Johansson, Eva
    Swedish Univ Agr Sci, Dept Crop Sci, S-23053 Alnarp, Sweden..
    CELL 176-Insulation material made from wheat gluten2008In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 235Article in journal (Other academic)
  • 28.
    Brett, Calvin
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. DESY, Photon Sci, Hamburg, Germany.
    Mittal, Nitesh
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ohm, Wiebke
    DESY, Photon Sci, Hamburg, Germany..
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. DESY, Photon Sci, Hamburg, Germany..
    In situ self-assembly study in bio-based thin films2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 29.
    Brännström, Sara
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Finnveden, Maja
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Martinelle, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Itaconate based polyesters: Selectivity and performance of esterification catalysts2018In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 103, p. 370-377Article in journal (Refereed)
    Abstract [en]

    The performance of different esterification catalysts was studied for the use in synthesis of renewable polyesters from dimethyl itaconate (DMI), dimethyl succinate (DMS) and 1,4-butanediol (BD). Itaconic acid and derivatives such as DMI are interesting monomers because of their multiple functionalities and previous work has shown great potential. However, the multiple functionalities also pose challenges to avoid side reactions such as thermally initiated, premature, radical crosslinking and/or isomerization of the 1,1-disubstituted unsaturation. Additionally, the two carboxylic acids have inherently different reactivity. One key factor to control reactions with IA is to understand the performance of different catalysts. In this study, six esterification catalysts were investigated; immobilized Candida antarctica lipase B (CalB), titanium(IV)butoxide (Ti(OBu)4), p-toluenesulfonic acid (pTSA), sulfuric acid (H2SO4), 1,8-diazabicycloundec-7-ene (DBU), and 1,5,7-triazabicyclodec-5-ene (TBD). CalB and Ti(OBu)4 were selected for further characterization with appreciable differences in catalytic activity and selectivity towards DMI. CalB was the most effective catalysts and was applied at 60 °C while Ti(OBu)4 required 160 °C for a reasonable reaction rate. CalB was selective towards DMS and the non-conjugated side of DMI, resulting in polyesters with itaconate-residues mainly located at the chain ends, while Ti(OBu)4 showed low selectivity, resulting in polyesters with more randomly incorporated itaconate units. Thermal analysis of the polyesters showed that the CalB-catalyzed polyesters were semi-crystalline, whereas the Ti(OBu)4-catalyzed polyesters were amorphous, affirming the difference in monomer sequence. The polyester resins were crosslinked by UV-initiated free radical polymerization and the material properties were evaluated and showed that the crosslinked materials had similar material properties. The films from the polyester resins catalyzed by CalB were furthermore completely free from discoloration whereas the film made from the polyester resins catalyzed with Ti(OBu)4 had a yellow color, caused by the catalyst. Thus, it has been shown that CalB can be used to attain sustainable unsaturated polyesters resins for coating applications, exhibiting equally good properties as resins obtained from traditional metal-catalysis.

  • 30.
    Brännström, Sara
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Finnveden, Maja
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology.
    Razza, Nicolo
    Politecn Torino, Dept Appl Sci & Technol, Corso Duca Abruzzi 24, I-10129 Turin, Italy..
    Martinelle, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sangermano, Marco
    Politecn Torino, Dept Appl Sci & Technol, Corso Duca Abruzzi 24, I-10129 Turin, Italy..
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Tailoring Thermo-Mechanical Properties of Cationically UV-Cured Systems by a Rational Design of Vinyl Ether Ester Oligomers using Enzyme Catalysis2018In: Macromolecular Chemistry and Physics, ISSN 1022-1352, E-ISSN 1521-3935, Vol. 219, no 21, article id 1800335Article in journal (Refereed)
    Abstract [en]

    There is a demand for new sustainable polymeric materials. Vinyl ethers are, in this context, attractive oligomers since they polymerize fast, are non-toxic, and can be polymerized under ambient conditions. The availability of vinyl ether oligomers is, however, currently limited due to difficulties in synthesizing them without using tedious synthesis routes. This work presents the synthesis of a series of vinyl ether ester oligomers using enzyme catalysis under solvent-free conditions and the subsequent photoinduced cationic polymerization to form polymer thermosets with T(g)s ranging from -10 to 100 degrees C. The whole process is very efficient as the synthesis takes less than 1 h with no need for purification and the crosslinking is complete within 2 min.

  • 31.
    Budnyak, Tetyana
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Aminzadeh, Selda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Wallenberg Wood Science Center.
    Pylypchuk, Ievgen
    Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), Allmas alle 5, SE-750 07 Uppsala, Swede.
    Riazanova, Anastasiia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Tertykh, Valentin
    Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine.
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sevastyanova, Olena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Peculiarities of synthesis and properties of lignin-silica nanocomposites prepared by sol-gel method2018In: Nanomaterials, Vol. 8, no 11, p. 1-18Article in journal (Refereed)
    Abstract [en]

    The development of advanced hybrid materials based on polymers from biorenewable sources and mineral nanoparticles is currently of high importance. In this paper, we applied softwood kraft lignins for the synthesis of lignin/SiO2 nanostructured composites. We described the peculiarities of composites formation in the sol-gel process through the incorporation of the lignin into a silica network during the hydrolysis of tetraethoxysilane (TEOS). The initial activation of lignins was achieved by means of a Mannich reaction with 3-aminopropyltriethoxysilane (APTES). In the study, we present a detailed investigation of the physicochemical characteristics of initial kraft lignins and modified lignins on each step of the synthesis. Thus, 2D-NMR, 31P-NMR, size-exclusion chromatography (SEC) and dynamic light scattering (DLS) were applied to analyze the characteristics of pristine lignins and lignins in dioxan:water solutions. X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) were used to confirm the formation of the lignin–silica network and characterize the surface and bulk structures of the obtained hybrids. Termogravimetric analysis (TGA) in nitrogen and air atmosphere were applied to a detailed investigation of the thermal properties of pristine lignins and lignins on each step of modification. SEM confirmed the nanostructure of the obtained composites. As was demonstrated, the activation of lignin is crucial for the sol-gel formation of a silica network in order to create novel hybrid materials from lignins and alkoxysilanes (e.g., TEOS). It was concluded that the structure of the lignin had an impact on its reactivity during the activation reaction, and consequently affected the properties of the final hybrid materials.

  • 32.
    Budnyak, Tetyana M.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Natl Acad Sci Ukraine, Chuiko Inst Surface Chem, 17 Gen Naumov Str, UA-03164 Kiev, Ukraine..
    Aminzadeh, Selda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Pylypchuk, Ievgen V.
    Swedish Univ Agr Sci SLU, Dept Mol Sci, Allmas Alle 5, SE-75007 Uppsala, Sweden..
    Sternik, Dariusz
    Marie Curie Sklodowska Univ, 2 M Curie Sklodowska Sq, PL-20031 Lublin, Poland..
    Tertykh, Valentin A.
    Natl Acad Sci Ukraine, Chuiko Inst Surface Chem, 17 Gen Naumov Str, UA-03164 Kiev, Ukraine..
    Lindström, Mikael E.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sevastyanova, Olena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Methylene Blue dye sorption by hybrid materials from technical lignins2018In: Journal of Environmental Chemical Engineering, ISSN 2160-6544, E-ISSN 2213-3437, Vol. 6, no 4, p. 4997-5007Article in journal (Refereed)
    Abstract [en]

    New hybrid sorbents were synthesized from technical lignins and silica and were applied for the removal of Methylene Blue dye (MB) from aqueous solution. Kraft softwood lignins from LignoBoost (LBL) and CleanFlowBlack (CFBL) processes were used to understand the influence of molecular weight and functionality of initial lignins on the properties of the final hybrids. The synthesized materials were applied as adsorbents for the removal of MB from aqueous solutions. The effects of parameters such as contact time, initial concentration of dye and initial pH on the adsorption capacity were evaluated. The hybrids exhibited higher adsorption capacity than the initial macromolecules of lignin with respect to MB. The hybrid based on CFBL exhibited an adsorption capacity of 60 mg/g; this value was 30% higher than the capacity of the hybrid based on LBL, which was 41.6 mg/g. Lignin hybrid materials extract 80-99% of the dye in a pH range from 3 to 10. The equilibrium and kinetic characteristics of MB uptake by the hybrids followed the Langmuir isotherm model and pseudosecond-order model, rather than the Freundlich and Temkin models, the pseudo-first-order or the intraparticle diffusion model. The attachment of the dye to the hybrid surface was confirmed via FE-SEM and FTIR spectroscopy. The mechanism for MB adsorption was proposed. Due to the high values of regeneration efficiency of the surface of both lignin-silica hybrid materials in 0.1 M HCl (up to 75%) and ethanol (99%), they could be applied as effective sorbents in industrial wastewater treatment processes.

  • 33. Carosio, F.
    et al.
    Ghanadpour, Maryam
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Alongi, J
    Wågberg, L
    Layer-by-layer assembled chitosan/phosphporylated nanocellulose as a bio-based and flame protecting nano-exoskeleton on PU foams2018In: Article in journal (Other (popular science, discussion, etc.))
  • 34. Carosio, F.
    et al.
    Ghanadpour, Maryam
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Alongi, J.
    Wågberg, Lars
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams2018In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 202, p. 479-487Article in journal (Refereed)
    Abstract [en]

    The layer-by-layer (LbL) assembly of chitosan (CH) and phosphorylated cellulose nanofibrils (P-CNF) is presented as a novel, sustainable and efficient fire protection system for polyurethane foams. The assembly yields a linearly growing coating where P-CNF is the main component and is embedded in a continuous CH matrix. This CH/P-CNF system homogenously coats the complex 3D structure of the foam producing a nano-exoskeleton that displays excellent mechanical properties increasing the modulus of the foam while maintaining its ability of being cyclically deformed. During combustion the CH/P-CNF exoskeleton efficiently prevents foam collapse and suppresses melt dripping while reducing the heat release rate peak by 31% with only 8% of added weight. The coating behavior during combustion is investigated and correlated to the observed performances. Physical and chemical mechanisms are identified and related to the unique composition and structure of the coating imparted by the LbL assembly.

  • 35.
    Castro, Daniele Oliveira
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. MoRe Research Örnsköldsvik AB, Örnsköldsvik, Sweden.
    Karim, Zoheb
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. MoRe Research Örnsköldsvik AB, Örnsköldsvik, Sweden.
    Medina, Lilian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Häggström, J. -O
    Carosio, F.
    Svedberg, A.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    The use of a pilot-scale continuous paper process for fire retardant cellulose-kaolinite nanocomposites2018In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 162, p. 215-224Article in journal (Refereed)
    Abstract [en]

    Nanostructured materials are difficult to prepare rapidly and at large scale. Melt-processed polymer-clay nanocomposites are an exception, but the clay content is typically below 5 wt%. An approach for manufacturing of microfibrillated cellulose (MFC)/kaolinite nanocomposites is here demonstrated in pilot-scale by continuous production of hybrid nanopaper structures with thickness of around 100 μm. The colloidal nature of MFC suspensions disintegrated from chemical wood fiber pulp offers the possibility to add kaolinite clay platelet particles of nanoscale thickness. For initial lab scale optimization purposes, nanocomposite processing (dewatering, small particle retention etc) and characterization (mechanical properties, density etc) were investigated using a sheet former (Rapid Köthen). This was followed by a continuous fabrication of composite paper structures using a pilot-scale web former. Nanocomposite morphology was assessed by scanning electron microscopy (SEM). Mechanical properties were measured in uniaxial tension. The fire retardancy was evaluated by cone calorimetry. Inorganic hybrid composites with high content of in-plane oriented nanocellulose, nanoclay and wood fibers were successfully produced at pilot scale. Potential applications include fire retardant paperboard for semi structural applications.

  • 36. Ceresino, E. B.
    et al.
    Kuktaite, R.
    Sato, H. H.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Johansson, E.
    Impact of gluten separation process and transglutaminase source on gluten based dough properties2019In: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 87, p. 661-669Article in journal (Refereed)
    Abstract [en]

    This study evaluated the effect of the wheat gluten (WG) separation process and transglutaminase (TG) microbial source on WG dough quality, and opportunities to use these factors to tailor dough quality. Two types of gluten (harshly and mildly separated), two types of TG (commercial and novel SB6), and three TG concentrations were evaluated for effects on dough mixing properties, protein structure and solubility. Mildly separated gluten improved dough development parameters, resulting into higher values of most compared with harshly separated gluten. Despite more strongly cross-linked proteins being found in the harshly separated gluten, both gluten types showed similar levels of cross-linking at optimum mixing time, although differences in the secondary protein structure were indicated. Thus, disulfide-sulfhydryl exchange reactions were found to be promoted by mixing, although restrictions on establishment of new bonds because of prior cross-links in the material were clearly indicated. Degree of polymerization in doughs made from mildly separated gluten increased to varying extents with TG addition depending on TG source and concentration. Thus, for the first time, we show that an appropriate combination of WG separation procedure and TG source can be used to tailor gluten dough end-use properties.

  • 37.
    Ceresino, Elaine Berger
    et al.
    Univ Estadual Campinas, Sch Food Engn, Dept Food Sci, BR-13083862 Sao Paulo, SP, Brazil..
    Kuktaite, Ramune
    Swedish Univ Agr Sci, Dept Plant Breeding, Box 101, SE-23053 Alnarp, Sweden..
    Sato, Helia Harumi
    Univ Estadual Campinas, Sch Food Engn, Dept Food Sci, BR-13083862 Sao Paulo, SP, Brazil..
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Johansson, Eva
    Swedish Univ Agr Sci, Dept Plant Breeding, Box 101, SE-23053 Alnarp, Sweden..
    Impact of gluten separation process and transglutaminase source on gluten based dough properties2019In: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 87, p. 661-669Article in journal (Refereed)
    Abstract [en]

    This study evaluated the effect of the wheat gluten (WG) separation process and transglutaminase (TG) microbial source on WG dough quality, and opportunities to use these factors to tailor dough quality. Two types of gluten (harshly and mildly separated), two types of TG (commercial and novel SB6), and three TG concentrations were evaluated for effects on dough mixing properties, protein structure and solubility. Mildly separated gluten improved dough development parameters, resulting into higher values of most compared with harshly separated gluten. Despite more strongly cross-linked proteins being found in the harshly separated gluten, both gluten types showed similar levels of cross-linking at optimum mixing time, although differences in the secondary protein structure were indicated. Thus, disulfide-sulfhydryl exchange reactions were found to be promoted by mixing, although restrictions on establishment of new bonds because of prior cross-links in the material were clearly indicated. Degree of polymerization in doughs made from mildly separated gluten increased to varying extents with TG addition depending on TG source and concentration. Thus, for the first time, we show that an appropriate combination of WG separation procedure and TG source can be used to tailor gluten dough end-use properties.

  • 38. Chang, B.
    et al.
    Schneider, K.
    Patil, N.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. DESY, Hamburg, Germany.
    Heinrich, G.
    Microstructure characterization in a single isotactic polypropylene spherulite by synchrotron microfocus wide angle X-ray scattering2018In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 142, p. 387-393Article in journal (Refereed)
    Abstract [en]

    Position-resolved microstructure in a single spherulite of iPP is quantitatively studied by synchrotron microfocus wide angle X-ray scattering. The results show that the normal of mother lamellae in a spherulite is aligned mainly perpendicular to the radius, and the subsidiary daughter lamellae are inclined 80.75° with respect to that of the dominant mother lamellae. The crystallinity in the spherulite is in the range of 46%–56%, which is rarely influenced by the crystallization temperature. The ratio between the daughter lamellae and the mother lamellae is 0.18 when iPP crystallizes at 138 °C and it decreases to 0.11 as the crystallization temperature is decreased to 130 °C. The b-axis and c-axis in the mother lamellae tend to orient perpendicular to the radius direction, and the a-axis prefers to align in the radius direction.

  • 39.
    Chen, Chao
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Ek, Monica
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Antibacterial evaluation of CNF/PVAm multilayer modified cellulose fiber and cellulose model surface2018In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 33, no 3, p. 385-396Article in journal (Refereed)
    Abstract [en]

    Earlier studies have shown that 3-layer-modified cellulose fibers with poly(acrylic acid) (PAA) as the middle layer between two cationic polyelectrolyte polyvinylamine (PVAm) layers have strong antibacterial efficacy in terms of both bacteria adsorption and bacterial growth inhibition. In the present work, the fossil-based PAA middle layer was replaced by sustainable wood-based cellulose nano-fibrils (CNF), i. e., the fibers were modified by a 3-layer PVAm/CNF/PVAm system. Interestingly, the antibacterial efficacy of this system was greater than that of the previous PVAm/PAA/PVAm system. A higher salt concentration and lower assembly pH in the multilayer build-up resulted in better bacterial reduction. As the surface of a cellulose fiber is heterogeneous, making it difficult to characterize and visualize at high resolution, more homogeneous cellulose model surfaces were prepared by spin coating the dissolved cellulose fiber onto a silica surface to model the fiber surface. With increasing ionic strength, more aggregated and heterogeneous structures can be observed on the PVAm/CNF/PVAm modified model surfaces. The adsorbed bacteria distributed on the structured surfaces were clearly seen under fluorescence microscopy. Adsorbed amounts of bacteria on either aggregate or flat regions were quantified by scanning electron microscopy (SEM). More adsorbed bacteria were clearly seen on aggregates than on the flat regions at the surfaces. Degrees of bacteria deformation and cell damage were also seen under SEM. The surface roughness of the modified model surfaces was examined by atomic force microscopy (AFM), and a positive correlation was found between the surface roughness and the bacterial adhesion. Thus, an additional factor that controls adhesion, in addition to the surface charge, which is probably the most dominant factor affecting the bacteria adhesion, is the surface structures, such as roughness. 

  • 40.
    Cho, Sung-Woo
    et al.
    KTH.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    CELL 175-Evaluation of heat sealability of wheat gluten films2008In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 235Article in journal (Other academic)
  • 41.
    Ciftci, Goksu Cinar
    et al.
    KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Larsson, Per
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Riazanova, Anastasia V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Karppinen, Anni
    Borregaard AS, Sarpsborg, Norway..
    Ovrebo, Hans Henrik
    Borregaard AS, Sarpsborg, Norway..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Influence of microfibrillated cellulose fractions on the rheology of water suspensions: Colloidal interactions and viscoelastic properties2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 256Article in journal (Other academic)
  • 42.
    Cobo Sanchez, Carmen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Inorganic and organic polymer-grafted nanoparticles: their nanocomposites and characterization2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Nanocomposites (NCs) have been widely studied in the past decades due to the promising properties that nanoparticles (NPs) offer to a polymer matrix, such as increased thermal stability and non-linear electrical resistivity. It has also been shown that the interphase between the two components is the key to achieving the desired improvements. In addition, polymer matrices are often hydrophobic while NPs are generally hydrophilic, leading to NP aggregation. To overcome these challenges, NPs can be surface-modified by adding specific molecules and polymers. In the present work, a range of organic and inorganic NPs have been surface-modified with polymers synthesized by atom transfer radical polymerization (ATRP) or surface-initiated ATRP (SI-ATRP).Cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC) are highly crystalline NPs that can potentially increase the Young’s modulus of the NC. In this study, a matrix-free NC was prepared by physisorption of a block-copolymer containing a positively charged (quaternized poly(2-(dimethylamino)ethyl methacrylate), qPDMAEMA) and a thermo-responsive (poly di(ethylene glycol) methyl ether methacrylate, PDEGMA). The modified CNF exhibited a thermo-responsive, reversible behavior. CNCs were polymer-modified either via SI-ATRP or physisorbed with poly (butyl methacrylate) (PBMA) to improve the dispersion and interphase between them and a polycaprolactone (PCL) matrix during extrusion. The mechanical properties of the NCs containing CNC modified via SI-ATRP were superior to the reference and unmodified materials, even at a high relative humidity.Reduced graphene oxide (rGO) and aluminum oxide (Al2O3) are interesting for electrical and electronic applications. However, the matrices used for these applications, such as poly(ethylene-co-butyl acrylate) (EBA) and low density polyethylene (LDPE) are mainly hydrophobic, while the NPs are hydrophilic. rGO was modified via SI-ATRP using different chain lengths of PBMA and subsequently mixed with an EBA matrix. Al2O3 was modified with two lengths of poly(lauryl methacrylate) (PLMA), and added to LDPE prior to extrusion. Agglomeration and dispersion of the NCs were dependent on the lengths and miscibilities of the grafted polymers and the matrices. rGO-EBA NCs showed non-linear direct current (DC) resistivity upon modification, as the NP dispersion improved with increasing PBMA length. Al2O3-LDPE systems improved the mechanical properties of the NCs when low amounts of NPs (0.5 to 1 wt%) were added, while decreasing power dissipation on the material.Finally, PLMA-grafted NPs with high polymer quantities and two grafting densities in Al2O3 and silicon oxide (SiO2) nanoparticles were synthesized by de-attaching some of the silane groups from the surfaces, either by hydrolysis or by a mild tetrabutylammonium fluoride (TBAF) cleavage. These compounds were characterized and compared to the bulk PLMA, and were found to have very interesting thermal properties.

    The full text will be freely available from 2020-04-24 14:42
  • 43.
    Cobo Sanchez, Carmen
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Karlsson, Mattias
    Wåhlander, Martin
    Hillborg, Henrik
    Malmström, Eva
    Nilsson, Fritjof
    Characterization of Reduced and Surface-modified Graphene Oxide in EBA Composites for Electrical ApplicationsManuscript (preprint) (Other academic)
    The full text will be freely available from 2020-04-24 14:13
  • 44.
    Cobo Sanchez, Carmen
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Institute of Technology.
    Malmström, Eva
    Matrix-free Nanocomposites based on Poly(lauryl methacrylate)-Grafted Nanoparticles: Effect of Graft Length and Grafting DensityManuscript (preprint) (Other academic)
    The full text will be freely available from 2020-04-24 14:17
  • 45.
    Colson, Jerome
    et al.
    Univ Nat Resources & Life Sci Vienna, Dept Mat Sci & Proc Engn, Inst Wood Technol & Renewable Mat, Konrad Lorenz Str 24, A-3430 Tulin, Austria..
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Asaadi, Shirin
    Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, Vuorimiehentie 1, Espoo 02150, Finland..
    Sixta, Herbert
    Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, Vuorimiehentie 1, Espoo 02150, Finland..
    Nypelo, Tiina
    Chalmers Univ Technol, Dept Chem & Chem Technol, Kemigarden 4, S-41296 Gothenburg, Sweden..
    Mautner, Andreas
    Univ Vienna, Fac Chem, Inst Mat Chem & Res, Wahringer Str 42, A-1090 Vienna, Austria..
    Konnerth, Johannes
    Univ Nat Resources & Life Sci Vienna, Dept Mat Sci & Proc Engn, Inst Wood Technol & Renewable Mat, Konrad Lorenz Str 24, A-3430 Tulin, Austria..
    Adhesion properties of regenerated lignocellulosic fibres towards poly (lactic acid) microspheres assessed by colloidal probe technique2018In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 532, p. 819-829Article in journal (Refereed)
    Abstract [en]

    In the field of polymer reinforcement, it is important to understand the interactions involved between the polymer matrix and the reinforcing component. This paper is a contribution to the fundamental understanding of the adhesion mechanisms involved in natural fibre reinforced composites. We report on the use of the colloidal probe technique for the assessment of the adhesion behaviour between poly(lactic acid) microspheres and embedded cross-sections of regenerated lignocellulosic fibres. These fibres consisted of tailored mixtures of cellulose, lignin and xylan, the amount of which was determined beforehand. The influence of the chemical composition of the fibres on the adhesion behaviour was studied in ambient air and in dry atmosphere. In ambient air, capillary forces resulted in larger adhesion between the sphere and the fibres. Changing the ambient medium to a dry nitrogen atmosphere allowed reducing the capillary forces, leading to a drop in the adhesion forces. Differences between fibres of distinct chemical compositions could be measured only on freshly cut surfaces. Moreover, the surface energy of the fibres was assessed by inverse gas chromatography. Compared to fibres containing solely cellulose, the presence of lignin and/or hemicellulose led to higher adhesion and lower surface energy, suggesting that these chemicals could serve as natural coupling agents between hydrophobic and hydrophilic components.

  • 46. Daenicke, J.
    et al.
    Schubert, D. W.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Linde, Erik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sigl, T.
    Horch, R. E.
    Evaluation of the influence of crosslink density and penetrant size on the diffusion properties of silicone oils into silicone elastomers2019In: Proceedings of the Europe/Africa Conference Dresden 2017 – Polymer Processing Society PPS, American Institute of Physics (AIP), 2019, Vol. 2055Conference paper (Refereed)
    Abstract [en]

    Driven by the continuing discussion on safety and quality of silicone breast implants, they have turned into focus of this study with respect to the diffusivity of low molar mass components from the silicone gel filling into the silicone breast implant shell. Therefore, the diffusivity of silicone oils into silicone elastomers were analysed by means of the crosslink density and the penetrant size. The study was focused on the diffusion of the cyclic siloxanes Octamethylcyclotetrasiloxane (D4), Decamethylcyclopentasiloxane (D5) and Dodecamethyl-cyclohexasiloxane (D6) due to their potential occurrence in silicone breast implants. The analysis of the diffusion behavior was carried out with silicone breast implant shells taken from explants and tailor-made silicone elastomer samples varying in crosslink density. Therefore, sorption experiments were performed. The subsequent evaluation of the sorption data yield to the corresponding diffusion properties. Based on the diffusion coefficient related to the crosslink density a model was developed to describe the material behavior.

  • 47.
    Das, Oisik
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Sch Chem Sci & Engn, Dept Fibre & Polymer Technol Polymer Mat, S-10044 Stockholm, Sweden..
    Kim, Nam Kyeun
    Univ Auckland, Dept Mech Engn, Ctr Adv Composite Mat, Auckland, New Zealand..
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lin, Richard J. T.
    Univ Auckland, Dept Mech Engn, Ctr Adv Composite Mat, Auckland, New Zealand..
    Sarmah, Ajit K.
    Univ Auckland, Dept Civil & Environm Engn, Ctr Adv Composite Mat, Auckland, New Zealand..
    Bhattacharyya, Debes
    Univ Auckland, Dept Mech Engn, Ctr Adv Composite Mat, Auckland, New Zealand..
    An Attempt to Find a Suitable Biomass for Biochar-Based Polypropylene Biocomposites2018In: Environmental Management, ISSN 0364-152X, E-ISSN 1432-1009, Vol. 62, no 2, p. 403-413Article in journal (Refereed)
    Abstract [en]

    Four biomass wastes (rice husk, coffee husk, coarse wool, and landfill wood) were added with biochar and polypropylene (PP) to manufacture biocomposites. Individual biomasses were tested for their combustion behavior using cone calorimeter. Biocomposites were analyzed for their fire/thermal, mechanical, and morphological properties. Wood had the most desirable comprehensive effect on both the mechanical and fire properties of composites. In particular, wood and biochar composite exhibited the highest values of tensile/flexural properties with a relatively low peak heat release rate. In general, application of waste derived biochar and biomasses drastically reduced the susceptibility of neat PP towards fire.

  • 48.
    Das, Oisik
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Loho, Thomas Aditya
    Univ Auckland, Dept Chem & Mat Engn, Auckland 1142, New Zealand..
    Capezza, Antonio Jose
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Swedish Univ Agr Sci, Fac Landscape Planning Hort & Crop Prod Sci, Dept Plant Breeding, S-23053 Alnarp, Sweden..
    Lemrhari, Ibrahim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    A Novel Way of Adhering PET onto Protein (Wheat Gluten) Plastics to Impart Water Resistance2018In: Coatings, ISSN 2079-6412, Vol. 8, no 11, article id 388Article in journal (Refereed)
    Abstract [en]

    This study presents an approach to protect wheat gluten (WG) plastic materials against water/moisture by adhering it with a polyethylene terephthalate (PET) film using a diamine (Jeffamine (R)) as a coupling agent and a compression molding operation. The laminations were applied using two different methods, one where the diamine was mixed with the WG powder and ground together before compression molding the mixture into plates with PET films on both sides. In the other method, the PET was pressed to an already compression molded WG, which had the diamine brushed on the surface of the material. Infrared spectroscopy and nanoindentation data indicated that the diamine did act as a coupling agent to create strong adhesion between the WG and the PET film. Both methods, as expected, yielded highly improved water vapor barrier properties compared to the neat WG. Additionally, these samples remained dimensionally intact. Some unintended side effects associated with the diamine can be alleviated through future optimization studies.

  • 49.
    de Carvalho, Danila Morais
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.
    Moser, Carl
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.
    Lindström, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.
    Sevastyanova, Olena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology.
    Impact of the chemical composition of cellulosic materials on the nanofibrillation process and nanopaper properties2019In: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 127, p. 203-211Article in journal (Refereed)
    Abstract [en]

    This paper investigated the impact of the amounts of lignin and hemicelluloses on cellulose nanofibers (CNFs). Birch and spruce wood were used to prepare holocellulose and cellulose samples by classical methods. To better assess the effect of the chemical composition on the CNF performance and simplify the process for CNF preparation, no surface derivatization method was applied for CNF preparation. Increased amounts of hemicelluloses, especially mannans, improved the defibration process, the stability of the CNFs and the mechanical properties, whereas the residual lignin content had no significant effect on these factors. On the other hand, high lignin content turned spruce nanopapers yellowish and, together with hemicelluloses, reduced the strain-at-break values. Finally, when no surface derivatization was applied to holocellulose and cellulose samples before defibration, the controlled preservation of residual lignin and hemicelluloses on the CNFs indicate to be crucial for the process. This simplified method of CNF preparation presents great potential for forest-based industries as a way to use forestry waste (e.g., branches, stumps, and sawdust) to produce CNFs and, consequently, diversify the product range and reach new markets.

  • 50.
    de Jesus, Liana Inara
    et al.
    Univ Fed Parana, Dept Biochem & Mol Biol, CP 19046, Curitiba, PR, Brazil..
    Smiderle, Fhernanda R.
    Univ Fed Parana, Dept Biochem & Mol Biol, CP 19046, Curitiba, PR, Brazil..
    Ruthes, Andrea C.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Vilaplana, Francisco
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Dal'Lin, Fernando Tonholi
    Univ Fed Parana, Dept Pharmacol, CP 19046, Curitiba, PR, Brazil..
    Maria-Ferreira, Daniele
    Univ Fed Parana, Dept Biochem & Mol Biol, CP 19046, Curitiba, PR, Brazil.;Univ Fed Parana, Dept Pharmacol, CP 19046, Curitiba, PR, Brazil..
    Werner, Maria Fernanda
    Univ Fed Parana, Dept Pharmacol, CP 19046, Curitiba, PR, Brazil..
    Van Griensven, Leo J. L. D.
    Wageningen Univ & Res, Plant Res Int, Bomsesteeg 1, NL-6708 PD Wageningen, Netherlands..
    Iacomini, Marcello
    Univ Fed Parana, Dept Biochem & Mol Biol, CP 19046, Curitiba, PR, Brazil..
    Chemical characterization and wound healing property of a beta-D-glucan from edible mushroom Piptoporus betulinus2018In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 117, p. 1361-1366Article in journal (Refereed)
    Abstract [en]

    A water-soluble beta-D-glucan was obtained from fruiting bodies of Piptoporus betulinus, by hot aqueous extraction followed by freeze-thawing procedure and dialysis. Its molar mass distribution and conformational behavior in solution was assessed by size-exclusion chromatography coupled with multiangle laser light scattering, showing a polysaccharide with an average molecular weight of 2.5 x 10(5) Da with a random coil conformation for molecular weights below 1 x 10(6) Da. Typical signals of beta-(1 -> 3)-linkages were observed in NMR spectrum (delta 102.7/4.76; 102.8/4.74; 102.9/4.52; and delta 85.1/3.78; 85.0/3.77) and also signals of O-6 substitution at delta 69.2/4.22 and 69.2/3.87. The analysis of partially O-methylated alditol acetates corroborates the NMR results, indicating the presence of a beta-D-glucan with a main chain (1 -> 3)-linked, substituted at O-6 by single-units of glucose. The beta-D-glucan showed no toxicity on human colon carcinoma cell line (Caco-2) up to 1000 mu g mL(-1) and promoted cell migration on in vitro scratch assay, demonstrating a potential wound healing capacity.

123456 1 - 50 of 270
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf