Change search
Refine search result
123 1 - 50 of 107
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. A. Hosseini, V.
    et al.
    Karlsson, L.
    Örnek, Cem
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Swerea KIMAB AB.
    Reccagni, P.
    Wessman, S.
    Engelberg, D.
    Microstructure and functionality of a uniquely graded super duplex stainless steel designed by a novel arc heat treatment method2018In: Materials Characterization, ISSN 1044-5803, E-ISSN 1873-4189, Vol. 139, p. 390-400Article in journal (Refereed)
    Abstract [en]

    A novel arc heat treatment technique was applied to design a uniquely graded super duplex stainless steel (SDSS), by subjecting a single sample to a steady state temperature gradient for 10 h. A new experimental approach was used to map precipitation in microstructure, covering aging temperatures of up to 1430 °C. The microstructure was characterized and functionality was evaluated via hardness mapping. Nitrogen depletion adjacent to the fusion boundary depressed the upper temperature limit for austenite formation and influenced the phase balance above 980 °C. Austenite/ferrite boundaries deviating from Kurdjumov–Sachs orientation relationship (OR) were preferred locations for precipitation of σ at 630–1000 °C, χ at 560–1000 °C, Cr2N at 600–900 °C and R between 550 °C and 700 °C. Precipitate morphology changed with decreasing temperature; from blocky to coral-shaped for σ, from discrete blocky to elongated particles for χ, and from polygonal to disc-shaped for R. Thermodynamic calculations of phase equilibria largely agreed with observations above 750 °C when considering nitrogen loss. Formation of intermetallic phases and 475 °C-embrittlement resulted in increased hardness. A schematic diagram, correlating information about phase contents, morphologies and hardness, as a function of exposure temperature, is introduced for evaluation of functionality of microstructures.

  • 2. Addicoat, Matthew
    et al.
    Atkin, Rob
    Canongia Lopes, José Nuno
    Costa Gomes, Margarida
    Firestone, Millicent
    Gardas, Ramesh
    Halstead, Simon
    Hardacre, Christopher
    Hardwick, Laurence J.
    Holbrey, John
    Hunt, Patricia
    Ivaništšev, Vladislav
    Jacquemin, Johan
    Jones, Robert
    Kirchner, Barbara
    Lynden-Bell, Ruth
    MacFarlane, Doug
    Marlair, Guy
    Medhi, Himani
    Mezger, Markus
    Pádua, Agílio
    Pantenburg, Isabel
    Perkin, Susan
    Reid, Joshua E. S. J.
    Rutland, Mark W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Saha, Satyen
    Shimizu, Karina
    Slattery, John M.
    Swadźba-Kwaśny, Malgorzata
    Tiwari, Shraeddha
    Tsuzuki, Seiji
    Uralcan, Betul
    van den Bruinhorst, Adriaan
    Watanabe, Masayoshi
    Wishart, James
    Structure and dynamics of ionic liquids: general discussion2018In: Faraday discussions (Online), ISSN 1359-6640, E-ISSN 1364-5498, Vol. 206, no 0, p. 291-337Article in journal (Refereed)
    Abstract [en]

    E

  • 3.
    Alekseeva, L. A.
    et al.
    Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, 47 Nauky Ave, UA-61103 Kharkov, Ukraine..
    Dobryden, Illia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Determination of the low-temperature self-diffusion coefficient in solid p-H-2 from creep experiments2018In: Low temperature physics (Woodbury, N.Y., Print), ISSN 1063-777X, E-ISSN 1090-6517, Vol. 44, no 9, p. 946-951Article in journal (Refereed)
    Abstract [en]

    Dependencies of the relative elongation epsilon under the constantly applied stress at T = 1.8 K on the endurance time t of polycrystalline parahydrogen (p-H-2, similar to 0.2% of o-H-2) of high purity (99.9999 mol.%), with varying deuterium content, were measured. The region of linear dependence between the measured creep rates (epsilon) over dot of samples and the applied stress s was revealed. The conclusion that the low-temperature creep of the studied p-H-2 possesses a vacancy-type diffusion character was made on the basis of linear dependence (epsilon) over dot similar to s. Determination of the low-temperature self-diffusion coefficient of vacancies D in solid p-H-2, which characterizes the rate of low-temperature mass transfer, was performed. The cases of migration of vacancies in the crystal bulk, along boundaries separating individual crystallites, as well as between dislocations existing in crystals, are considered. A significant decrease in the (epsilon) over dot and D values with an increase in the isotope concentration in the samples was observed, while maintaining the linear relationship between (epsilon) over dot and s for the studied p-H-2. Published by AIP Publishing.

  • 4.
    Anantha, Krishnan Hariramabadran
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Örnek, Cem
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Ejnermark, Sebastian
    Uddeholms AB, Res & Dev, SE-68385 Hagfors, Sweden..
    Thuvander, Anders
    Uddeholms AB, Res & Dev, SE-68385 Hagfors, Sweden..
    Medvedeva, Anna
    Uddeholms AB, Res & Dev, SE-68385 Hagfors, Sweden..
    Sjostrom, Johnny
    Uddeholms AB, Res & Dev, SE-68385 Hagfors, Sweden..
    Pan, Jinshan
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Experimental and modelling study of the effect of tempering on the susceptibility to environment-assisted cracking of AISI 420 martensitic stainless steel2019In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 148, p. 83-93Article in journal (Refereed)
    Abstract [en]

    The resistance to environment-assisted cracking (EAC) of AISI 420 martensitic stainless steel (MSS) was investigated in 0.3 M NaCl solution (room temperature) at constant loads for 30 days. The steel tempered at 250 degrees C was superior to the 500 degrees C-temper, which showed corrosion pits favouring cracking. The fracture surface showed faceted grains, cleavage, striations, and inter- and transgranular cracks, suggesting a mixed stress corrosion cracking (SCC) and hydrogen embrittlement (HE) mechanism as the cause for EAC. Finite element modelling (FEM) indicated strain/stress localization at the mouth of deep pits and at the wall of shallow pits, displaying the favoured locations for pit-to-crack transition.

  • 5. Angiolini, L.
    et al.
    Valetti, S.
    Cohen, B.
    Feiler, Adam
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Nanologica AB, Södertälje, Sweden.
    Douhal, A.
    Fluorescence imaging of antibiotic clofazimine encapsulated within mesoporous silica particle carriers: Relevance to drug delivery and the effect on its release kinetics2018In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, no 17, p. 11899-11911Article in journal (Refereed)
    Abstract [en]

    We report on the encapsulation of the antibiotic clofazimine (CLZ) within the pores of mesoporous silica particles having hydrophilic (CBET value of 137) and more hydrophobic (CBET value of 94 after calcination at 600 °C) surfaces. We studied the effect of pH on the released amount of CLZ in aqueous solutions and observed a maximum at pH 4.1 in correlation with the solubility of the drug. Less release of the drug was observed from the more hydrophobic particles which was attributed to a difference in the affinity of the drug to the carrier particles. Fluorescence lifetime imaging microscopy, emission spectra, and fluorescence lifetimes of single drug loaded particles provided detailed understanding and new knowledge of the physical form of the encapsulated drug and the distribution within the particles. The distribution of CLZ within the particles was independent of the surface chemistry of the particles. The confirmation of CLZ molecules as monomers or aggregates was revealed by controlled removal of the drug with solvent. Additionally, the observed optical "halo effect" in the fluorescent images was interpreted in terms of specific quenching of high concentration of molecules. The emission lifetime experiments suggest stronger interaction of CLZ with the more hydrophobic particles, which is relevant to its release. The results reported in this work demonstrate that tuning the hydrophilicity/hydrophobicity of mesoporous silica particles can be used as a tool to control the release without impacting their loading ability.

  • 6.
    Badal Tejedor, Maria
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Research Intitutes of Sweden.
    Pazesh, Samaneh
    Nordgren, Niklas
    Schuleit, Michael
    Rutland, Mark W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Research Intitutes of Sweden.
    Alderborn, Göran
    Millqvist-Fureby, Anna
    Milling induced amorphisation andrecrystallization of α-lactose monohydrate2018In: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 537, no 1-2, p. 140-147Article in journal (Refereed)
    Abstract [en]

    Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the alpha-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed alpha-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between un-processed a-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spraydried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition.

  • 7. Bazant, Martin
    et al.
    Bennewitz, Roland
    Bocquet, Lydéric
    Brilliantov, Nikolay
    Dey, Ranabir
    Drummond, Carlos
    Dryfe, Robert
    Girault, Hubert
    Hatzell, Kelsey
    Kornev, Konstantin
    Kornyshev, Alexei A.
    Kratochvilova, Irena
    Kucernak, Anthony
    Kulkarni, Mohit
    Kumar, Sunny
    Lee, Alpha
    Lemay, Serge
    Medhi, Himani
    Mount, Andrew
    Mugele, Frieder
    Perkin, Susan
    Rutland, Mark W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Schatz, George
    Schiffrin, David
    Smela, Elisabeth
    Smirnov, Evgeny
    Urbakh, Michael
    Yaroshchuk, Andriy
    Electrotunable wetting, and micro- and nanofluidics: general discussion2017In: Faraday discussions (Online), ISSN 1359-6640, E-ISSN 1364-5498, Vol. 199, no 0, p. 195-237Article in journal (Refereed)
  • 8.
    Beldowski, Piotr
    et al.
    UTP Univ Sci & Technol, Inst Math & Phys, Al Kaliskiego 7, PL-85796 Bydgoszcz, Poland..
    Weber, Piotr
    Gdansk Univ Technol, Atom & Opt Phys Div, Dept Atom Mol & Opt Phys, Fac Appl Phys & Math, Narutowicza 11-12, PL-80233 Gdansk, Poland..
    Dédinaité, Andra
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Box 5607, SE-11486 Stockholm, Sweden..
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Box 5607, SE-11486 Stockholm, Sweden..
    Gadomski, Adam
    UTP Univ Sci & Technol, Inst Math & Phys, Al Kaliskiego 7, PL-85796 Bydgoszcz, Poland..
    Physical crosslinking of hyaluronic acid in the presence of phospholipids in an aqueous nano-environment2018In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 14, no 44, p. 8997-9004Article in journal (Refereed)
    Abstract [en]

    Hyaluronic acid and phospholipids are two components in the synovial joint cavity that contribute to joint lubrication synergistically. Molecular dynamics simulations were performed and hydrogen bonds in hyaluronic acid were analyzed to identify specific sites that are responsible for its physical cross-linking. Two molecular masses of hyaluronic acid, 10 kDa and 160 kDa, were considered. We use molecular dynamics simulations and the small world network approach to investigate dynamic couplings using a distance map applied to oxygen atoms in a chain of hyaluronic acid in the presence of phospholipids and water. The distance characterizing the coupling can be defined in various ways to bring out the most evident differences between various scenarios of the polymer chain conformation We show herein a physical distance understood as H-bond length and classes of these distances which are defined in a coarse-grained picture of the molecule. Simulation results indicate that addition of phospholipids has little influence on hyaluronic acid crosslinking. However, longer chains and addition of lipids promote appreciably long lasting (resilient) networks that may be of importance in biological systems. Specific sites for hydrogen bonding of phospholipids to hyaluronic acid have also been identified.

  • 9. Bergquist, Helen
    et al.
    Rocha, Cristina S. J.
    Álvarez-Asencio, Rubén
    Nguyen, Colleen Ramsey
    Rutland, Mark W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Smith, C I Edvard
    Good, L.
    Nielsen, Peter Egil
    Zain, Rula
    Structure and Photoactivatable Probes for Nucleic Acids and Kinases2016In: Biochimie, Vol. 128, no 129, p. 133-137Article in journal (Refereed)
  • 10. Besharat, Z.
    et al.
    Alvarez-Asencio, R.
    Tian, H.
    Yu, S.
    Johnson, C. M.
    Gothelid, M.
    Rutland, Mark W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    In-situ evaluation of dye adsorption on TiO2 using QCM2017In: EPJ Photovoltaics, ISSN 2105-0716, Vol. 8Article in journal (Refereed)
    Abstract [en]

    We measured the adsorption characteristics of two organic dyes; triphenylamine-cyanoacrylic acid (TPA-C) and phenoxazine (MP13), on TiO2, directly in a solution based on quartz crystal microbalance (QCM). Monitoring the adsorbed amount as a function of dye concentration and during rinsing allows determination of the equilibrium constant and distinction between chemisorbed and physisorbed dye. The measured equilibrium constants are 0.8 mM(-1) for TPA-C and 2.4 mM(-1) for MP13. X-ray photoelectron spectroscopy was used to compare dried chemisorbed layers of TPA-C prepared in solution with TPA-C layers prepared via vacuum sublimation; the two preparation methods render similar spectra except a small contribution of water residues (OH) on the solution prepared samples. Quantitative Nanomechanical Mapping Atomic Force Microscopy (QNM-AFM) shows that physisorbed TPA-C layers are easily removed by scanning the tip across the surface. Although not obvious in height images, adhesion images clearly demonstrate removal of the dye.

  • 11. Boshkova, Katrin
    et al.
    Kronberg, Bengt
    Rutland, Mark W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Imae, Toyoko
    Visco-elastic properties of thin surfactant films studied with the tribological surface force apparatus.2000Conference paper (Refereed)
  • 12. Brumer, Harry
    et al.
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Sinnot, Michael
    Teeri, Tuula
    Zhou, Qi
    Crosslinking involving a polymeric carbohydrate material2006Patent (Other (popular science, discussion, etc.))
  • 13.
    Cappellini, Francesca
    et al.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Hedberg, Yolanda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Karolinska Inst, Inst Environm Med, Stockholm, Sweden.
    McCarrick, Sarah
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Hedberg, Jonas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Derr, Remco
    Toxys, Leiden, Netherlands..
    Hendriks, Giel
    Toxys, Leiden, Netherlands..
    Odnevall Wallinder, Inger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Karlsson, Hanna L.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides2018In: Nanotoxicology, ISSN 1743-5390, E-ISSN 1743-5404, Vol. 12, no 6, p. 602-620Article in journal (Refereed)
    Abstract [en]

    An increasing use of cobalt (Co)-based nanoparticles (NPs) in different applications and exposures at occupational settings triggers the need for toxicity assessment. Improved understanding regarding the physiochemical characteristics of Co metal NPs and different oxides in combination with assessment of toxicity and mechanisms may facilitate decisions for grouping during risk assessment. The aim of this study was to gain mechanistic insights in the correlation between NP reactivity and toxicity of three different Co-based NPs (Co, CoO, and Co3O4) by using various tools for characterization, traditional toxicity assays, as well as six reporter cell lines (ToxTracker) for rapid detection of signaling pathways of relevance for carcinogenicity. The results showed cellular uptake of all NPs in lung cells and induction of DNA strand breaks and oxidative damage (comet assay) by Co and CoO NPs. In-depth studies on the ROS generation showed high reactivity of Co, lower for CoO, and no reactivity of Co3O4 NPs. The reactivity depended on the corrosion and transformation/dissolution properties of the particles and the media highlighting the role of the surface oxide and metal speciation as also confirmed by in silico modeling. By using ToxTracker, Co NPs were shown to be highly cytotoxic and induced reporters related to oxidative stress (Nrf2 signaling) and DNA strand breaks. Similar effects were observed for CoO NPs but at higher concentrations, whereas the Co3O4 NPs were inactive at all concentrations tested. In conclusion, our study suggests that Co and CoO NPs, but not Co3O4, may be grouped together for risk assessment.

  • 14.
    Chang, Tingru
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Atmospheric corrosion of copper and copper-based alloys in architecture: from native surface oxides to fully developed patinas2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Copper and copper-based alloys are commonly used in both ancient and modern architecture. This requires an in-depth fundamental and applied understanding on their atmospheric corrosion behavior at different climatic, environmental and pollutant levels and how these parameters influence e.g. corrosion initiation, patina characteristics, aesthetic appearances, corrosion rates, and runoff rates. This doctoral thesis elucidates the role of native surface oxides on the corrosion performance, corrosion initiation, formation and evolution of corrosion products from hours to months, years and even centuries, to diffuse dispersion of metals from Cu metal/Cu alloy surfaces focusing on the roles of alloying elements, microstructure, and deposition of chlorides. In-depth investigations have been performed at both laboratory and field conditions on commercial Cu metal and copper-based alloys of a golden alloy (Cu5Zn5Al1Sn) and Sn-bronzes (Cu4Sn, Cu6Sn). Patina characteristics and relations to the presence of microstructural inclusions have in addition been investigated for historic patinas of Cu metal roofing of different age and origin, highlighted with data for a 400 years old Cu patina exposed at urban conditions.

    A multi-analytical approach comprising microscopic, spectroscopic and electrochemical methods was employed for in-depth investigations of surface characteristics and bulk properties. Electron backscattered diffraction (EBSD) was utilized to characterize the microstructure. Auger electron spectroscopy (scanning-AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES) were employed for surface chemical compositional analysis, and atomic absorption spectroscopy (AAS) to assess the amount of metal release from the patinas. Cathodic reduction (CR) and electrochemical impedance spectroscopy (EIS) were used to assess the amount and corrosion resistance of corrosion products formed at laboratory conditions. Confocal Raman micro-spectroscopy (CRM), infrared reflection absorption spectroscopy (IRAS) and grazing incidence X-ray diffraction (GIXRD) were used to identify the phases of corrosion products. Colorimetry was used to assess surface appearances.

    Cu5Zn5Al1Sn and Cu4Sn/Cu6Sn exhibit favorable bulk properties with respect to corrosion in terms of smaller grain size compared with Cu metal and show non-significant surface compositional variations. The presence of multi-component native oxides predominantly composed of Cu2O enriched with Sn-oxides on Cu4Sn/Cu6Sn, and with ZnO, SnO2 and Al2O3 on Cu5Zn5Al1Sn, improves the barrier properties of the native surface oxides and the overall corrosion resistance of Cu4Sn/Cu6Sn and Cu5Zn5Al1Sn. The formation of Zn/Al/Sn-containing corrosion products (e.g. Zn5(CO3)2(OH)6 and Zn6Al2(OH)16CO3·4H2O) significantly reduces the corrosion rate of Cu5Zn5Al1Sn in chloride-rich environments. Alloying with Sn reduces the corrosion rate of Sn-bronze at urban environments of low chloride levels but results in enhanced corrosion rates at chloride-rich marine conditions.

    A clear dual-layer structure patina was observed for centuries-old naturally patinated copper metal with an origin from the roof of Queen Anne's Summer Palace in Prague, the Czech Republic. The patina comprises an inner sub-layer of Cu2O and an outer sub-layer of Cu4SO4(OH)6/Cu3SO4(OH)4. Abundant relatively noble inclusions (mainly rosiaite (PbSb2O6)) were observed and incorporated in both the copper matrix and the patina. The largest inclusions of higher nobility than the surrounding material create significant micro-galvanic effects that result in a fragmentized patina and large thickness ratios between the Cu4SO4(OH)6/Cu3SO4(OH)4 and the Cu2O sub-layer, investigated via a statistical analysis of inclusions and patina characteristics of eight different historic urban copper patinas.

  • 15.
    Chang, Tingru
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architectureManuscript (preprint) (Other academic)
  • 16.
    Chang, Tingru
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Leygraf, Christopher
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Odnevall Wallinder, Inger
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jin, Ying
    Univ Sci & Technol Beijing, Natl Ctr Mat Serv Safety, Beijing 100083, Peoples R China..
    Understanding the Barrier Layer Formed via Adding BTAH in Copper Film Electrodeposition2019In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 166, no 2, p. D10-D20Article in journal (Refereed)
    Abstract [en]

    The influence of surface adsorption of benzotriazole (BTAH) and of chloride ions (Cl-) on the kinetics of copper electrodeposition/dissolution in copper sulfate solutions and on copper deposit characteristics have been investigated using electrochemical quartz crystal microbalance (EQCM) combined with cyclic voltammetry (CV). The addition of BTAH alone increases the overpotential of copper deposition, whereas a Cu(I)BTA complex forms at potentials higher than 0.08 V (vs. SCE) accompanied with the occurrence of copper anodic dissolution. With simultaneous addition of BTAH and Cl-, surface adsorption of Cl- competes with that of BTAH during the initial stage of copper nucleation. Different cuprous reaction intermediates form in the examined potential range -0.4 to 0.3 V (vs. SCE), which partly eliminate the favorable effect of BTAH on the deposited copper. A BTAH-containing adsorbed layer formed on the matte side of electrodeposited copper film in the presence of BTAH with or without Cl-, exhibiting a barrier surface property and an improved corrosion resistance compared with the copper film electrodeposited in the electrolyte without addition of BTAH.

  • 17.
    Chang, Tingru
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. University of Science and Technology Beijing, China.
    Wallinder, Inger Odnevall
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Jin, Ying
    Leygraf, Christofer
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    The golden alloy Cu-5Zn-5Al-1Sn: A multi-analytical surface characterization2018In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 131, p. 94-103Article in journal (Refereed)
    Abstract [en]

    The golden alloy Cu-5Zn-5Al-1Sn has found many applications because of its appearance and resistance to tarnishing. The microstructure and multi-component surface oxide of Cu-5Zn-5Al-1Sn have been investigated through a multi-analytical approach. Compared to commercial Cu metal, Cu-5Zn-5Al-1Sn has significantly smaller grains and higher fraction of coherent twin boundaries. The 5-10 nm thick oxide formed after diamond polishing has four identified sub-oxides all contributing to the overall corrosion resistance. Cu2O is mainly located in the outer part, followed by ZnO, SnO2 and Al2O3 closer to the alloy substrate. The latter three possess barrier properties, while Cu2O exhibits a more complex structure.

  • 18.
    Chang, Tingru
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Univ Sci & Technol Beijing, Natl Ctr Mat Serv Safety, Beijing 100083, Peoples R China.
    Herting, Gunilla
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Goidanich, S.
    Politecn Milan, Dept Chem Mat & Chem Engn Giulio Natta, Via Mancinelli 7, I-0131 Milan, Italy..
    Sanchez Amaya, J. M.
    LABCYP, Dept Mat Sci & Met Engn & Inorgan Chem, Sch Engn, Ave Univ Cadiz 10, Cadiz 11519, Spain..
    Arenas, M. A.
    CSIC, CENIM, Ctr Nacl Invest Met, Dept Ingn Superficies Corros & Durabilidad, Ave Gregorio del Amo 8, Madrid 28040, Spain..
    Le Bozec, N.
    French Corros Inst, 220 Rue Pierre Rivoalon, F-29200 Brest, France..
    Jin, Y.
    Univ Sci & Technol Beijing, Natl Ctr Mat Serv Safety, Beijing 100083, Peoples R China..
    Leygraf, Christopher
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Odnevall Wallinder, Inger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture2019In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 149, p. 54-67Article in journal (Refereed)
    Abstract [en]

    The role of Sn on the atmospheric corrosion performance of binary Cu-Sn bronze alloys (4-6 wt.% Sn) compared with Cu metal used in outdoor architecture is elucidated in terms of microstructure, native surface oxide composition, patina evolution, corrosion rates, appearance and metal release. Results are presented for non-exposed surfaces and surfaces exposed at different urban and marine sites in Europe up to 5 years and based on multi-analytical findings from microscopic, spectroscopic, electrochemical and chemical investigations. Alloying influenced the corrosion, aesthetic appearance and patina evolution, differently for urban and marine sites, whereas no effects were observed on the release pattern.

  • 19.
    Chang, Tingru
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Herting, Gunilla
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Goidanich, S.
    Sánchez Amaya, J. M.
    Arenas, M. A.
    Le Bozec, N.
    Jin, Y.
    Leygraf, Christopher
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Odnevall Wallinder, Inger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture2019In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 149, p. 54-67Article in journal (Refereed)
    Abstract [en]

    The role of Sn on the atmospheric corrosion performance of binary Cu-Sn bronze alloys (4–6 wt.% Sn) compared with Cu metal used in outdoor architecture is elucidated in terms of microstructure, native surface oxide composition, patina evolution, corrosion rates, appearance and metal release. Results are presented for non-exposed surfaces and surfaces exposed at different urban and marine sites in Europe up to 5 years and based on multi-analytical findings from microscopic, spectroscopic, electrochemical and chemical investigations. Alloying influenced the corrosion, aesthetic appearance and patina evolution, differently for urban and marine sites, whereas no effects were observed on the release pattern.

  • 20.
    Cheng, Jie
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Tsinghua University, Beijing, China.
    Pan, J.
    Wang, T.
    Lu, X.
    Micro-galvanic corrosion of Cu/Ru couple in potassium periodate (KIO4) solution2018In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 137, p. 184-193Article in journal (Refereed)
    Abstract [en]

    This paper focuses on the study of micro-galvanic corrosion of the Cu/Ru couple in KIO4 solution. Practical nobility across the Cu/Ru interface was evaluated by Volta potential mapping, and the morphological changes were monitored by in-situ atomic force microscopy measurements during exposure in a KIO4 solution. Chemical composition of precipitated corrosion product was analyzed by Confocal Raman spectroscopy immediately after the exposure. The results show that Cu is the anode of the Cu/Ru couple, and accelerated dissolution of Cu preferentially occurs near the Cu/Ru interface. However, subsequent formation of insoluble Cu(IO3)2·nH2O leads to precipitation, which impedes further Cu corrosion.

  • 21.
    Claesson, Per M.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Research Institutes of Sweden, Bioscience and Materials − Surface, Process and Formulation, SE-114 86 Stockholm, Sweden.
    Tuominen, Mikko
    RISE Res Inst Sweden, Biosci & Mat Surface, Proc & Formulat, SE-11486 Stockholm, Sweden..
    Jarn, Mikael
    RISE Res Inst Sweden, Biosci & Mat Surface, Proc & Formulat, SE-11486 Stockholm, Sweden..
    Claesson, Per Martin
    RISE Res Inst Sweden, Biosci & Mat Surface, Proc & Formulat, SE-11486 Stockholm, Sweden.;KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Div Surface & Corros Sci, Dept Chem, SE-10044 Stockholm, Sweden..
    Wallqvist, Viveca
    RISE Res Inst Sweden, Biosci & Mat Surface, Proc & Formulat, SE-11486 Stockholm, Sweden..
    Butt, Hans Juergen
    Max Planck Inst Polymer Res, Dept Phys Interfaces, Ackermannweg 10, DE-55128 Mainz, Germany..
    Vollmer, Doris
    Max Planck Inst Polymer Res, Dept Phys Interfaces, Ackermannweg 10, DE-55128 Mainz, Germany..
    Kappl, Michael
    Max Planck Inst Polymer Res, Dept Phys Interfaces, Ackermannweg 10, DE-55128 Mainz, Germany..
    Schoelkopf, Joachim
    Omya Int AG, Baslerstr 42, CH-4665 Oftringen, Switzerland..
    Gane, Patrick A. C.
    Omya Int AG, Baslerstr 42, CH-4665 Oftringen, Switzerland.;Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, FI-00076 Aalto, Finland..
    Teisala, Hannu
    Max Planck Inst Polymer Res, Dept Phys Interfaces, Ackermannweg 10, DE-55128 Mainz, Germany..
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Biosci & Mat Surface, Proc & Formulat, SE-11486 Stockholm, Sweden..
    Direct Observation of Gas Meniscus Formation on a Superhydrophobic Surface2019In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 13, no 2, p. 2246-2252Article in journal (Refereed)
    Abstract [en]

    The formation of a bridging gas meniscus via cavitation or nanobubbles is considered the most likely origin of the submicrometer long-range attractive forces measured between hydrophobic surfaces in aqueous solution. However, the dynamics of the formation and evolution of the gas meniscus is still under debate, in particular, in the presence of a thin air layer on a superhydrophobic surface. On superhydrophobic surfaces the range can even exceed 10 mu m. Here, we report microscopic images of the formation and growth of a gas meniscus during force measurements between a superhydrophobic surface and a hydrophobic microsphere immersed in water. This is achieved by combining laser scanning confocal microscopy and colloidal probe atomic force microscopy. The configuration allows determination of the volume and shape of the meniscus, together with direct calculation of the Young-Laplace capillary pressure. The long-range attractive interactions acting on separation are due to meniscus formation and volume growth as air is transported from the surface layer.

  • 22.
    Di Bucchianico, Sebastiano
    et al.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Gliga, Anda R.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Åkerlund, Emma
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Skoglund, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. KTH Royal Inst Technol, Dept Chem Surface & Corros Sci, Stockholm, Sweden..
    Odnevall Wallinder, Inger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Fadeel, Bengt
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Karlsson, Hanna L.
    Karolinska Inst, Inst Environm Med, Stockholm, Sweden..
    Calcium-dependent cyto- and genotoxicity of nickel metal and nickel oxide nanoparticles in human lung cells2018In: Particle and Fibre Toxicology, ISSN 1743-8977, E-ISSN 1743-8977, Vol. 15, article id 32Article in journal (Refereed)
    Abstract [en]

    Background: Genotoxicity is an important toxicological endpoint due to the link to diseases such as cancer. Therefore, an increased understanding regarding genotoxicity and underlying mechanisms is needed for assessing the risk with exposure to nanoparticles (NPs). The aim of this study was to perform an in-depth investigation regarding the genotoxicity of well-characterized Ni and NiO NPs in human bronchial epithelial BEAS-2B cells and to discern possible mechanisms. Comparisons were made with NiCl2 in order to elucidate effects of ionic Ni. Methods: BEAS-2B cells were exposed to Ni and NiO NPs, as well as NiCl2, and uptake and cellular dose were investigated by transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS). The NPs were characterized in terms of surface composition (X-ray photoelectron spectroscopy), agglomeration (photon cross correlation spectroscopy) and nickel release in cell medium (ICP-MS). Cell death (necrosis/apoptosis) was investigated by Annexin VFITC/PI staining and genotoxicity by cytokinesis-block micronucleus (cytome) assay (OECD 487), chromosomal aberration (OECD 473) and comet assay. The involvement of intracellular reactive oxygen species (ROS) and calcium was explored using the fluorescent probes, DCFH-DA and Fluo-4. Results: NPs were efficiently taken up by the BEAS-2B cells. In contrast, no or minor uptake was observed for ionic Ni from NiCl2. Despite differences in uptake, all exposures (NiO, Ni NPs and NiCl2) caused chromosomal damage. Furthermore, NiO NPs were most potent in causing DNA strand breaks and generating intracellular ROS. An increase in intracellular calcium was observed and modulation of intracellular calcium by using inhibitors and chelators clearly prevented the chromosomal damage. Chelation of iron also protected against induced damage, particularly for NiO and NiCl2. Conclusions: This study has revealed chromosomal damage by Ni and NiO NPs as well as Ni ionic species and provides novel evidence for a calcium-dependent mechanism of cyto- and genotoxicity.

  • 23.
    Dobryden, Illia
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Ruiz, Maria Cortes
    CUNY City Coll, Dept Chem Engn, Grove Sch Engn, New York, NY 10031 USA..
    Zhang, Xuwei
    Univ Montreal, Dept Chem, CP 6128 Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada..
    Dédinaité, Andra
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Div Biosci & Mat, SE-11486 Stockholm, Sweden..
    Wieland, D. C. Florian
    Helmholtz Zentrum Geesthacht, Inst Mat Res, Max Planck Str 1, D-21502 Geesthacht, Germany..
    Winnik, Francoise M.
    Univ Helsinki, Dept Chem, POB 55, FI-00014 Helsinki, Finland.;NIMS, Int Ctr Mat Nanoarchitecton MANA, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan..
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Div Biosci & Mat, SE-11486 Stockholm, Sweden..
    Thermoresponsive Pentablock Copolymer on Silica: Temperature Effects on Adsorption, Surface Forces, and Friction2019In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 35, no 3, p. 653-661Article in journal (Refereed)
    Abstract [en]

    The adsorption of hydrophilic or amphiphilic multiblock copolymers provides a powerful means to produce well-defined "smart" surfaces, especially if one or several blocks are sensitive to external stimuli. We focus here on an A-B-A-B-A copolymer, where A is a cationic poly((3acrylamido-propyl)-trimethylammonium chloride) (PAMPTMA) block containing 15 (end blocks) or 30 (middle block) repeat units and B is a neutral thermosensitive water-soluble poly(2-isopropyl-2-oxazoline) (PIPOZ) block with 50 repeat units. X-ray reflectivity and quartz crystal microbalance with dissipation monitoring were employed to study the adsorption of PAMPTMA(15)-PAMPTMA(30)-PIPOZ(50)-PAMPTMA(15) on silica surfaces. The latter technique was employed at different temperatures up to 50 degrees C. Surface forces and friction between the two silica surfaces across aqueous pentablock copolymer solutions at different temperatures were determined with the atomic force microscopy colloidal probe force and friction measurements. The cationic pentablock copolymer was found to have a high affinity to the negatively charged silica surface, leading to a thin (2 nm) and rigid adsorbed layer. A steric force was encountered at a separation of around 3 nm from hard wall contact. A capillary condensation of a polymer-rich phase was observed at the cloud point of the solution. The friction forces were evaluated using Amontons' rule modified with an adhesion term.

  • 24. Ekvall, Mikael T.
    et al.
    Hedberg, Jonas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Wallinder, Inger Odnevall
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Hansson, Lars-Anders
    Cedervall, Tommy
    Long-term effects of tungsten carbide (WC) nanoparticles in pelagic and benthic aquatic ecosystems2018In: Nanotoxicology, ISSN 1743-5390, E-ISSN 1743-5404, Vol. 12, no 1, p. 79-89Article in journal (Refereed)
    Abstract [en]

    As the production and usage of nanomaterials are increasing so are the concerns related to the release of the material into nature. Tungsten carbide (WC) is widely used for its hard metal properties, although its use, in for instance tyre studs, may result in nano-sized particles ending up in nature. Here, we evaluate the potential long-term exposure effects of WC nanoparticles on a pelagic (Daphnia magna) and a benthic (Asellus aquaticus) organism. No long-term effects were observed in the benthic system with respect to population dynamics or ecosystem services. However, long-term exposure of D. magna resulted in increased time to first reproduction and, if the particles were resuspended, strong effects on survival and reproductive output. Hence, the considerable differences in acute vs. long-term exposure studies revealed here emphasize the need for more long-term studies if we are to understand the effects of nanoparticles in natural systems.

  • 25.
    Ghamgosar, Pedram
    et al.
    Lulea Univ Technol, Div Mat Sci, Dept Engn Sci & Math, S-97187 Lulea, Sweden..
    Rigoni, Federica
    Lulea Univ Technol, Div Mat Sci, Dept Engn Sci & Math, S-97187 Lulea, Sweden..
    You, Shujie
    Lulea Univ Technol, Div Mat Sci, Dept Engn Sci & Math, S-97187 Lulea, Sweden..
    Dobryden, Illia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Kohan, Mojtaba Gilzad
    Lulea Univ Technol, Div Mat Sci, Dept Engn Sci & Math, S-97187 Lulea, Sweden..
    Pellegrino, Anna Lucia
    Univ Catania, Dipartimento Sci Chim, INSTM UdR Catania, Viale A Doria 6, I-95125 Catania, Italy..
    Concina, Isabella
    Lulea Univ Technol, Div Mat Sci, Dept Engn Sci & Math, S-97187 Lulea, Sweden..
    Almqvist, Nils
    Lulea Univ Technol, Div Mat Sci, Dept Engn Sci & Math, S-97187 Lulea, Sweden..
    Malandrino, Graziella
    Univ Catania, Dipartimento Sci Chim, INSTM UdR Catania, Viale A Doria 6, I-95125 Catania, Italy..
    Vomiero, Alberto
    Lulea Univ Technol, Div Mat Sci, Dept Engn Sci & Math, S-97187 Lulea, Sweden..
    ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors2018In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 51, p. 308-316Article in journal (Refereed)
    Abstract [en]

    In this work, we present all-oxide p-n junction core-shell nanowires (NWs) as fast and stable self-powered photodetectors. Hydrothermally grown n-type ZnO NWs were conformal covered by different thicknesses (up to 420 nm) of p-type copper oxide layers through metalorganic chemical vapor deposition (MOCVD). The ZnO NWs exhibit a single crystalline Wurtzite structure, preferentially grown along the [002] direction, and energy gap E-g = 3.24 eV. Depending on the deposition temperature, the copper oxide shell exhibits either a crystalline cubic structure of pure Cu2O phase (MOCVD at 250 degrees C) or a cubic structure of Cu2O with the presence of CuO phase impurities (MOCVD at 300 degrees C), with energy gap of 2.48 eV. The electrical measurements indicate the formation of a p-n junction after the deposition of the copper oxide layer. The core-shell photodetectors present a photo-responsivity at 0 V bias voltage up to 7.7 mu A/W and time response <= 0.09 s, the fastest ever reported for oxide photodetectors in the visible range, and among the fastest including photodetectors with response limited to the UV region. The bare ZnO NWs have slow photoresponsivity, without recovery after the end of photo-stimulation. The fast time response for the core-shell structures is due to the presence of the p-n junctions, which enables fast exciton separation and charge extraction. Additionally, the suitable electronic structure of the ZnO-Cu2O heterojunction enables self-powering of the device at 0 V bias voltage. These results represent a significant advancement in the development of low-cost, high efficiency and self-powered photodetectors, highlighting the need of fine tuning the morphology, composition and electronic properties of p-n junctions to maximize device performances.

  • 26. Hagman, H.
    et al.
    Lundberg, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Boström, D.
    Alloy Selection for a Cofired Circulating Fluidized Bed Boiler Vortex Finder Application at 880 °c in a Complex Mixed Mode Corrosion Environment2017In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 31, no 11, p. 12857-12866Article in journal (Refereed)
    Abstract [en]

    X-ray diffraction and scanning electron microscopy (SEM) were used on a corroded industrial-scale circulating fluidized bed (CFB) boiler vortex finder (VF) 253MA alloy plate material to identify the dominating corrosion products and to enable a qualified selection of candidate alloys for the long-term, full-scale exposure study. Alloys 253MA, 310S, 800H/HT, Alloy DS, and Alloy 600 were chosen, and the alloy plates were exposed to the CFB boiler combustion atmosphere having an average temperature of approximately 880 °C, consisting of a moist globally oxidizing gas, burning hydrocarbons, CO2, CO, SO2, HCl, NH3, N2, alkali species, and erosive particles. The exposure times used in this study were 1750, 8000, 12000, and 16000 operating hours. After exposure, the alloy samples were cut, and cross-sections were dry-polished and analyzed with an SEM-backscatter electron detector (BSD) setup to quantify material loss and penetration depth of the corrosion attack. This work suggests two novel concepts: heavily affected depth (HAD) enabling quantitative evaluation of heavily degraded alloys and remaining serviceable metal thickness (RSMT) enabling the use of long-term corrosion data from one alloy to make rough service life estimations of other alloys exposed for significantly shorter periods. The findings of this work show that there is no simple correlation between the heavily affected depth of the alloy and the nickel, chromium, or iron content. Instead, there seem to be two successful alloy composition principles that work well for this application. Furthermore, the work shows that major improvements can be made in terms of both technical life-span and the cost-effectiveness of the VF application if the most appropriate alloy is selected. In this study, a replacement of the frequently used Alloy 253MA with Alloy 310S doubled the lifespan of full-scale VFs, reducing the average VF maintenance cost to half.

  • 27. Hagman, H.
    et al.
    Boström, D.
    Lundberg, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Backman, R.
    Alloy degradation in a co-firing biomass CFB vortex finder application at 880 °C2019In: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 150, p. 136-150Article in journal (Refereed)
    Abstract [en]

    Mechanisms of alloy degradation in a fireside N-S-O-C-H-Cl-Na-K atmosphere at 880 °C were elucidated using SEM-EDS, chemical equilibrium calculations, and XRD. Alloys 310S, 800H/HT, and 600 were studied after 0, 8000, and 16,000 h exposure in a boiler co-firing biomass waste. For 310S and 800H/HT it was shown that nitrogen formed internal Cr nitrides lowering the Cr activity and inhibiting internal alloy Cr permeation, and that NaCl and Na 2 SO 4 reacted with Cr oxide to form chromate and to accelerate the S and the Cl pickup. Alloy 600 showed no nitride or major chromate formation.

  • 28.
    Hariramabadran Anantha, Krishnan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    An Experimental Study to Understand the Localized Corrosion and Environment-Assisted Cracking Behavior of AISI 420-Martensitic Stainless Steel2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Motivation and aim: Currently steel molds are designed with cooling channels to reduce the solidification time of molten plastic within the mold to improve the productivity. As water is generally used as the cooling medium, corrosion and environment-assisted cracking (EAC) leading towards the dysfunction of mold, can increase the production downtime. This was observed in some cases. Hence the primary aim of this thesis is to study the corrosion and EAC behavior of a martensitic stainless steel (MSS) in Cl containing environment to further the current understanding thereby to optimize the existing alloy/s and to design and develop new steel grades.

    Methods: The MSS had been austenitised at 1020°C, and subsequently quenched in nitrogen gas at fast (3°C/s), and slow quenching rates (0.6°C/s). Then tempering was done at 250°C, and 500°C, respectively, twice for two hours. Microstructure was predicted and characterized using Thermocalc simulation, dilatometry, light optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, atomic force microscopy (AFM). Localized corrosion behavior was characterized using standard salt spray test, electrochemical experiments, scanning Kelvin probe force microscopy, in-situ AFM. Stress relaxation associated with 250°C, and 500°C tempering was characterized by a new method for both fast (FQ) and slow quenched (SQ) conditions. Based on the %stress relaxation, initial loading levels were altered and the corresponding environment-assisted cracking behavior was investigated at two different loading levels.

    Results: Samples tempered at 250ºC exhibited higher corrosion resistance than samples tempered at 500ºC in both FQ and SQ conditions. FQ samples exhibited higher corrosion resistance with an ability to passivate than SQ samples when tempered at 250ºC. However, when tempered at 500°C, the corrosion resistance was poor for both FQ and SQ samples. These observed differences clearly indicate the strong influence of microstructure on the corrosion behavior of the material. There are preferential active sites in the microstructure, which dictate the sequence of corrosion events. Secondary Cr-rich carbides formed during 500ºC tempering apparently deteriorate the corrosion resistance in spite of their smaller sizes as compared to undissolved Cr-rich carbides.  Stress relaxation increased with increasing tempering temperature. In the FQ condition, 250°C temper exhibited superior EAC resistance than 500°C temper in both loading scenarios, indicating the dominant role of corrosion resistance in delaying the failure. Whereas in SQ condition, 500°C temper exhibited superior EAC resistance than 250°C temper in both loading scenarios, indicating the dominant role of applied stress in delaying the failure. The pitting susceptibility increased with increasing applied stress on both FQ and SQ conditions. The fractographic features suggest that the mechanism of failure was mixed mode involving both active path dissolution and hydrogen embrittlement, which could have been operative during the failure in varying magnitude in respective scenarios. 

    Conclusions: Based on this research work, it can be concluded that, in order to have a longer service life, both the localized corrosion behavior and the residual stresses are to be considered while recommending tempering temperature to mold makers.

  • 29.
    Hariramabadran Anantha, Krishnan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Ejnermark, Sebastian
    Medvedeva, Anna
    Sjöström, Johnny
    Pan, Jinshan
    Corrosion Behavior of a Martensitic Stainless Steel AISI 420 Modified From a Mold Size Point of View2016Conference paper (Refereed)
  • 30.
    Hariramabadran Anantha, Krishnan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Örnek, Cem
    Ejnermark, Sebastian
    Medvedeva, Anna
    Sjöström, Johnny
    Pan, Jinshan
    Effect of residual stress on environmentally assisted cracking behavior of slow quenched AISI 420martensitic stainless steel tempered at 250°C and 500°CManuscript (preprint) (Other academic)
  • 31.
    Hariramabadran Anantha, Krishnan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Örnek, Cem
    Ejnermark, Sebastian
    Thuvander, Anders
    Medvedeva, Anna
    Sjöström, Johnny
    Pan, Jinshan
    Experimental and modelling study of the effects of tempering on the susceptibility to environment-assisted cracking of AISI 420 martensitic stainless steelManuscript (preprint) (Other academic)
  • 32.
    He, Yunjuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Dobryden, Illia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Pan, Jinshan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Ahniyaz, Anwar
    RISE Res Inst Sweden, Div Biosci & Mat, SE-11486 Stockholm, Sweden..
    Deltin, Tomas
    PTE Coatings AB, Hammarsvagen 4, SE-59432 Gamleby, Sweden..
    Corkery, Robert W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Nano-scale mechanical and wear properties of a waterborne hydroxyacrylic-melamine anti-corrosion coating2018In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 457, p. 548-558Article in journal (Refereed)
    Abstract [en]

    Corrosion protection is commonly achieved by applying a thin polymer coating on the metal surface. Many studies have been devoted to local events occurring at the metal surface leading to local or general corrosion. In contrast, changes occurring in the organic coating after exposure to corrosive conditions are much less studied. In this article we outline how changes in the coating itself due to curing conditions, environmental and erosion effects can be investigated at the nanometer scale, and discuss how such changes would affect its corrosion protection performance. We focus on a waterborne hydroxyacrylic-melamine coating, showing high corrosion protection performance for carbon steel during long-term (approximate to 35 days) exposure to 0.1 M NaCl solution. The effect of curing time on the conversion of the crosslinking reaction within the coating was evaluated by fourier transform infrared spectroscopy (FTIR); the wetting properties of the cured films were investigated by contact angle measurement, and the corrosion resistance was studied by electrochemical impedance spectroscopy (EIS). In particular, coating nanomechanical and wear properties before and after exposure to 0.1 M NaCl, were evaluated by atomic force microscopy (AFM). Fiber-like surface features were observed after exposure, which are suggested to arise due to diffusion of monomers or low molecular weight polymers to the surface. This may give rise to local weakening of the coating, leading to local corrosion after even longer exposure times. We also find a direct correlation between the stick-slip spacing during shearing and plastic deformation induced in the surface layer, giving rise to topographical ripple structures on the nanometer length scale.

  • 33.
    Hedberg, Yolanda
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Dobryden, Illia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Chaudhary, Himanshu
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Wei, Zheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Lendel, Christofer
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Synergistic effects of metal-induced aggregation of human serum albumin2019In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 173, p. 751-758Article in journal (Refereed)
    Abstract [en]

    Exposure to cobalt (Co), chromium (Cr), and nickel (Ni) occurs often via skin contact and from different dental and orthopedic implants. The metal ions bind to proteins, which may induce structural changes and aggregation, with different medical consequences. We investigated human serum albumin (HSA) aggregation in the presence of Co-II, Cr-III, and/or Ni-II ions and/or their nanoparticle precipitates by using scattering, spectroscopic, and imaging techniques, at simulated physiological conditions (phosphate buffered saline - PBS, pH 7.3) using metal salts that did not affect the pH, and at HSA:metal molar ratios of up to 1:8. Co ions formed some solid nano particles in PBS at the investigated conditions, as determined by nanoparticle tracking analysis, but the Cr-III anions and Ni-II ions remained fully soluble. It was found that all metal ions induced HSA aggregation, and this effect was significantly enhanced when a mixture of all three metal ions was present instead of any single type of ion. Thus, the metal ions induce aggregation synergistically. HSA aggregates formed linear structures on a mica surface in the presence of Cr-III ions. A clear tendency of aggregation and linearly aligned aggregates was seen in the presence of all three metal ions. Spectroscopic investigations indicated that the majority of the HSA molecules maintained their alpha helical secondary structure and conformation. This study highlights the importance of synergistic effects of metal ions and/or their precipitates on protein aggregation, which are highly relevant for implant materials and common exposures to metals.

  • 34.
    Hedberg, Yolanda
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
    Erfani, Behnaz
    Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
    Matura, Mihály
    Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden ; Unit of Occupational and Environmental Dermatology, Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.
    Lidén, Carola
    Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
    Chromium(III) release from chromium-tanned leather elicits allergic contact dermatitis: a use test study.2018In: Contact Dermatitis, ISSN 0105-1873, E-ISSN 1600-0536, Vol. 78, no 5, p. 307-314Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Chromium (Cr) is a common skin sensitizer. The use of Cr(VI) in leather is restricted in the EU, but that of Cr(III) is not.

    OBJECTIVES: To assess whether prolonged exposure to Cr-tanned leather with mainly Cr(III) release may elicit allergic contact dermatitis in Cr-allergic individuals.

    METHOD: Ten Cr-allergic subjects and 22 controls were patch tested with serial dilutions of Cr(III) and Cr(VI), and with leather samples. They then conducted a use test with a Cr-tanned and a Cr-free leather bracelet over a period of 3 weeks, for 12 h per day. Cr deposited on the skin from the bracelets was measured in the controls, and the diphenylcarbazide test for Cr(VI) and extraction tests for Cr(III) and Cr(VI) were conducted for the different leathers.

    RESULTS: Four of 10 Cr-allergic subjects developed positive reactions to the Cr-tanned bracelet within 7-21 days, whereas only 1 of 10 had a positive patch test reaction to this leather. Cr released from the Cr-tanned leather was most probably entirely Cr(III), with a quantifiable amount being deposited on the skin.

    CONCLUSIONS: This study strongly suggests that prolonged and repeated exposure to Cr-tanned leather with mainly Cr(III) release is capable of eliciting allergic contact dermatitis in Cr-allergic individuals.

  • 35.
    Hedberg, Yolanda
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Uter, Wolfgang
    Univ Erlangen Nurnberg, Dept Med Informat Biometry & Epidemiol, Erlangen, Germany..
    Banerjee, Piu
    Guys Hosp, St Johns Inst Dermatol, London, England.;Lewisham & Greenwich NHS Trust, London, England..
    Lind, Marie-Louise
    Stockholm Cty Council, Ctr Occupat & Environm Med, Stockholm, Sweden..
    Steengaard, Sanne Skovvang
    Univ Hosp Herlev Gentofte, Natl Allergy Res Ctr, Hellerup, Denmark..
    Teo, Ying
    Guys Hosp, St Johns Inst Dermatol, London, England..
    Liden, Carola
    Karolinska Inst, Inst Environm Med, Box 210, SE-17177 Stockholm, Sweden..
    Non-oxidative hair dye products on the European market: What do they contain?2018In: Contact Dermatitis, ISSN 0105-1873, E-ISSN 1600-0536, Vol. 79, no 5, p. 281-287Article in journal (Refereed)
    Abstract [en]

    Background: Hair dyeing is very common and may cause allergic contact dermatitis. Oxidative (often termed permanent or semi-permanent) hair dye products have constituted the focus of market surveys and toxicological risk assessments, while non-oxidative (semi-permanent, temporary or direct) products have not been assessed. Objectives: To identify the hair dye substances presently used in non-oxidative hair dye products in Europe. Methods: Ingredient label data on eligible products in 5 European countries were collected, and 289 different non-oxidative hair dye products were included in this study. Results: Up to 9 hair dye substances were present in each product. Sixty-eight individual hair dye substances were identified on the 289 product labels, and their occurrence ranged from 0.3% to 34%. There were differences concerning substances used and their number per product between products of different consistency and colour. Conclusions: The hair dye substances in non-oxidative hair dye products are different from those in oxidative hair dye products, and are currently not covered by patch test series. The toxicological and skin-sensitizing profile of the substances in non-oxidative hair dye products, as well as their concentrations, should be further investigated.

  • 36.
    Hedberg, Yolanda
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Wei, Zheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Chevez, Federico Moncada
    Natl Autonomous Univ Honduras, Dept Publ Hlth, Fac Med Sci, Tegucigalpa, Honduras.;Cent Amer Network Informat & Advice Ctr Toxicol R, Tegucigalpa, Honduras.;Ctr Res & Dev Hlth Labour & Environm CIDSTA, Tegucigalpa, Honduras..
    Chromium(III), chromium(VI) and cobalt release from leathers produced in Nicaragua2019In: Contact Dermatitis, ISSN 0105-1873, E-ISSN 1600-0536, Vol. 80, no 3, p. 149-155Article in journal (Refereed)
    Abstract [en]

    Background: Leather exposure has been associated with chromium (Cr) and cobalt (Co) contact dermatitis. Cr(VI) in leather is now restricted to < 3 mg/kg in the EU. Cr(III) is not restricted. Objectives: To analyse 29 differently coloured Cr-tanned leather samples from two Nicaraguan tanneries, and to compare their release of Cr, Cr(VI) and Co with that of leathers produced in Europe. Methods: Cr, Cr(VI) and Co were extracted in phosphate buffer for 3 hours at 25 degrees C according to EN ISO 17075. Atomic absorption spectroscopy and spectrophotometry were used for detection of the metals in phosphate buffer. Results: There was no difference in total Cr or Cr(VI) release between European and Nicaraguan leathers. There was no association between Cr(VI) and total Cr release. Co was released primarily from leathers of one tannery. Cr(III) was released in significantly higher amounts than Cr(VI). Conclusions: Future investigations and regulations should focus on Cr(III) and Co as well as on Cr(VI).

  • 37.
    Hedberg, Yolanda
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Znidarsic, Monika
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Univ Ljubljana, Fac Chem & Chem Technol, Vecna Pot 113, SI-1000 Ljubljana, Slovenia.
    Herting, Gunilla
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Milosev, Ingrid
    Odnevall Wallinder, Inger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Mechanistic insight on the combined effect of albumin and hydrogen peroxide on surface oxide composition and extent of metal release from Ti6Al4V2019In: Journal of Biomedical Materials Research - Part B Applied Biomaterials, ISSN 1552-4973, Vol. 107, no 3, p. 858-867Article in journal (Refereed)
    Abstract [en]

    The titanium–aluminium (6 wt%)–vanadium (4 wt%) (Ti6Al4V) alloy is widely used as an orthopedic and dental implant material due to its high corrosion resistance in such environments. The corrosion resistance is usually determined by means of electrochemical methods, which may not be able to detect other chemical surface reactions. Literature findings report a synergistic effect of the combination of the abundant protein albumin and hydrogen peroxide (H 2 O 2 ) on the extent of metal release and corrosion of Ti6Al4V. The objectives of this study were to gain further mechanistic insight on the interplay of H 2 O 2 and albumin on the metal release process of Ti6Al4V with special focus on (1) kinetics and (2) H 2 O 2 and albumin concentrations. This was accomplished mainly by metal release and surface oxide composition investigations, which confirmed the combined effect of H 2 O 2 and albumin on the metal release process, although not detectable by electrochemical open circuit potential measurements. A concentration of 30 mM H 2 O 2 induced substantial changes in the surface oxide characteristics, an oxide which became thicker and enriched in aluminum. Bovine serum albumin (BSA) seemed to be able to deplete this aluminum content from the outermost surface or at least to delay its surface enrichment. This effect increased with increased BSA concentration, and for time periods longer than 24 h. This study hence suggests that short-term (accelerated) corrosion resistance measurements are not sufficient to predict potential health effects of Ti6Al4V alloys since also chemical dissolution mechanisms play a large role for metal release, possibly in a synergistic way.

  • 38.
    Hermanowska, Malgorzata
    et al.
    Univ Southern Denmark, Dept Phys & Chem, Odense M, Denmark.;Univ Southern Denmark, MEMPHYS, Odense M, Denmark..
    Bijelic, Goran
    KTH, School of Chemical Science and Engineering (CHE).
    Ciobanasu, Corina
    Univ Bonn, Inst Phys & Theoret Chem, Bonn, Germany..
    Kubitscheck, Ulrich
    Univ Bonn, Inst Phys & Theoret Chem, Bonn, Germany..
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Klosgen, Beate M.
    Univ Southern Denmark, Dept Phys & Chem, Odense M, Denmark.;Univ Southern Denmark, MEMPHYS, Odense M, Denmark..
    Charges in phospholipid layers2009In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 96, no 3, p. 18A-18AArticle in journal (Other academic)
  • 39.
    Herting, Gunilla
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Karlsson, Maria-Elisa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Odnevall Wallinder, Inger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    A novel method to assess mass loss of aluminium in concrete2018In: Materials and corrosion - Werkstoffe und Korrosion, ISSN 0947-5117, E-ISSN 1521-4176Article in journal (Refereed)
    Abstract [en]

    A novel pickling procedure for aluminium is elaborated for successful removal of corrosion products on aluminium embedded and exposed in concrete, allowing subsequent mass loss evaluation. The current recommended standard procedures for mass loss evaluation of aluminium are not sufficiently effective, either leaving significant amounts of concrete and corrosion products on the aluminium surfaces after pickling, or containing hazardous chemicals. Removal of both concrete and corrosion products from the aluminium surfaces require a stepwise combination of an aqueous glycine solution, nitric acid at elevated temperature and careful manual removal of adherent concrete.

  • 40. Hosseinpour, S.
    et al.
    Leygraf, Christopher
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Gretic, Z. H.
    Mioc, E. K.
    Curkovic, H. O.
    Bochmann, S.
    Bachmann, J.
    Waegner, V.
    Virtanen, S.
    Peukert, W.
    Self-assembled monolayers as corrosion inhibitors; indoor, marine and biologically relevant exposure2017In: EUROCORR 2017 - The Annual Congress of the European Federation of Corrosion, 20th International Corrosion Congress and Process Safety Congress 2017, Asociace koroznich inzenyru z.s.- AKI - Czech Association of Corrosion Engineers , 2017Conference paper (Refereed)
  • 41. Jin, Ying
    et al.
    Lai, Zhaogui
    Bi, Peng
    Yan, Songtao
    Wen, Lei
    Wang, Yongchao
    Pan, Jinshan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Leygraf, Christofer
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Combining lithography and capillary techniques for local electrochemical property measurements2018In: Electrochemistry communications, ISSN 1388-2481, E-ISSN 1873-1902, Vol. 87, p. 53-57Article in journal (Refereed)
    Abstract [en]

    The relationships between composition, microstructure and electrochemical properties are of fundamental importance in understanding the corrosion of multiphase materials and thus in aiding in the design of new materials. A local electrochemical test system which combines a capillary device with a photolithographic mask has been developed to investigate the local electrochemical properties of a predefined micron-sized area with greater reliability and versatility than existing approaches. Independent electrochemical measurements were conducted on the different phases of a 2205 duplex stainless steel in NaCl solution, demonstrating the feasibility of the developed test system.

  • 42.
    Kaestner, Bernd
    et al.
    PTB, Abbestr 2-12, D-10587 Berlin, Germany..
    Johnson, C. Magnus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Hermann, Peter
    PTB, Abbestr 2-12, D-10587 Berlin, Germany.;Deutschland GmbH & Co KG, West Pharmaceut Serv, Stolberger Str 21-41, D-52249 Eschweiler, Germany..
    Kruskopf, Mattias
    PTB, Bundesallee 100, D-38116 Braunschweig, Germany.;NIST, 100 Bur Dr, Gaithersburg, MD 20899 USA..
    Pierz, Klaus
    PTB, Bundesallee 100, D-38116 Braunschweig, Germany..
    Hoehl, Arne
    PTB, Abbestr 2-12, D-10587 Berlin, Germany..
    Hornemann, Andrea
    PTB, Abbestr 2-12, D-10587 Berlin, Germany..
    Ulrich, Georg
    PTB, Abbestr 2-12, D-10587 Berlin, Germany..
    Fehmel, Jakob
    PTB, Abbestr 2-12, D-10587 Berlin, Germany..
    Patoka, Piotr
    Free Univ Berlin, Inst Chem & Biochem, Phys Chem, Takustr 3, D-14195 Berlin, Germany..
    Ruehl, Eckart
    Free Univ Berlin, Inst Chem & Biochem, Phys Chem, Takustr 3, D-14195 Berlin, Germany..
    Ulm, Gerhard
    PTB, Abbestr 2-12, D-10587 Berlin, Germany..
    Infrared Nanospectroscopy of Phospholipid and Surfactin Monolayer Domains2018In: ACS OMEGA, ISSN 2470-1343, Vol. 3, no 4, p. 4141-4147Article in journal (Refereed)
    Abstract [en]

    A main challenge in understanding the structure of a cell membrane and its interactions with drugs is the ability to chemically study the different molecular species on the nanoscale. We have achieved this for a model system consisting of mixed monolayers (MLs) of the biologically relevant phospholipid 1,2-distearoyl-sn-glycero-phosphatidylcholine and the antibiotic surfactin. By employing nano-infrared (IR) microscopy and spectroscopy in combination with atomic force microscopy imaging, it was possible to identify and chemically detect domain formation of the two constituents as well as to obtain IR spectra of these species with a spatial resolution on the nanoscale. A novel method to enhance the near-field imaging contrast of organic MLs by plasmon interferometry is proposed and demonstrated. In this technique, the organic layer is deposited on gold and ML graphene substrates, the latter of which supports propagating surface plasmons. Plasmon reflections arising from changes in the dielectric environment provided by the organic layer lead to an additional contrast mechanism. Using this approach, the interfacial region between surfactin and the phospholipid has been mapped and a transition region is identified.

  • 43. Kawada, S.
    et al.
    Watanabe, Seiya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Tadokoro, C.
    Sasaki, S.
    Effects of Alkyl Chain Length of Sulfate and Phosphate Anion-Based Ionic Liquids on Tribochemical Reactions2018In: Tribology letters, ISSN 1023-8883, E-ISSN 1573-2711, Vol. 66, no 1, article id 8Article in journal (Refereed)
    Abstract [en]

    Ionic liquids are expected to become increasingly popular lubricants as they feature a number of attractive properties. This investigation focused on sulfate and phosphate anion-based ionic liquids and the improvement in lubricating performance with the addition of these anions. However, the detailed lubricating mechanism and effect of alkyl chain length on tribochemical reactions are unclear. This study investigates tribochemical reaction processes using a quadrupole mass spectrometer (Q-MS) and X-ray photoelectron spectroscopy. Seven types of ionic liquids: 1-ethyl-3-methylimidazolium hydrogensulfate ([EMIM][HSO4]), 1-ethyl-3-methylimidazolium methylsulfate ([EMIM][MSU]), 1-ethyl-3-methylimidazolium ethylsulfate ([EMIM][ESU]), 1-ethyl-3-methylimidazolium n-octylsulfate ([EMIM][OSU]), 1-ethyl-3-methylimidazolium dimethyl phosphate ([EMIM][DMP]), 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM][DEP]), and 1-ethyl-3-methylimidazolium dibutyl phosphate ([EMIM][DBP]), were selected as lubricants. The friction coefficient of sulfate anion-based ionic liquids increased as their alkyl chain lengthened. However, wear scar diameter in this case showed the opposite tendency. The friction coefficient and wear scar diameter of phosphate anion-based ionic liquids increased with an increase in the alkyl chain length. Q-MS results indicated that the main outgassing components during sliding were the cation components, whereas the anion remained on the sliding surface and formed a tribofilm. The ionic liquids with short alkyl chains reacted with the sliding surface easily and led to very low friction. However, corrosive wear occurred in the case of the sulfate anion. On the other hand, anions with long alkyl chains underwent gradual tribochemical reactions because that led the mitigation of contact with nascent surface. The phosphate-based ionic liquids with long alkyl chains were unable to cause the lubricating effect due to low reactivity.

  • 44. Kawada, S.
    et al.
    Watanabe, Seiya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Tadokoro, C.
    Tsuboi, R.
    Sasaki, S.
    Lubricating mechanism of cyano-based ionic liquids on nascent steel surface2018In: Tribology International, ISSN 0301-679X, E-ISSN 1879-2464, Vol. 119, p. 474-480Article in journal (Refereed)
    Abstract [en]

    This study investigates the lubricating mechanism of cyano-based ionic liquids on steel surfaces using Q-MS, ToF-SIMS, and TGA. [EMIM][DCN], [EMIM][TCC], [EMIM][TCB], [BMPL][DCN], [BMPL][TCC], and [BMPL][TCB] were selected as lubricants. [EMIM][TCB] exhibited the highest friction coefficient. The others exhibited very low friction coefficients of less than 0.08. Q-MS analysis indicated that the cation components were detected in outgassing during sliding tests. However, anion components were not detected. ToF-SIMS results showed that the anions remained on the worn surfaces which would lead low friction coefficients. To achieve low friction coefficient, the tribo-decomposition of the ionic liquids and adsorption of anion were required. TGA indicated thermal stability was an index for tribo-decomposition on the nascent steel surface.

  • 45. Kawada, Shouhei
    et al.
    Sato, Keisuke
    Watanabe, Seiya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Sasaki, Shinya
    Lubricating property of cyano-based ionic liquids against hard materials2017In: Journal of Mechanical Science and Technology, ISSN 1738-494X, E-ISSN 1976-3824, Vol. 31, no 12, p. 5745-5750Article in journal (Refereed)
    Abstract [en]

    Ionic liquids are expected to be used as a new lubricants and lubricant additives because of their unique properties. However, cyano-based ionic liquids have exhibited poor lubricating property with steel/steel contacts. We evaluated the lubricating properties of cyano-based ionic liquids with steel/hard materials contacts. TiO2, Al2O3, and tetrahedral amorphous carbon (ta-C) DLC were used as hard materials. Six types of ionic liquids, as combination of two types of cations ([EMIM], [BMPL]) and three types of cyanide anions ([DCN], [TCC] and [TCB]), were selected. In sliding tests of steel/TiO2 and steel/Al2O3 lubricated with [EMIM][DCN], [BMPL][DCN], [EMIM][TCC], [BMPL][TCC] exhibited low friction coefficients of less than 0.1. In addition, steel/Al2O3 and steel/ta-C DLC lubricated with [BMPL][TCB] exhibited very low friction coefficients less than 0.05. On the other hand, high friction coefficients were observed at steel/TiO2 and steel/Al2O3 contacts lubricated with [EMIM][TCB] and steel/ta-C DLC contact lubricated with [EMIM] cation group. Peeling of the ta-C DLC was observed when [EMIM] cation group was used. ToF-SIMS analysis indicated that the anion was adsorbed on the worn surfaces in the case of low frictional conditions. However, both ions were hardly observed in the case of high frictional conditions. It is considered that the ionic liquids underwent tribo-decomposition on the worn surfaces at low friction coefficient. To evaluate the degree of tribo-decomposition, Thermogravimetric analysis (TGA) was used. TGA results indicated that [EMIM][TCB], which exhibited high friction coefficient, had the most highest stability among all ionic liquids. Low stability ionic liquids, however, showed a tendency for low friction coefficient. These results suggest that lubricating properties are related to the stability of ionic liquids.

  • 46.
    Kharitonov, Dmitry S.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Belarusian State Technol Univ, Chem Technol & Engn Fac, Dept Chem Electrochem Prod Technol & Mat Elect Eq, Minsk 220006, BELARUS..
    Örnek, Cem
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Swerea KIMAB, Dept Corros Energy & Proc Ind, SE-16440 Kista, Sweden..
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Sommertune, Jens
    RISE Res Inst Sweden, Chem Mat & Surfaces, SE-11486 Stockholm, Sweden..
    Zharskii, Ivan M.
    Belarusian State Technol Univ, Chem Technol & Engn Fac, Dept Chem Electrochem Prod Technol & Mat Elect Eq, Minsk 220006, BELARUS..
    Kurilo, Irina I.
    Belarusian State Technol Univ, Organ Subst Technol Fac, Dept Phys Colloid & Analyt Chem, Minsk 220006, BELARUS..
    Pan, Jinshan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Corrosion Inhibition of Aluminum Alloy AA6063-T5 by Vanadates: Microstructure Characterization and Corrosion Analysis2018In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 165, no 3, p. C116-C126Article in journal (Refereed)
    Abstract [en]

    Corrosion inhibition of aluminum alloy AA6063-T5 by vanadates (NaVO3) in 0.05 M NaCl solution has been investigated by electrochemical and weight loss measurements, and associated with microstructure and Volta potential data. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy analyses confirmed the presence of micrometer-sized Fe-rich Al4.01MnSi0.74, Al1.69Mg4Zn2.31, and FeAl3 intermetallic phases (IMPs) and nanometer-sized CuAl2, ZnAl2, and Mg2Si precipitates in the microstructure. Scanning Kelvin probe force microscopy measurements showed Volta potential differences of up to 600 mV between the microstructure constituents indicating a high susceptibility to micro-galvanic corrosion, with interphase boundary regions exhibiting the highest propensity to corrosion. Most IMPs had cathodic character whereas some nanometer-sized Mg-rich particles exhibited anodic nature, with large Volta potential gradients within interphase regions of large cathodic particles. Electrochemical potentiodynamic polarization measurements indicated that the vanadates provided mixed corrosion inhibition effects, mitigating both oxygen reduction, occurring on cathodic IMPs, and anodic metal dissolution reaction, occurring on anodic sites, such as Mg2Si and interphase boundary regions. Electrochemical measurements indicated that the sodium metavanadate inhibitor blocks active metal dissolution, giving high inhibition efficiency (>95%) during the initial exposure, whereas long-term weight loss measurements showed that the efficacy decreases after prolonged exposure.

  • 47.
    Kharitonov, Dmitry S.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Sommertune, Jens
    RISE Res Inst Sweden, Surface Proc & Formulat, SE-11486 Stockholm, Sweden..
    Örnek, Cem
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Ryl, Jacek
    Gdansk Univ Technol, Dept Electrochem Corros & Mat Engn, 11-12 Narutowicza St, PL-80233 Gdansk, Poland..
    Kurilo, Irina I.
    Belarusian State Technol Univ, Organ Subst Technol Fac, Dept Phys Colloid & Analyt Chem, Minsk 220006, BELARUS..
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Pan, Jinshan
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Corrosion inhibition of aluminium alloy AA6063-T5 by vanadates: Local surface chemical events elucidated by confocal Raman micro-spectroscopy2019In: CORROSION SCIENCE, Vol. 148, p. 237-250Article in journal (Refereed)
    Abstract [en]

    Chemical interactions between aqueous vanadium species and aluminium alloy AA6063-T5 were investigated in vanadate-containing NaCl solutions. Confocal Raman and X-ray photoelectron spectroscopy experiments were utilised to gain insight into the mechanism of corrosion inhibition by vanadates. A greenish-grey coloured surface layer, consisting of V+4 and V+5 polymerized species, was seen to form on the alloy surface, especially on top of cathodic micrometre-sized IMPs, whereby suppressing oxygen reduction kinetics. The results suggest a two-step mechanism of corrosion inhibition in which V+5 species are first reduced to V+4 or V+3 species above cathodic IMPs, and then oxidized to mixed-valence V+5/V+4 polymerized compounds.

  • 48. Kocabaş, M.
    et al.
    Örnek, Cem
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Curioni, M.
    Cansever, N.
    Nickel fluoride as a surface activation agent for electroless nickel coating of anodized AA1050 aluminum alloy2019In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 364, p. 231-238Article in journal (Refereed)
    Abstract [en]

    In this study, the use of nickel fluoride tetrahydrate (NiF 2 ·4H 2 O) as a surface activator and sealant at the same time for the coating of electroless nickel-phosphorus (Ni-P) on anodized aluminum alloy AA1050 is proposed. The usage of the activator resulted in more efficient deposition of Ni-P, improved adhesion properties, and increased wear and friction behavior as opposed to non-activated conditions. Scanning electron microscopy (SEM) and confocal laser microscopy (CLM) analyses of ultramicrotome-cut cross sections of Ni-P coated specimens, surface-activated by NiF 2 ·4H 2 O, revealed a more well-structured metal-coating interface as opposed to non-activated conditions.

  • 49.
    Koppolu, Rajesh
    et al.
    Abo Akad Univ, Lab Paper Coating & Converting, Ctr Funct Mat, SF-20500 Turku, Finland..
    Abitbol, Tiffany
    RISE Res Inst Sweden, Biosci & Mat Surface Proc & Formulat, S-11428 Stockholm, Sweden..
    Kumar, Vinay
    Abo Akad Univ, Lab Paper Coating & Converting, Ctr Funct Mat, SF-20500 Turku, Finland.;Finland Ltd, VTT Tech Res Ctr, High Performance Fiber Prod, Espoo 02044, Finland..
    Jaiswal, Aayush Kumar
    Abo Akad Univ, Lab Paper Coating & Converting, Ctr Funct Mat, SF-20500 Turku, Finland..
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Biosci & Mat Surface Proc & Formulat, S-11428 Stockholm, Sweden..
    Toivakka, Martti
    Abo Akad Univ, Lab Paper Coating & Converting, Ctr Funct Mat, SF-20500 Turku, Finland..
    Continuous roll-to-roll coating of cellulose nanocrystals onto paperboard2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 10, p. 6055-6069Article in journal (Refereed)
    Abstract [en]

    There is an increased interest in the use of cellulose nanocrystal (CNC) films and coatings for a range of functional applications in the fields of material science, biomedical engineering, and pharmaceutical sciences. Most of these applications have been demonstrated on films and coatings produced using laboratory-scale batch processes, such as solvent casting, dip coating, or spin coating. For successful coating application of CNC suspensions using a high throughput process, several challenges need to be addressed: relatively high viscosity at low solids content, coating brittleness, and potentially poor adhesion to the substrate. This work aims to address these problems. The impact of plasticizer on suspension rheology, coating adhesion, and barrier properties was quantified, and the effect of different pre-coatings on the wettability and adhesion of CNC coatings to paperboard substrates was explored. CNC suspensions were coated onto pre-coated paperboard in a roll-to-roll process using a custom-built slot die. The addition of sorbitol reduced the brittleness of the CNC coatings, and a thin cationic starch pre-coating improved their adhesion to the paperboard. The final coat weight, dry coating thickness, and coating line speed were varied between 1-11 g/m(2), 900 nm-7 A mu m, and 2.5-10 m/min, respectively. The barrier properties, adhesive strength, coating coverage, and smoothness of the CNC coatings were characterized. SEM images show full coating coverage at coat weights as low as 1.5 g/m(2). With sorbitol as plasticizer and at coat weights above 3.5 g/m(2), heptane vapor and water vapor transmission rates were reduced by as much as 99% and 75% respectively. Compared to other film casting techniques, the process employed in this work deposits a relatively thick coating in significantly less time, and may therefore pave the way toward various functional applications based on CNCs. [GRAPHICS] .

  • 50.
    Kozhuharov, Svilen
    et al.
    Univ Geneva, Dept Inorgan & Analyt Chem, Sci 2, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland..
    Radiom, Milad
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. Univ Geneva, Dept Inorgan & Analyt Chem, Sci 2, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland..
    Maroni, Plinio
    Univ Geneva, Dept Inorgan & Analyt Chem, Sci 2, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland..
    Borkovec, Michal
    Univ Geneva, Dept Inorgan & Analyt Chem, Sci 2, 30 Quai Ernest Ansermet, CH-1205 Geneva, Switzerland..
    Persistence Length of Poly(vinyl amine): Quantitative Image Analysis versus Single Molecule Force Response2018In: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 51, no 10, p. 3632-3639Article in journal (Refereed)
    Abstract [en]

    Single molecules of poly(vinyl amine) are analyzed in the adsorbed state by atomic force microscopy (AFM) in two different ways. First, high-resolution images of individual adsorbed polymers were recorded in monovalent electrolyte solutions. The backbone of the imaged polymers was digitized, and the directional correlation function and internal mean-square end-to-end distance were evaluated. These quantities were analyzed with the wormlike chain (WLC) model, and the persistence length was extracted. Second, individual polymer chains were picked up from the surface, and their force extension behavior was recorded in the same electrolyte solutions. These force profiles were also interpreted in terms of the WLC model, whereby the elastic contribution was also considered. Both techniques yield the persistence length of the polymer. From imaging one obtains a persistence length of about 1.6 nm, while the force experiments yield a value around 0.51 nm. We suspect that the force experiments reflect the intrinsic part of the persistence length, while the imaging experiments yield the persistence length including the electrostatic

123 1 - 50 of 107
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf