Change search
Refine search result
1 - 47 of 47
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Du, Jian
    et al.
    Dalian Univ Technol, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Li, Fei
    Dalian Univ Technol, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Wang, Yong
    Dalian Univ Technol, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Zhu, Yong
    Dalian Univ Technol, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Dalian Univ Technol, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Cu3P/CuO Core-Shell Nanorod Arrays as High-Performance Electrocatalysts for Water Oxidation2018In: Chemelectrochem, ISSN 2196-0216, Vol. 5, no 15, p. 2064-2068Article in journal (Refereed)
    Abstract [en]

    Earth-abundant transition-metal-based oxides are potential candidates to replace the state-of-the-art noble-metal-based oxygen evolution catalysts (OECs) such as IrO2 and RuO2. Despite the low cost and large abundance, copper-based OER catalysts have been less frequently studied, mainly owing to the low electrical conductivity of copper oxides that results in large overpotential and sluggish kinetics for oxygen evolution. We report here the insitu fabrication of semi-metallic Cu3P nanorod arrays on commercial copper foam via a template approach; the resulting self-supported core-shell Cu-Cu3P/CuO electrode has the merits of high electrical conductivity, large active area, and short diffusion paths for electrolyte and evolved oxygen, exhibiting a low overpotential of 315mV and high durability over 50h at a current density of 10mAcm(-2) for OER in 1.0 M KOH. The remarkable OER performance reported here is not only superior to that of analogous Cu-CuO foam electrode, but also outperforms those of copper-based OER electrocatalysts in the literature.

  • 2.
    Gatty, M. Gilbert
    et al.
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden..
    Pullen, S.
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden..
    Sheibani, Esmaeil
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Tian, H.
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden..
    Ott, S.
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden..
    Hammarstrom, L.
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, Box 523, S-75120 Uppsala, Sweden..
    Direct evidence of catalyst reduction on dye and catalyst co-sensitized NiO photocathodes by mid-infrared transient absorption spectroscopy2018In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 9, no 22, p. 4983-4991Article in journal (Refereed)
    Abstract [en]

    Co-sensitization of molecular dyes and catalysts on semiconductor surfaces is a promising strategy to build photoelectrodes for solar fuel production. In such a photoelectrode, understanding the charge transfer reactions between the molecular dye, catalyst and semiconductor material is key to guide further improvement of their photocatalytic performance. Herein, femtosecond mid-infrared transient absorption spectroscopy is used, for the first time, to probe charge transfer reactions leading to catalyst reduction on co-sensitized nickel oxide (NiO) photocathodes. The NiO films were co-sensitized with a molecular dye and a proton reducing catalyst from the family of [FeFe](bdt)(CO)(6) (bdt = benzene-1,2-dithiolate) complexes. Two dyes were used: an organic push-pull dye denoted E2 with a triarylamine-oligothiophene-dicyanovinyl structure and a coumarin 343 dye. Upon photo-excitation of the dye, a clear spectroscopic signature of the reduced catalyst is observed a few picoseconds after excitation in all co-sensitized NiO films. However, kinetic analysis of the transient absorption signals of the dye and reduced catalyst reveal important mechanistic differences in the first reduction of the catalyst depending on the co-sensitized molecular dye (E2 or C343). While catalyst reduction is preceded by hole injection in NiO in C343-sensitized NiO films, the singly reduced catalyst is formed by direct electron transfer from the excited dye E2* to the catalyst in E2-sensitized NiO films. This change in mechanism also impacts the lifetime of the reduced catalyst, which is only ca. 50 ps in E2-sensitized NiO films but is >5 ns in C343-sensitized NiO films. Finally, the implication of this mechanistic study for the development of better co-sensitized photocathodes is discussed.

  • 3. Harriman, Anthony
    et al.
    Inoue, Haruo
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Capturing the Light Fantastic2018In: Chemphotochem, ISSN 2367-0932, Vol. 2, no 3, p. 110-111Article in journal (Refereed)
  • 4.
    Jiang, Xiaoqing
    et al.
    Dalian Univ Technol, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem,Inst Artificial Photosynt, Dalian 116024, Peoples R China..
    Wang, Dongping
    Dalian Univ Technol, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem,Inst Artificial Photosynt, Dalian 116024, Peoples R China.;Shenyang Univ Chem Technol, Coll Chem Engn, Shenyang 110142, Liaoning, Peoples R China..
    Yu, Ze
    Dalian Univ Technol, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem,Inst Artificial Photosynt, Dalian 116024, Peoples R China..
    Ma, Wanying
    Shenyang Univ Chem Technol, Coll Chem Engn, Shenyang 110142, Liaoning, Peoples R China..
    Li, Hai-Bei
    Shandong Univ, Sch Ocean, Weihai 264209, Peoples R China..
    Yang, Xichuan
    Dalian Univ Technol, Inst Energy Sci & Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem,Inst Artificial Photosynt, Dalian 116024, Peoples R China..
    Liu, Feng
    Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200240, Peoples R China..
    Hagfeldt, Anders
    Ecole Polytech Fed Lausanne, Lab Photomol Sci, CH-1015 Lausanne, Switzerland..
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Molecular Engineering of Copper Phthalocyanines: A Strategy in Developing Dopant-Free Hole-Transporting Materials for Efficient and Ambient-Stable Perovskite Solar Cells2019In: ADVANCED ENERGY MATERIALS, ISSN 1614-6832, Vol. 9, no 4, article id 1803287Article in journal (Refereed)
    Abstract [en]

    Copper (II) phthalocyanines (CuPcs) have attracted growing interest as promising hole-transporting materials (HTMs) in perovskite solar cells (PSCs) due to their low-cost and excellent stability. However, the most efficient PSCs using CuPc-based HTMs reported thus far still rely on hygroscopic p-type dopants, which notoriously deteriorate device stability. Herein, two new CuPc derivatives are designed, namely CuPc-Bu and CuPc-OBu, by molecular engineering of the non-peripheral substituents of the Pc rings, and applied as dopant-free HTMs in PSCs. Remarkably, a small structural change from butyl groups to butoxy groups in the substituents of the Pc rings significantly influences the molecular ordering and effectively improves the hole mobility and solar cell performance. As a consequence, PSCs based on dopant-free CuPc-OBu as HTMs deliver an impressive power conversion efficiency (PCE) of up to 17.6% under one sun illumination, which is considerably higher than that of devices with CuPc-Bu (14.3%). Moreover, PSCs containing dopant-free CuPc-OBu HTMs show a markedly improved ambient stability when stored without encapsulation under ambient conditions with a relative humidity of 85% compared to devices containing doped Spiro-OMeTAD. This work thus provides a fundamental strategy for the future design of cost-effective and stable HTMs for PSCs and other optoelectronic devices.

  • 5.
    Kong, Na
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Shimpi, Manishkumar R.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Park, Jaehyeung
    Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA..
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Yan, Mingdi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Carbohydrate conjugation through microwave-assisted functionalization of single-walled carbon nanotubes using perfluorophenyl azides (vol 405, pg 33, 2015)2015In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 412, p. 80-80Article in journal (Refereed)
  • 6.
    Kravchenko, Oleksandr
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Timmer, Brian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Biedermann, Maurice
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Inge, Ken
    Stockholm Univ, Dept Mat & Environm Chem, Stockholm, Sweden..
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Univ Massachusetts, Dept Chem, Lowell, MA USA..
    Stable CAAC-based complexes in dynamic olefin metathesis2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 256Article in journal (Other academic)
  • 7.
    Kärkäs, Markus D.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Electrochemical strategies for C-H functionalization and C-N bond formation2018In: Chemical Society Reviews, ISSN 0306-0012, E-ISSN 1460-4744, Vol. 47, no 15, p. 5786-5865Article, review/survey (Refereed)
    Abstract [en]

    Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.

  • 8.
    Kärkäs, Markus D.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
    Lignin Hydrogenolysis: Improving Lignin Disassembly through Formaldehyde Stabilization2017In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 10, no 10, p. 2111-2115Article, review/survey (Refereed)
    Abstract [en]

    Lignocellulosic biomass is available in large quantities and constitutes an attractive feedstock for the sustainable production of bulk and fine chemicals. Although methods have been established for the conversion of its cellulosic fractions, valorization of lignin has proven to be challenging. The difficulty in disassembling lignin originates from its heterogeneous structure and its propensity to undergo skeletal rearrangements and condensation reactions during biorefinery fractionation or biomass pretreatment processes. A strategy for hindering the generation of these resistive interunit linkages during biomass pretreatment has now been devised using formaldehyde as a stabilizing agent. The developed method when combined with Ru/C‐catalyzed hydrogenolysis allows for efficient disassembly of all three biomass fractions: (cellulose, hemicellulose, and lignin) and suggests that lignin upgrading can be integrated into prevailing biorefinery schemes.

  • 9.
    Kärkäs, Markus D.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
    Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications2017In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 7, p. 4999-5022Article, review/survey (Refereed)
    Abstract [en]

    During the past decade, visible light photocatalysis has become a powerful synthetic platform for promoting challenging bond constructions under mild reaction conditions. These photocatalytic systems rely on harnessing visible light energy for synthetic purposes through the generation of reactive but controllable free radical species. Recent progress in the area of visible light photocatalysis has established it as an enabling catalytic strategy for the mild and selective generation of nitrogen-centered radicals. The application of visible light for photocatalytic activation of amides, hydrazones, and imides represents a valuable approach for facilitating the formation of nitrogen-centered radicals. Within the span of only a couple of years, significant progress has been made for expediting the generation of amidyl, hydrazonyl, and imidyl radicals from a variety of precursors. This Perspective highlights the recent advances in visible light-mediated generation of these radicals. A particular emphasis is placed on the unique ability of visible light photocatalysis in accessing elusive reaction manifolds for the construction of diversely functionalized nitrogen-containing motifs and as a platform for nontraditional bond disconnections in contemporary synthetic chemistry.

  • 10.
    Kärkäs, Markus D.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.
    Bosque, Irene
    Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.
    Magallanes, Gabriel
    Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.
    Rigoulet, Mathilde
    Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.
    Stephenson, Corey R. J.
    Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.
    Redox Catalysis Facilitates Lignin Depolymerization2017In: Synform, no 11, p. A189-A192Article, review/survey (Other academic)
    Abstract [en]

    The laboratory of Professor Corey Stephenson at the University of Michigan (Ann Arbor, USA) has had an interest in lignin depolymerization since 2014. According to Corey Stephenson there were two main reasons that initially attracted their attention towards lignin. On the one hand, there is its abundance and unique aromatic backbone, which makes it an exceptional renewable source for small aromatic chemicals. On the other hand there are only few examples of selective methodologies found in the literature regarding its depolymerization, a majority of them employing harsh conditions due to its recalcitrant nature. He added: “Since the major interest of my laboratory focuses on harnessing the energy of visible light, we saw the opportunity of using photoredox catalysis to selectively cleave the ß-O–4 bonds present in the lignin backbone, a methodology that proved to be exceptionally robust for lignin model systems.

    However, a prior oxidation step was required to achieve this fragmentation, which prompted us to search for alternative oxidation methodologies.” Such a method is presented in the present ACS Central Science publication.”

  • 11.
    Kärkäs, Markus D.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
    Bosque, Irene
    Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
    Matsuura, Bryan S.
    Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
    Stephenson, Corey R. J.
    Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
    Photocatalytic Oxidation of Lignin Model Systems by Merging Visible-Light Photoredox and Palladium Catalysis2016In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 18, no 19, p. 5166-5169Article in journal (Refereed)
    Abstract [en]

    Lignin valorization has long been recognized as a sustainable solution for the renewable production of aromatic compounds. Two-step oxidation/reduction strategies, whereby the first oxidation step is required to “activate” lignin systems for controlled fragmentation reactions, have recently emerged as viable routes toward this goal. Herein we describe a catalytic protocol for oxidation of lignin model systems by combining photoredox and Pd catalysis. The developed dual catalytic protocol allowed the efficient oxidation of lignin model substrates at room temperature to afford the oxidized products in good to excellent yields.

  • 12.
    Kärkäs, Markus D.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Li, Ying-Ying
    Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Mat Chem Energy Convers & Storage, Hubei Key Lab Mat Chem & Serv Failure,Minist Educ, Wuhan 430074, Hubei, Peoples R China..
    Siegbahn, Per E. M.
    Stockholm Univ, Dept Organ Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden..
    Liao, Rong-Zhen
    Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Mat Chem Energy Convers & Storage, Hubei Key Lab Mat Chem & Serv Failure,Minist Educ, Wuhan 430074, Hubei, Peoples R China..
    Åkermark, Björn
    Stockholm Univ, Dept Organ Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden..
    Metal-Ligand Cooperation in Single-Site Ruthenium Water Oxidation Catalysts: A Combined Experimental and Quantum Chemical Approach2018In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 57, no 17, p. 10881-10895Article in journal (Refereed)
    Abstract [en]

    Catalysts for oxidation of water to molecular oxygen are essential in solar-driven water splitting. In order to develop more efficient catalysts for this oxidatively demanding reaction, it is vital to have mechanistic insight in order to understand how the catalysts operate. Herein, we report the mechanistic details associated with the two Ru catalysts 1 and 2. Insight into the mechanistic landscape of water oxidation catalyzed by the two single-site Ru catalysts was revealed by the use of a combination of experimental techniques and quantum chemical calculations. On the basis of the obtained results, detailed mechanisms for oxidation of water by complexes 1 and 2 are proposed. Although the two complexes are structurally related, two deviating mechanistic scenarios are proposed with metal-ligand cooperation being an important feature in both processes. The proposed mechanistic platforms provide insight for the activation of water or related small molecules through nontraditional and previously unexplored routes.

  • 13.
    Kärkäs, Markus D.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, United States.
    Porco, John A. Jr
    Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.
    Stephenson, Corey R. J.
    Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.
    Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis2016In: Chemical Reviews, ISSN 0009-2665, E-ISSN 1520-6890, Vol. 116, no 17, p. 9683-9747Article, review/survey (Refereed)
    Abstract [en]

    The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis.

  • 14.
    Leandri, Valentina
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Daniel, Quentin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Gardner, James M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Kloo, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Electronic and Structural Effects of Inner Sphere Coordination of Chloride to a Homoleptic Copper(II) Diimine Complex2018In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 57, no 8, p. 4556-4562Article in journal (Refereed)
    Abstract [en]

    The reaction of CuCl2 with 2,9-dimethyl-1,10-phenanthroline (dmp) does not lead to the formation of [Cu(dmp)(2)](Cl)(2) but instead to [Cu(dmp)(2)Cl]Cl, a 5-coordinated complex, in which one chloride is directly coordinated to the metal center. Attempts at removing the coordinated chloride by changing the counterion by metathesis were unsuccessful and resulted only in the exchange of the noncoordinated chloride, as confirmed from a crystal structure analysis. Complex [Cu-(dmp)(2)Cl]PF6 exhibits a reversible cyclic voltammogram characterized by a significant peak splitting between the reductive and oxidative waves (0.85 and 0.60 V vs NHE, respectively), with a half-wave potential E-1/2 = 0.73 V vs NHE. When reduced electrochemically, the complex does not convert into [Cu(dmp)(2)](+), as one may expect. Instead, [Cu(dmp)(2)](+) is isolated as a product when the reduction of [Cu(dmp)(2)Cl]PF6 is performed with L-ascorbic acid, as confirmed by electrochemistry, NMR spectroscopy, and diffractometry. [Cu(dmp)(2)](2+) complexes can be synthesized starting from Cu(II) salts with weakly and noncoordinating counterions, such as perchlorate. Growth of [Cu(dmp)(2)](ClO4)(2) crystals in acetonitrile results in a 5-coordinated complex, [Cu(dmp)(2)(CH3CN)](ClO4)(2), in which a solvent molecule is coordinated to the metal center. However, solvent coordination is associated with a dynamic decoordination-coordination behavior upon reduction and oxidation. Hence, the cyclic voltammogram of [Cu(dmp)(2)(CH3CN)](2+) is identical to the one of [Cu(dmp)(2)](+), if the measurements are performed in acetonitrile. The current results show that halide ions in precursors to Cu(II) metal-organic coordination compound synthesis, and most likely also other multivalent coordination centers, are not readily exchanged when exposed to presumed strongly binding and chelating ligand, and thus special care needs to be taken with respect to product characterization.

  • 15. Li, F.
    et al.
    Xu, C.
    Wang, X.
    Wang, Y.
    Du, J.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Visible light-driven oxygen evolution using a binuclear Ru-bda catalyst2018In: Cuihuà xuébào, ISSN 0253-9837, E-ISSN 1872-2067, Vol. 39, no 3, p. 446-452Article in journal (Refereed)
    Abstract [en]

    Binuclear ruthenium complexes bearing the 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand have been demonstrated to be highly active catalysts towards water oxidation with CeIV as an oxidant. However, the catalytic properties of ruthenium dimers have not yet been explored for visible light-driven water oxidation. Herein, the photocatalytic performance of a dipyridyl propane-bridged ruthenium dimer 2 was investigated in comparison with its monomeric precursor, [Ru(bda)(pic)2] (1), in CH3CN/phosphate buffer mixed solvent in a three-component system including a photosensitizer and a sacrificial electron acceptor. Experimental results showed that the activity of each catalyst was strongly dependent on the content of CH3CN in the phosphate buffer, which not only affected the driving force for water oxidation, but also altered the kinetics of the reaction, probably through different mechanisms associated with the O–O bond formation. As a result, dimer 2 showed significantly higher activity than monomer 1 in the solvent containing a low content of CH3CN, and comparable activities were attained with a high content of CH3CN in the solvent. Under the optimal conditions, complex 2 achieved a turnover number of 638 for photocatalytic O2 evolution.

  • 16.
    Liu, Peng
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH Royal Inst Technol, Sch Chem Biotechnol & Hlth, Dept Chem, Ctr Mol Devices,Appl Phys Chem, SE-10044 Stockholm, Sweden..
    Wang, Linqin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH Royal Inst Technol, Sch Chem Biotechnol & Hlth, Dept Chem, Ctr Mol Devices,Organ Chem, SE-10044 Stockholm, Sweden..
    Karlsson, Karl Martin
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH Royal Inst Technol, Sch Chem Biotechnol & Hlth, Dept Chem, Ctr Mol Devices,Appl Phys Chem, SE-10044 Stockholm, Sweden..
    Hao, Yan
    Uppsala Univ, Dept Chem, Angstrom Lab, Box 523, SE-75120 Uppsala, Sweden..
    Gao, Jiajia
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH Royal Inst Technol, Sch Chem Biotechnol & Hlth, Dept Chem, Ctr Mol Devices,Appl Phys Chem, SE-10044 Stockholm, Sweden..
    Xu, Bo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH). KTH Royal Inst Technol, Sch Chem Biotechnol & Hlth, Dept Chem, Ctr Mol Devices,Organ Chem, SE-10044 Stockholm, Sweden..
    Boschloo, Gerrit
    Uppsala Univ, Dept Chem, Angstrom Lab, Box 523, SE-75120 Uppsala, Sweden..
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. KTH Royal Inst Technol, Sch Chem Biotechnol & Hlth, Dept Chem, Ctr Mol Devices,Organ Chem, SE-10044 Stockholm, Sweden.;Dalian Univ Technol, Inst Artificial Photosynth, State Key Lab Fine Chem, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH Royal Inst Technol, Sch Chem Biotechnol & Hlth, Dept Chem, Ctr Mol Devices,Appl Phys Chem, SE-10044 Stockholm, Sweden..
    Molecular Engineering of D-pi-A Type of Blue-Colored Dyes for Highly Efficient Solid-State Dye-Sensitized Solar Cells through Co-Sensitization2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 42, p. 35946-35952Article in journal (Refereed)
    Abstract [en]

    A novel blue-colored organic donor-pi-acceptor sensitizer, the so-called MKA16 dye, has been employed to construct solid-state dye-sensitized solar cells (ssDSSCs). Using 2,2',7-,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9'-spirobifuorene (Spiro-OMeTAD) as hole-transport material, a good conversion efficiency of 5.8% was recorded for cells based on the MKA16 dye and a high photovoltage of 840 mV in comparison with 5.6% efficiency using the known (Dyenamo Blue) dye. By co-sensitization using the orange-colored D35 dye and MKA16 together, the solid-state solar cells showed an excellent efficiency of 7.5%, with a high photocurrent of 12.41 mA cm(-2) and open-circuit voltage of 850 mV. The results show that the photocurrent of ssDSSCs can be significantly improved by co-sensitization mainly attributed to the wider light absorption range contributing to the photocurrent. In addition, results from photo-induced absorption spectroscopy show that the dye regeneration is efficient in co-sensitized solar cells. The current results possible routes of improving the design of aesthetic and highly efficient ssDSSCs.

  • 17.
    Liu, Tianqi
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Iron-Based Molecular Water Oxidation Catalysts: Abundant, Cheap, and Promising2019In: Chemistry - An Asian Journal, ISSN 1861-4728, E-ISSN 1861-471X, Vol. 14, no 1, p. 31-43Article, review/survey (Refereed)
    Abstract [en]

    An efficient and robust water oxidation catalyst based on abundant and cheap materials is the key to converting solar energy into fuels through artificial photosynthesis for the future of humans. The development of molecular water oxidation catalysts (MWOCs) is a smart way to achieve promising catalytic activity, thanks to the clear structures and catalytic mechanisms of molecular catalysts. Efficient MWOCs based on noble-metal complexes, for example, ruthenium and iridium, have been well developed over the last 30 years; however, the development of earth-abundant metal-based MWOCs is very limited and still challenging. Herein, the promising prospect of iron-based MWOCs is highlighted, with a comprehensive summary of previously reported studies and future research focus in this area.

  • 18.
    Li, Yuanyuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Cheng, Ming
    Jungstedt, Erik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Xu, Bo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Optically Transparent Wood Substrate for Perovskite Solar Cells2019In: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 7, no 6, p. 6061-6067Article in journal (Refereed)
    Abstract [en]

    Transparent wood is a candidate for use as an energy-saving building material due to its low density (ca. 1.2 g/cm(3)), high optical transmittance (over 85% at 1 mm thickness), low thermal conductivity (0.23 W m(-1) K-1), and good load-bearing performance with tough failure behavior (no shattering). High optical transmittance also makes transparent wood a candidate for optoelectronic devices. In this work, for the first time, perovskite solar cells processed at low temperature (<150 degrees C) were successfully assembled directly on transparent wood substrates. A power conversion efficiency up to 16.8% was obtained. The technologies demonstrated may pave the way for integration of solar cells with light transmitting wood building structures for energy-saving purposes.

  • 19.
    Lopez-Goldar, Xose
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH). CSIC, Mision Biol Galicia, Pontevedra, Spain.;Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA.;INIA, Forest Res Ctr, Dept Forest Ecol & Genet, Madrid, Spain..
    Villari, Caterina
    Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA.;Univ Georgia, Daniel B Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA..
    Bonello, Pierluigi
    Ohio State Univ, Dept Plant Pathol, Columbus, OH 43210 USA..
    Borg-Karlson, Anna-Karin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Grivet, Delphine
    INIA, Forest Res Ctr, Dept Forest Ecol & Genet, Madrid, Spain.;Univ Valladolid, INIA, Sustainable Forest Management Res Inst, Palencia, Spain..
    Zas, Rafael
    CSIC, Mision Biol Galicia, Pontevedra, Spain..
    Sampedro, Luis
    CSIC, Mision Biol Galicia, Pontevedra, Spain..
    Inducibility of Plant Secondary Metabolites in the Stem Predicts Genetic Variation in Resistance Against a Key Insect Herbivore in Maritime Pine2018In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 9, article id 1651Article in journal (Refereed)
    Abstract [en]

    Resistance to herbivores and pathogens is considered a key plant trait with strong adaptive value in trees, usually involving high concentrations of a diverse array of plant secondary metabolites (PSM). Intraspecific genetic variation and plasticity of PSM are widely known. However, their ecology and evolution are unclear, and even the implication of PSM as traits that provide direct effective resistance against herbivores is currently questioned. We used control and methyl jasmonate (MJ) induced clonal copies of genotypes within families from ten populations of the main distribution range of maritime pine to exhaustively characterize the constitutive and induced profile and concentration of PSM in the stem phloem, and to measure insect herbivory damage as a proxy of resistance. Then, we explored whether genetic variation in resistance to herbivory may be predicted by the constitutive concentration of PSM, and the role of its inducibility to predict the increase in resistance once the plant is induced. We found large and structured genetic variation among populations but not between families within populations in resistance to herbivory. The MJ-induction treatment strongly increased resistance to the weevil in the species, and the genetic variation in the inducibility of resistance was significantly structured among populations, with greater inducibility in the Atlantic populations. Genetic variation in resistance was largely explained by the multivariate concentration and profile of PSM at the genotypic level, rather than by bivariate correlations with individual PSM, after accounting for genetic relatedness among genotypes. While the constitutive concentration of the PSM blend did not show a clear pattern of resistance to herbivory, specific changes in the chemical profile and the increase in concentration of the PSM blend after MJ induction were related to increased resistance. To date, this is the first example of a comprehensive and rigorous approach in which inducibility of PSM in trees and its implication in resistance was analyzed excluding spurious associations due to genetic relatedness, often overlooked in intraspecific studies. Here we provide evidences that multivariate analyses of PSM, rather than bivariate correlations, provide more realistic information about the potentially causal relationships between PSM and resistance to herbivory in pine trees.

  • 20.
    Magallanes, Gabriel
    et al.
    Univ Michigan, Dept Chem, Willard Henry Dow Lab, 930 North Univ Ave, Ann Arbor, MI 48109 USA..
    Kärkäs, Markus D.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Univ Michigan, Dept Chem, Willard Henry Dow Lab, 930 North Univ Ave, Ann Arbor, MI 48109 USA..
    Bosque, Irene
    Univ Michigan, Dept Chem, Willard Henry Dow Lab, 930 North Univ Ave, Ann Arbor, MI 48109 USA..
    Lee, Sudarat
    Univ Michigan, Dept Chem, Willard Henry Dow Lab, 930 North Univ Ave, Ann Arbor, MI 48109 USA..
    Maldonado, Stephen
    Univ Michigan, Dept Chem, Willard Henry Dow Lab, 930 North Univ Ave, Ann Arbor, MI 48109 USA.;Univ Michigan, Program Appl Phys, Ann Arbor, MI 48109 USA..
    Stephenson, Corey R. J.
    Univ Michigan, Dept Chem, Willard Henry Dow Lab, 930 North Univ Ave, Ann Arbor, MI 48109 USA..
    Selective C-O Bond Cleavage of Lignin Systems and Polymers Enabled by Sequential Palladium-Catalyzed Aerobic Oxidation and Visible-Light Photoredox Catalysis2019In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 9, no 3, p. 2252-2260Article in journal (Refereed)
    Abstract [en]

    Lignin, which is a highly cross-linked and irregular biopolymer, is nature's most abundant source of aromatic compounds and constitutes an attractive renewable resource for the production of aromatic commodity chemicals. Herein, we demonstrate a practical and operationally simple two-step degradation approach involving Pd-catalyzed aerobic oxidation and visible-light photoredox-catalyzed reductive fragmentation for the chemoselective cleavage of the beta-O-4 linkage-the predominant linkage in lignin for the generation of lower-molecular-weight aromatic building blocks. The developed strategy affords the beta-O-4 bond cleaved products with high chemoselectivity and in high yields, is amenable to continuous flow processing, operates at ambient temperature and pressure, and is moisture- and oxygen-tolerant.

  • 21.
    Ni, Shengjun
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Carbocation Catalysis for Organic Synthesis2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The most common view of carbocations in organic chemistry is that they are short-lived intermediates in several fundamental reactions, e.g. the classic SN1-reaction. However, carbocations that can delocalize their positive charge can be stable enough to be isolated and used as Lewis acid catalysts, phase transfer catalysts or oxidants in various reactions. The theme of this thesis concerns applying trityl cations as Lewis acid catalysts in different organic reactions. The first chapter presents a general introduction of the field of Lewis acids, the characteristics and applications of carbocations in different organic reactions, and the aims of this thesis. The second chapter describes the carbocation-catalyzed asymmetric Diels–Alder reactions assisted by chiral counteranions. The third chapter shows that carbocations can be utilized as catalysts in oxa-Diels–Alder reactions with unactivated aldehydes and dienes as substrates. The fourth chapter investigates the application of carbocation catalysis in bromination reactions for selective functionalization at the benzylic position and on the aromatic ring, respectively. The fifth chapter highlights that carbocation-catalyzed aldehyde–olefin metathesis reactions can be achieved in high yields by suppressing the decomposition of both starting materials and products.

  • 22.
    Ni, Shengjun
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Abd El Aleem Ali Ali El Remaily, Mahmoud
    Franzén, Johan
    Carbocation Catalyzed Bromination of Alkyl Arenes, a Chemoselective sp3 vs. sp2 C−H Functionalization2018In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169Article in journal (Refereed)
    Abstract [en]

    The versatility of the trityl cation (TrBF4) as a highly efficient Lewis acid organocatalyst isdemonstrated in a light induced benzylic brominaion of alkyl-arenes under mild conditions. The reaction wasconducted at ambient temperature under common hood light (55 W fluorescent light) with catalyst loadingsdown to 2.0 mol% using N-bromosuccinimide (NBS) as the brominating agent. The protocol is applicable toan extensive number of substrates to give benzyl bromides in good to excellent yields. In contrast to mostpreviously reported strategies, this protocol does not require any radical initiator or extensive heating. Forelectron-rich alkyl-arenes, the trityl ion catalyzed bromination could be easily switched between benzylic sp3CH functionalization and arene sp2 CH functionalization by simply alternating the solvent. Thischemoselective switch allows for high substrate control and easy preparation of benzyl bromides andbromoarenes, respectively. The chemoselective switch was also applied in a one-pot reaction of 1-methylnaphthalene for direct introduction of both sp3 CBr and sp2 CBr functionality.

  • 23.
    Ni, Shengjun
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Franzén, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Carbocation catalysed ring closing aldehyde-olefin metathesis2018In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 92, p. 12982-12985Article in journal (Refereed)
    Abstract [en]

    A highly efficient aldehyde-olefin metathesis catalysed by the carbocation, 4-phenylphenyl-diphenylmethylium ion, has been developed. This protocol is characterized by high yields, low catalyst loading (down to 2 mol%), good functional group compatibility and mild reaction conditions.

  • 24.
    Ni, Shengjun
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Franzén, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Carbocation Catalyzed Ring Closing Aldehyde-Olefin MetathesisManuscript (preprint) (Other academic)
    Abstract [en]

    A highly efficient aldehyde-olefin metathesis catalyzed by the carbocation, 4-phenylphenyl-diphenylmethylium ion has been developed. This protocol is characterized by high yields, low catalyst loading (down to 2 mol%), good functional group compatibility and mild reaction conditions.

  • 25. Qu, Jishuang
    et al.
    Jiang, Xiaoqing
    Yu, Ze
    Lai, Jianbo
    Zhao, Yawei
    Hu, Maowei
    Yang, Xichuan
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Improved performance and air stability of perovskite solar cells based on low-cost organic hole-transporting material X60 by incorporating its dicationic salt2018In: Science in China Series B: Chemistry, ISSN 1674-7291, E-ISSN 1869-1870, Vol. 61, no 2, p. 172-179Article in journal (Refereed)
    Abstract [en]

    The development of an efficient, stable, and low-cost hole-transporting material (HTM) is of great significance for perovskite solar cells (PSCs) from future commercialization point of view. Herein, we specifically synthesize a dicationic salt of X60 termed X60(TFSI)(2), and adopt it as an effective and stable "doping" agent to replace the previously used lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) for the low-cost organic HTM X60 in PSCs. The incorporation of this dicationic salt significantly increases the hole conductivity of X60 by two orders of magnitude from 10(-6) to 10(-4) S cm(-1). The dramatic enhancement of the conductivity leads to an impressive power conversion efficiency (PCE) of 19.0% measured at 1 sun illumination (100 mW cm(-2), AM 1.5 G), which is comparable to that of the device doped with LiTFSI (19.3%) under an identical condition. More strikingly, by replacing LiTFSI, the PSC devices incorporating X60(TFSI)(2) also show an excellent long-term durability under ambient atmosphere for 30 days, mainly due to the hydrophobic nature of the X60(TFSI)(2) doped HTM layer, which can effectively prevent the moisture destroying the perovskite layer. The present work paves the way for the development of highly efficient, stable, and low-cost HTM for potential commercialization of PSCs.

  • 26.
    REN, Yansong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Dynamic Chemistry for Asymmetric Synthesis, Molecular Motion and Constitutional Exchange2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Living matter is built on complex dynamic systems consisting of numerus biotransformations. By exploiting the adaptive and evolutive behaviors ofmolecular matter, dynamic chemistry has developed as an important tool tounderstand the organization of nonliving matter into complex living systems.This thesis concerns three aspects of dynamic chemistry with a general focus onthe influence of different stimuli on the structures and functions of dynamicsystems.The first section focuses on dynamic kinetic resolution, where enzymes areutilized for asymmetric synthesis of an enantiopure (2R,5R)-1,3-oxathiolane. Byemploying surfactant-treated subtilisin Carlsberg and Candida antarcticalipase B, the absolute configuration of the resulting 1,3-oxathiolane ring couldbe efficiently controlled.The second section addresses the motional dynamics of configurational enamineswitch systems controlled by multiple stimuli. Complete forward and backwardrotation around the enamine C=C bond could be precisely regulated uponaddition of acid/base or metal ions. The enamine switches exhibited specificsensing ability for CuII ions in solution. Moreover, the enamines exhibitedswitchable aggregation-induced emission in the solid state, which could beapplied in the development of sensors as well as fluorescent organogel.Lastly, the enamine switches could readily undergo constitutional exchange withprimary amines under catalytic acidic conditions, resulting in dynamic enaminesystems. However, under basic conditions or in the presence of excessive acid,this process exhibited extremely slow kinetics, leading to an efficient regulationof the exchange process by controlling the switch status with regulation of pHin the system.

  • 27.
    REN, Yansong
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Hu, Lei
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Multienzymatic Cascade Synthesis of an Enantiopure (2R,5R)-1,3-Oxathiolane Anti-HIV Agent PrecursorManuscript (preprint) (Other academic)
    Abstract [en]

    An enantiopure (2R,5R)-1,3-oxathiolane derivative was obtained using amultienzymatic cascade protocol. By employing a combination of surfactant-treatedsubtilisin Carlsberg and Candida antarctica lipase B, the absolute configuration of theresulting 1,3-oxathiolane ring was efficiently controlled, resulting in an excellentenantiomeric excess (> 99%). This enantiopure 1,3-oxathiolane derivative is a keyprecursor to anti-HIV agents, such as lamivudine, through subsequent N-glycosylation.

  • 28.
    REN, Yansong
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH, Dept Chem Organ Chem, Stockholm, Sweden..
    Hu, Lei
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH, Dept Chem Organ Chem, Stockholm, Sweden..
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH, Dept Chem Organ Chem, Stockholm, Sweden..
    Multienzymatic, one-pot cascade synthesis of enantiopure lamivudine precursor (2R, 5R)-1,3-oxathiolane2016In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 252Article in journal (Other academic)
  • 29.
    REN, Yansong
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Kravchenko, Oleksandr
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Configurational and Constitutional Dynamics in Enamine Molecular SwitchesManuscript (preprint) (Other academic)
    Abstract [en]

    Dual configurational and constitutional dynamics in systems based on enamine molecularswitches has been systematically studied. pH-responsive moieties, such as 2-pyridyl and 2-quinolinyl units, were required on the “stator” part, also providing enamine stability throughintramolecular hydrogen-bonding (IMHB) effects. Upon protonation or deprotonation, forward andbackward switching could be rapidly achieved. Extension of the stator π-system in the 2-quinolinylderivative provided a higher E-isomeric equilibrium ratio under neutral conditions, pointing to ameans to achieve quantitative forward/backward isomerization processes. The ‘rotor’ part of theenamine switches exhibited constitutional exchange ability with primary amines. Interestingly,considerably higher exchange rates were observed with amines containing ester groups, indicatingpotential stabilization of the transition state trough IMHB. Acids, particularly BiIII, were found toefficiently catalyze the constitutional dynamic processes. In contrast, the enamine and the formeddynamic enamine system showed excellent stability under basic conditions. This coupledconfigurational and constitutional dynamics expand the scope of dynamic C-C and C-N bonds, andpotentiates further studies and applications in the fields of molecular machinery and systemschemistry.

  • 30.
    REN, Yansong
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Kravchenko, Oleksandr
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Xie, Sheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Grape, Erik
    Inge, A. Ken
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Stimuli-responsive Enaminitrile Molecular Switches as Tunable AIEgens Covering theChromaticity Space and Acting as Vapor SensorsManuscript (preprint) (Other academic)
    Abstract [en]

    A family of responsive enaminitrile molecular switches showing tunable turn-onfluorescence upon switching and aggregation is reported. Activated by addition of acid/base,isomerization around the C=C bond could be effectuated, resulting in complete, reversible switchingto the E- or Z-isomers. Typical aggregation-induced emission could be recorded for one specificstate of the different switches. By subtle tailoring of the parent structure, a series of compounds withemission covering almost the full visible color range were obtained. The switchable AIE features ofthe enaminitrile structures enabled their demonstration as solid state chemosensors to detect acidicand basic vapors, where the emission displayed an “off-on-off” effect. X-ray crystal analysis andDFT calculations suggested a restriction of intramolecular rotation mechanism, and anintramolecular charge transfer effect in the AIE luminogens.

  • 31.
    REN, Yansong
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH - Royal Institute of Technology.
    Xie, Sheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Grape, Erik
    Inge, A. Ken
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Multistimuli-Responsive Enaminitrile Molecular Switches DisplayingH+‑Induced Aggregate Emission, Metal Ion-Induced Turn-OnFluorescence, and Organogelation Properties2018In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 140, no 42, p. 13640-13643Article in journal (Refereed)
    Abstract [en]

    Multistimuli-responsive enaminitrile-based configurational switches displaying aggregation-induced emission (AIE), fluorescence turn-on effects, and supergelation properties are presented. The E-isomers dominated (>97%) in neutral/basic solution, and the structures underwent precisely controlled switching around the enamine C═C bond upon addition of acid/base. Specific fluorescence output was observed in response to different external input in the solution and solid states. In response to H+, configurational switching resulted in complete formation of the nonemissive Z-H+-isomers in solution, however displaying deep-blue to blue fluorescence (ΦF up to 0.41) in the solid state. In response to CuII in the solution state, the E-isomers exhibited intense, turn-on, blue-green fluorescence, which could be turned off by addition of competitive coordination. The acid/base-activated switching, together with the induced AIE-effects, further enabled the accomplishment of a responsive superorganogelator. In nonpolar solvents, a blue-fluorescent supramolecular gel was formed upon addition of acid to the E-isomer suspension. The gelation could be reversed by addition of base, and the overall, reversible process could be repeated at least five cycles.

  • 32.
    Ren, Yansong
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Hu, Lei
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Multienzymatic cascade synthesis of an enantiopure (2R,5R)-1,3-oxathiolane anti-HIV agent precursor2019In: Molecular Catalysis, ISSN 2468-8231, Vol. 468, p. 52-56Article in journal (Refereed)
    Abstract [en]

    An enantiopure (2R,5R)-1,3-oxathiolane was obtained using a multienzymatic cascade protocol. By employing a combination of surfactant-treated subtilisin Carlsberg and Candida antarctica lipase B, the absolute configuration of the resulting 1,3-oxathiolane ring was efficiently controlled, resulting in an excellent enantiomeric excess (>99%). This enantiopure 1,3-oxathiolane derivative is a key precursor to anti-HIV agents, such as lamivudine, through subsequent N-glycosylation.

  • 33.
    Romson, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Emmer, Åsa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    ESI-MSn Analysis of Recombinant Human OsteopontinManuscript (preprint) (Other academic)
    Abstract [en]

    The low-abundance protein osteopontin is implicated in several serious diseases, where its concentration andglycosylation patterns might be analyzed for its use as a biomarker. The glycosylation has previously been studied andcharacterized mainly on digested protein. Allowing analysis of glycosylation using the intact protein would reduce theworkload and analysis time, as well as introducing less potential sources of error and bias. Here, the detection of intactosteopontin by ESI-MS is presented. By using a matrix with a high proportion of isopropanol, osteopontin could be detectedand fragmented in tandem MS at 10 µg/mL by direct infusion. A lower osteopontin mass was also present in the sample. Theresults open the possibilities of further analysis of osteopontin by tandem MS and suggests a reporter ion.

  • 34.
    Romson, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Jacksén, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Emmer, Åsa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    An automated system for CE-MALDI and on-target digestion under a fluorocarbon lid applied on spermatophore proteins from Pieris napiIn: Journal of chromatography. B, ISSN 1570-0232, E-ISSN 1873-376XArticle in journal (Refereed)
    Abstract [en]

    A method for off-line CE‑MALDI‑TOF-MS and MS2, and on-target digestion under a fluorocarbon lid was developed and applied for the analysis of proteins in the spermatophore of the butterfly Pieris napi. Fractionation revealed many peptides otherwise not detected or resolved. Automated fractionation was performed with an in-lab developed robotic system, and automated on-target tryptic digestion under a fluorocarbon lid was demonstrated with the same system. Fractionation onto a pre-structured MALDI-concentration plate facilitated aligned deposition of trypsin and MALDI-matrix with the deposited sample, also under the fluorocarbon lid. Some indications of indigenous proteolysis of spermatophore proteins were seen, and searching MS2 spectra suggested three tentative sequence homologies to P. rapae. The study demonstrates the functionality of the lab-made robot. Detailed manufacturing instructions and code are provided. The feasibility of automated on-target digestion under a fluorocarbon lid, and the usefulness of a structured concentration plate in CE-MALDI fractionation was shown. Further, it constitutes a preliminary study of P. napi spermatophore proteins.

  • 35.
    Sundhoro, Madanodaya
    et al.
    Univ Massachusetts Lowell, Chem, Lowell, MA USA..
    Jeon, Seaho
    Univ Massachusetts Lowell, Chem, Lowell, MA USA..
    Hao, Nanjing
    Univ Massachusetts Lowell, Dept Chem, Lowell, MA USA..
    Park, Jaehyeung
    Univ Massachusetts Lowell, Dept Chem, Lowell, MA USA..
    Fischer, Andreas
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Inorganic Chemistry (closed 20110630).
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Royal Inst Technol, Dept Chem, Stockholm, Sweden..
    Yan, Mingdi
    Univ Massachusetts Lowell, Dept Chem, Lowell, MA USA..
    Perfluorophenyl azide-mediated Staudinger reaction and application in probing cell surface glycans2015In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 250Article in journal (Other academic)
  • 36.
    Timmer, Brian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Schaufelberger, Fredrik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Hammarberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Franzen, Johan.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Dinér, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Simple and Effective Integration of Green Chemistry and Sustainability Education into an Existing Organic Chemistry Course2018In: Journal of Chemical Education, ISSN 0021-9584, E-ISSN 1938-1328, Vol. 95, no 8, p. 1301-1306Article in journal (Refereed)
    Abstract [en]

    Green chemistry and sustainable development have become increasingly important topics for the education of future chemists. The cross-disciplinary nature of green chemistry and sustainable development often means these subjects are taught in conjunction with other subjects, such as organic chemistry and chemical engineering. Herein, a straightforward and efficient approach for vertical integration of green chemistry concepts within existing undergraduate organic chemistry courses is shown. The gradual self-evaluation, "greenification", and reassessment of an organic chemistry course at KTH Royal Institute of Technology from 2013 to 2017 is described, with particular focus on the laboratory course and a novel green chemistry project designed to promote sustainability thinking and reasoning. The laboratory project, which can also be conducted as an independent organic chemistry laboratory exercise, required students to critically evaluate variations of the same Pechmann condensation experiment according to the twelve principles of green chemistry. The course evaluation shows that, after the modifications, students feel more comfortable with the topics "green chemistry" and "sustainability" and consider these topics more important for their future careers. Furthermore, the ability of students to discuss and critically evaluate green chemistry parameters improved considerably as determined from the laboratory project reports.

  • 37.
    Vongvilai, Pornrapee
    et al.
    KTH, School of Chemical Science and Engineering (CHE).
    Angelin, Marcus
    KTH, School of Chemical Science and Engineering (CHE).
    Larsson, Rikard
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Dynamic combinatorial resolution: Direct substrate identification in asymmetric lipase-mediated transacylations.2009In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 238Article in journal (Other academic)
  • 38.
    Wang, Linqin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH Royal Inst Technol, Dept Chem, Organ Chem, SE-10044 Stockholm, Sweden..
    Zhang, Jinbao
    Monash Univ, Dept Mat Sci & Engn, 22 Alliance Lane, Clayton, Vic 3800, Australia..
    Liu, Peng
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH Royal Inst Technol, Dept Chem, Ctr Mol Devices, Appl Phys Chem, SE-10044 Stockholm, Sweden..
    Xu, Bo
    Uppsala Univ, Dept Chem, Angstrom Lab, Box 523, S-75120 Uppsala, Sweden..
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH Royal Inst Technol, Dept Chem, Organ Chem, SE-10044 Stockholm, Sweden..
    Chen, Hong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH Royal Inst Technol, Dept Chem, Organ Chem, SE-10044 Stockholm, Sweden..
    Inge, A. Ken
    Stockholm Univ, Dept Mat & Environm Chem MMK, SE-10691 Stockholm, Sweden..
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden..
    Wang, Haoxin
    Dalian Univ Technol, Inst Artificial Photosynth, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Cheng, Yi-Bing
    Monash Univ, Dept Mat Sci & Engn, 22 Alliance Lane, Clayton, Vic 3800, Australia..
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH Royal Inst Technol, Dept Chem, Ctr Mol Devices, Appl Phys Chem, SE-10044 Stockholm, Sweden..
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. KTH Royal Inst Technol, Dept Chem, Organ Chem, SE-10044 Stockholm, Sweden.;Dalian Univ Technol, Inst Artificial Photosynth, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells2018In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 69Article in journal (Refereed)
    Abstract [en]

    Two novel dopant-free hole-transport materials (HTMs) with spiro[dibenzo[c,h]xanthene-7,9-fluorene] (SDBXF) skeletons were prepared via facile synthesis routes. A power conversion efficiency of 15.9% in perovskite solar cells is attained by using one HTM without dopants, which is much higher than undoped Spiro-OMeTAD-based devices (10.8%). The crystal structures of both new HTMs were systematically investigated to reveal the reasons behind such differences in performance and to indicate the design principles of more advanced HTMs.

  • 39. Wang, M.
    et al.
    Liu, J.
    Guo, C.
    Gao, X.
    Gong, C.
    Wang, Y.
    Liu, B.
    Li, X.
    Gurzadyan, G. G.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Dalian University of Technology, China.
    Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: The role of the morphology effect2018In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 11, p. 4768-4775Article in journal (Refereed)
    Abstract [en]

    Metal-organic frameworks (MOFs), ZIF-67, with different morphologies were synthesized via a solvent-induced method at room temperature. The photocatalytic performances towards the reduction of CO2 were evaluated by using ZIF-67 materials as cocatalysts cooperating with a ruthenium-based complex as the photosensitizer. It has been demonstrated that the two-dimensional ZIF-67 with a leaf-like morphology exhibited the best photocatalytic activity and stability due to the highest CO2 adsorption capability and efficient electron transfer from the excited [Ru(bpy)3]2+ to ZIF-67.

  • 40.
    Wang, Weihan
    et al.
    Dalian Univ Technol, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China..
    Yang, Xichuan
    Dalian Univ Technol, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China..
    Li, Jiajia
    Dalian Univ Technol, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China..
    Wang, Haoxin
    Dalian Univ Technol, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China..
    An, Jincheng
    Dalian Univ Technol, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China..
    Zhang, Li
    Dalian Univ Technol, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China..
    Jiang, Xiao
    Dalian Univ Technol, Key Lab Ind Ecol & Environm Engn, Minist Educ, Linggong Rd 2, Dalian 116024, Peoples R China..
    Yu, Ze
    Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, Inst Artificial Photosynth, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China..
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Dalian Univ Technol, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China.;Dalian Univ Technol, DUT KTH Joint Educ & Res Ctr Mol Devices, Inst Artificial Photosynth, State Key Lab Fine Chem, Linggong Rd 2, Dalian 116024, Peoples R China.
    Enhancing the Energy-Conversion Efficiency of Solid-State Dye-Sensitized Solar Cells with a Charge-Transfer Complex based on 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone2018In: ENERGY TECHNOLOGY, ISSN 2194-4288, Vol. 6, no 4, p. 752-758Article in journal (Refereed)
    Abstract [en]

    As a champion hole-transporting material (HTM), 2,27,7-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) has been widely used in solid-state dye-sensitized solar cells (ssDSCs). Owing to the low conductivity of Spiro-OMeTAD, a chemical doping strategy is commonly used to enhance its hole-transporting properties. In this study, we report a strong electron acceptor, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as an additive for Spiro-OMeTAD along with its application in ssDSCs. We show that the conductivity of Spiro-OMeTAD increases from 5.31 x 10(-5) to 2.22 x 10(-4) Scm upon the addition of 0.04% DDQ, and the power conversion efficiency (PCE) of the ssDSCs also increases. By utilizing a donor-pi-acceptor sensitizer with a high coefficient and an HTM with an optimized doping ratio, we were able to achieve a high PCE of 6.37% for the ssDSCs under 10 0mWcm(-2) AM1.5G simulated illumination, in comparison to the PCE of the pristine device, which was only 3.50%. An increase in the application of benzoquinone-based materials for organic electronics is expected, especially for solar-cell applications.

  • 41.
    Xie, Sheng
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
    Manuguri, Sesha
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, United States.
    Yan, Mingdi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854, United States.
    Impact of Hydrogen Bonding on the Fluorescence of N-Amidinated Fluoroquinolone2019In: Chemistry - An Asian Journal, ISSN 1861-4728, E-ISSN 1861-471X, Vol. 14, no 6, p. 910-916Article in journal (Refereed)
    Abstract [en]

    The fluorescence properties of AIE-active N-amidinated fluoroquinolones, efficiently obtained by a perfluoroaryl azide-aldehyde-amine reaction, have been studied. The fluorophores were discovered to elicit a highly sensitive fluorescence quenching response towards guest molecules with hydrogen-bond-donating ability. This effect was evaluated in a range of protic/aprotic solvents with different H-bonding capabilities, and also in aqueous media. The influence of acid/base was furthermore addressed. The hydrogen-bonding interactions were studied by IR, NMR, UV/Vis and time-resolved fluorescence decay, revealing their roles in quenching of the fluorescence emission. Due to the pronounced quenching property of water, the N-amidinated fluoroquinolones could be utilized as fluorescent probes for quantifying trace amount of water in organic solvents.

  • 42.
    Xie, Sheng
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Zhou, Juan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Chen, Xuan
    Univ Massachusetts Lowell, Dept Chem, Lowell, MA 01854 USA..
    Kong, Na
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Fan, Yanmiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Hammer, Gerry
    Univ Washington, Dept Bioengn, Natl ESCA & Surface Anal Ctr Biomed Problems, Seattle, WA 98195 USA.;Univ Washington, Dept Chem Engn, Natl ESCA & Surface Anal Ctr Biomed Problems, Seattle, WA 98195 USA..
    Castner, David G.
    Univ Washington, Dept Bioengn, Natl ESCA & Surface Anal Ctr Biomed Problems, Seattle, WA 98195 USA.;Univ Washington, Dept Chem Engn, Natl ESCA & Surface Anal Ctr Biomed Problems, Seattle, WA 98195 USA..
    Ramström, Olof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Yan, Mingdi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    A versatile catalyst-free perfluoroaryl azide-aldehyde-amine conjugation reaction2019In: MATERIALS CHEMISTRY FRONTIERS, ISSN 2052-1537, Vol. 3, no 2, p. 251-256Article in journal (Refereed)
    Abstract [en]

    In a tri-component reaction, an electrophilically-activated perfluoroaryl azide, an enolizable aldehyde and an amine react readily at room temperature without any catalysts in solvents including aqueous conditions to yield a stable amidine conjugate. The versatility of this reaction is demonstrated in the conjugation of an amino acid without prior protection of the carboxyl group, and in the synthesis of antibiotic-nanoparticle conjugates.

  • 43. Xu, Peng
    et al.
    Liu, Peng
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Xu, B.
    Kloo, Lars
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Hua, Y.
    D-A-D-Typed Hole Transport Materials for Efficient Perovskite Solar Cells: Tuning Photovoltaic Properties via the Acceptor Group2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 23, p. 19697-19703Article in journal (Refereed)
    Abstract [en]

    Two D-A-D-structured hole-transport materials (YN1 and YN2) have been synthesized and used in perovskite solar cells. The two HTMs have low-lying HOMO levels and impressive mobility. Perovskite-based solar cells (PSCs) fabricated with YN2 showed a power conversion efficiency (PCE) value of 19.27% in ambient air, which is significantly higher than that of Spiro-OMeTAD (17.80%). PSCs based on YN1 showed an inferior PCE of 16.03%. We found that the incorporation of the stronger electron-withdrawing group in the HTM YN2 improves the PCE of PSCs. Furthermore, the YN2-based PSCs exhibit good long-term stability retaining 91.3% of its initial efficiency, whereas PSCs based on Spiro-OMeTAD retained only 42.2% after 1000 h lifetime (dark conditions). These promising results can provide a new strategy for the design of D-A-D HTMs for PSC applications in future.

  • 44. Yang, L.
    et al.
    Lindblad, R.
    Gabrielsson, Erik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Boschloo, G.
    Rensmo, H.
    Sun, L.
    Hagfeldt, A.
    Edvinsson, T.
    Johansson, E. M. J.
    Experimental and Theoretical Investigation of the Function of 4- tert -Butyl Pyridine for Interface Energy Level Adjustment in Efficient Solid-State Dye-Sensitized Solar Cells2018In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 14, p. 11572-11579Article in journal (Refereed)
    Abstract [en]

    4-tert-Butylpyridine (t-BP) is commonly used in solid state dye-sensitized solar cells (ssDSSCs) to increase the photovoltaic performance. In this report, the mechanism how t-BP functions as a favorable additive is investigated comprehensively. ssDSSCs were prepared with different concentrations of t-BP, and a clear increase in efficiency was observed up to a maximum concentration and for higher concentrations the efficiency thereafter decreases. The energy level alignment in the complete devices was measured using hard X-ray photoelectron spectroscopy (HAXPES). The results show that the energy levels of titanium dioxide are shifted further away from the energy levels of spiro-OMeTAD as the t-BP concentration is increased. This explains the higher photovoltage obtained in the devices with higher t-BP concentration. In addition, the electron lifetime was measured for the devices and the electron lifetime was increased when adding t-BP, which can be explained by the recombination blocking effect at the surface of TiO2. The results from the HAXPES measurements agree with those obtained from density functional theory calculations and give an understanding of the mechanism for the improvement, which is an important step for the future development of solar cells including t-BP.

  • 45.
    Zhang, Fuguo
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Cong, Jiayan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Bergstrand, Jan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
    Liu, Haichun
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Cai, Bin
    State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT).
    Hajian, Alireza
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yao, Zhaoyang
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Wang, Linqin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Hao, Yan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Yang, Xichuan
    State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT).
    Gardner, James M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Ågren, Hans
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
    Widengren, Jerker
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Kloo, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. State Key Laboratory of Fine Chemicals, Dalian University of Technology (DUT).
    A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells2018In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 53, p. 405-414Article in journal (Refereed)
    Abstract [en]

    Perovskite photovoltaics have recently attracted extensive attention due to their unprecedented high power conversion efficiencies (PCEs) in combination with primitive manufacturing conditions. However, the inherent polycrystalline nature of perovskite films renders an exceptional density of structural defects, especially at the grain boundaries (GBs) and film surfaces, representing a key challenge that impedes the further performance improvement of perovskite solar cells (PSCs) and large solar module ambitions towards commercialization. Here, a novel strategy is presented utilizing a simple ethylammonium chloride (EACl) additive in combination with a facile solvent bathing approach to achieve high quality methyammonium lead iodide (MAPbI3) films. Well-oriented, micron-sized grains were observed, which contribute to an extended carrier lifetime and reduced trap density. Further investigations unraveled the distinctively prominent effects of EACl in modulating the perovskite film quality. The EACl was found to promote the perovskite grain growing without undergoing the formation of intermediate phases. Moreover, the EACl was also revealed to deplete at relative low temperature to enhance the film quality without compromising the beneficial bandgap for solar cell applications. This new strategy boosts the power conversion efficiency (PCE) to 20.9% and 19.0% for devices with effective areas of 0.126 cm2 and 1.020 cm2, respectively, with negligible current hysteresis and enhanced stability. Besides, perovskite films with a size of 10 × 10 cm2, and an assembled 16 cm2(5 × 5 cm2 module) perovskite solar module with a PCE of over 11% were constructed.

  • 46.
    Zhang, Peili
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Li, L.
    Nordlund, D.
    Chen, Hong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Fan, Lizhou
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sheng, Xia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Daniel, Quentin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, no 1, article id 381Article in journal (Refereed)
    Abstract [en]

    Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm-2. The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.

  • 47. Zhou, Yuye
    et al.
    Romson, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Emmer, Åsa
    KTH, Superseded Departments (pre-2005), Chemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    An antibody-free sample pretreatment method for osteopontin combined with MALDI-TOF MS/MS analysis2019In: PLOS ONE, Vol. 14, no 3Article in journal (Refereed)
    Abstract [en]

    Osteopontin is an osteoblast-secreted protein with an aspartic acid-rich, highly phosphorylated, and glycosylated structure. Osteopontin can easily bind to integrins, tumor cells, extracellular matrix and calcium, and is related to bone diseases, various cancers, inflammation etc. Here, DEAE-Cibacron blue 3GA was used to extract recombinant osteopontin from human plasma, and to deplete abundant plasma proteins with an antibody-free method. Using selected buffer systems, osteopontin and human serum albumin could be bound to DEAE-Cibacron blue 3GA, while immunoglobulin G was excluded. The bound osteopontin could then be separated from albumin by using different sequential elution buffers. By this method, 1 μg/mL recombinant osteopontin could be separated from the major part of the most abundant proteins in human plasma. After trypsin digestion, the extracted osteopontin could be successfully detected and identified by MALDI-TOF MS/MS using the m/z 1854.898 peptide and its fragments.

1 - 47 of 47
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf