Change search
Refine search result
12 1 - 50 of 69
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Grönkvist, Stefan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Large-scale storage of hydrogen2019In: International journal of hydrogen energy, ISSN 0360-3199, E-ISSN 1879-3487, Vol. 44, no 23, p. 11901-11919Article in journal (Refereed)
    Abstract [en]

    The large-scale storage of hydrogen plays a fundamental role in a potential future hydrogen economy. Although the storage of gaseous hydrogen in salt caverns already is used on a full industrial scale, the approach is not applicable in all regions due to varying geological conditions. Therefore, other storage methods are necessary. In this article, options for the large-scale storage of hydrogen are reviewed and compared based on fundamental thermodynamic and engineering aspects. The application of certain storage technologies, such as liquid hydrogen, methanol, ammonia, and dibenzyltoluene, is found to be advantageous in terms of storage density, cost of storage, and safety. The variable costs for these high-density storage technologies are largely associated with a high electricity demand for the storage process or with a high heat demand for the hydrogen release process. If hydrogen is produced via electrolysis and stored during times of low electricity prices in an industrial setting, these variable costs may be tolerable.

  • 2. Bai, Q.
    et al.
    Guo, Z.
    Li, H.
    Yang, Xiaohu
    KTH, School of Chemical Science and Engineering (CHE).
    Jin, L.
    Yan, Jerry
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Experimental investigation on the solidification behavior of phase change materials in open-cell metal foams2017In: Energy Procedia, Elsevier Ltd , 2017, Vol. 142, p. 3703-3708Conference paper (Refereed)
    Abstract [en]

    This study presented an experimental investigation on solidification behavior of fluid saturated in highly porous open-cell copper foams. Particular attention has been made on the effect of pore parameters (pore density and porosity) on the solidification behavior. A purposely-designed apparatus was built for experimental observations. Results showed that the copper foam had a great effect on solidification and the full solidification time can be saved up to 50%, especially preventing the decrease in solidification rate during the later stage of phase change. The smaller the porosity is, the faster the solidification rate will be. Pore density was found to have little influence upon the solidification rate. In addition, the local natural convection does exist but it has a slight effect on solidification, leading to the slant of the solid-liquid interface.

  • 3. Barbarelli, S.
    et al.
    Castiglione, T.
    Zupone, G. L.
    Bova, S.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    CFD Investigation of the Open Center on the Performance of a Tidal Current Turbine2019In: Renewable Energy Integration with Mini/Microgrid, Elsevier, 2019, Vol. 159, p. 28-33Conference paper (Refereed)
    Abstract [en]

    In the present paper, a revision of the layout of an innovative open center self-balancing tidal turbine is presented. Initially, the design was characterized by a central deflector, responsible for the machine equilibrium, hosted in the central part of the machine; the presence of this device, however, affected the size of the opening. Moreover, the turbine was conceived as connected to a steel rope subject to tensile stress. These peculiarities brought some critical issues due to the excessive length of the rope and to the size of the deflector, which constrained the diameters ratio. The new design involves the possibility of reducing the anchoring line length by substituting the rope with a series of tubular elements connected by alternate heavy and light nodes. The heavy nodes can gather the anchoring line when the tides stops acting. Moreover, the light nodes are floating deflectors, which develop the same action of the central deflector, whose size, in this configuration, does not affect the equilibrium. In the new machine configuration, the main deflector is located out of the center so that it can counterbalance the torque exerted by the rotor during its rotation. Finally, by means of CFD simulations, some criteria for assessing the best diameter ratio are defined.

  • 4.
    Benavente Araoz, Fabian Andres
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Lundblad, Anders
    Res Inst Sweden, RISE, Div Safety & Transport Elect, SE-50462 Boras, Sweden..
    Campana, Pietro Elia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Zhang, Yang
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Cabrera, Saul
    UMSA Univ Mayor San Andres, Carrera Ciencias Quim, Inst Invest Quim, La Paz, Bolivia..
    Lindbergh, Göran
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
    Photovoltaic/battery system sizing for rural electrification in Bolivia: Considering the suppressed demand effect2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 235, p. 519-528Article in journal (Refereed)
    Abstract [en]

    Rural electrification programs usually do not consider the impact that the increment of demand has on the reliability of off-grid photovoltaic (PV)/battery systems. Based on meteorological data and electricity consumption profiles from the highlands of Bolivian Altiplano, this paper presents a modelling and simulation framework for analysing the performance and reliability of such systems. Reliability, as loss of power supply probability (LPSP), and cost were calculated using simulated PV power output and battery state of charge profiles. The effect of increasing the suppressed demand (SD) by 20% and 50% was studied to determine how reliable and resilient the system designs are. Simulations were performed for three rural application scenarios: a household, a school, and a health centre. Results for the household and school scenarios indicate that, to overcome the SD effect, it is more cost-effective to increase the PV power rather than to increase the battery capacity. However, with an increased PV-size, the battery ageing rate would be higher since the cycles are performed at high state of charge (SOC). For the health centre application, on the other hand, an increase in battery capacity prevents the risk of electricity blackouts while increasing the energy reliability of the system. These results provide important insights for the application design of off-grid PV-battery systems in rural electrification projects, enabling a more efficient and reliable source of electricity.

  • 5.
    Campana, Pietro Elia
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Wästhage, Louise
    Mälardalen Univ, Sch Business Soc & Engn, Future Energy Ctr, S-72123 Vasteras, Sweden..
    Nookuea, Worrada
    Mälardalen Univ, Sch Business Soc & Engn, Future Energy Ctr, S-72123 Vasteras, Sweden..
    Tan, Yuting
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Optimization and assessment of floating and floating-tracking PV systems integrated in on- and off-grid hybrid energy systems2019In: Solar Energy, ISSN 0038-092X, E-ISSN 1471-1257, Vol. 177, p. 782-795Article in journal (Refereed)
    Abstract [en]

    Considering the targets of Thailand in terms of renewable energy exploitation and decarbonization of the shrimp farming sector, this work evaluates several scenarios for optimal integration of hybrid renewable energy systems into a representative shrimp farm. In particular, floating and floating-tracking PV systems are considered as alternatives for the exploitation of solar energy to meet the shrimp farm electricity demand. By developing a dynamic techno-economic simulation and optimization model, the following renewable energy systems have been evaluated: PV and wind based hybrid energy systems, off-grid and on-grid PV based hybrid energy systems, ground mounted and floating PV based hybrid energy systems, and floating and floating-tracking PV based hybrid energy systems. From a water-energy nexus viewpoint, floating PV systems have shown significant impacts on the reduction of evaporation losses, even if the energy savings for water pumping are moderate due to the low hydraulic head. Nevertheless, the study on the synergies between water for food and power production has highlighted that the integration of floating PV represents a key solution for reducing the environmental impacts of shrimp farming. For the selected location, the results have shown that PV systems represent the best renewable solution to be integrated into a hybrid energy system due to the abundance of solar energy resources as compared to the moderate wind resources. The integration of PV systems in off-grid configurations allows to reach high renewable reliabilities up to 40% by reducing the levelized cost of electricity. Higher renewable reliabilities can only be achieved by integrating energy storage solutions but leading to higher levelized cost of electricity. Although the floating-tracking PV systems show higher investment costs as compared to the reference floating PV systems, both solutions show similar competiveness for reliabilities up to 45% due to the higher electricity production of the floating-tracking PV systems. The higher electricity production from the floating-tracking PV systems leads to a better competitiveness for reliabilities higher than 90% due to lower capacity requirements for the storage systems.

  • 6.
    Campana, Pietro Elia
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Zhang, J.
    Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA..
    Yao, T.
    Sci Syst & Applicat Inc SSAI, Lanham, MD 20706 USA.;NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Andersson, S.
    Swedish Meteorol & Hydrol Inst, SE-60176 Norrkoping, Sweden..
    Landelius, T.
    Swedish Meteorol & Hydrol Inst, SE-60176 Norrkoping, Sweden..
    Melton, F.
    NASA ARC CREST, Moffett Field, CA 94035 USA.;Calif State Univ Monterey Bay, Sch Nat Sci, Seaside, CA 93955 USA..
    Yan, Jerry
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Malardalen Univ, Future Energy Ctr, Sch Business Soc & Engn, SE-72123 Vasteras, Sweden.;KTH Royal Inst Technol, Dept Chem Engn, SE-10044 Stockholm, Sweden..
    Managing agricultural drought in Sweden using a novel spatially-explicit model from the perspective of water-food-energy nexus2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 197, p. 1382-1393Article in journal (Refereed)
    Abstract [en]

    Using a multi-disciplinary approach, this paper integrated spatial analysis with agricultural and energy system modelling to assess the impacts of drought on crop water demand, water availability, crop yield, and electricity requirements for irrigation. This was done by a novel spatially-explicit and integrated water-food-energy nexus model, using the spatial climatic data generated by the mesoscale MESAN and STRANG models. In this study, the model was applied to quantify the effects of drought on the Swedish irrigation sector in 2013, a typical drought year, for a specific crop. The results show that drought can severely affect the crop yield if irrigation is not applied, with a peak yield reduction of 18 t/ha, about 50 % loss as compared to the potential yield in irrigated conditions. Accordingly, the water and energy requirements for irrigation to halt the negative drought effects and maintain high yields are significant, with the peaks up to 350 mm and 700 kWh per hectare. The developed model can be used to provide near real-time guidelines for a comprehensive drought management system. The model also has significant potentials for applications in precision agriculture, especially using high-resolution satellite data.

  • 7.
    Ding, Jing
    et al.
    Sun Yat Sen Univ, Sch Engn, Guangzhou 510006, Guangdong, Peoples R China..
    Du, Lichan
    Sun Yat Sen Univ, Sch Engn, Guangzhou 510006, Guangdong, Peoples R China..
    Pan, Gechuanqi
    Sun Yat Sen Univ, Sch Engn, Guangzhou 510006, Guangdong, Peoples R China..
    Lu, Jianfeng
    Sun Yat Sen Univ, Sch Engn, Guangzhou 510006, Guangdong, Peoples R China..
    Wei, Xiaolan
    South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China..
    Li, Jiang
    Natl Supercomp Ctr Guangzhou, Guangzhou 510006, Guangdong, Peoples R China..
    Wang, Weilong
    Sun Yat Sen Univ, Sch Engn, Guangzhou 510006, Guangdong, Peoples R China..
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Malardalen Univ, Sch Business Soc & Energy, Vasteras, Sweden.
    Molecular dynamics simulations of the local structures and thermodynamic properties on molten alkali carbonate K2CO32018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 220, p. 536-544Article in journal (Refereed)
    Abstract [en]

    Molten carbonate salts have received particular attention for high-temperature thermal energy storage and heat Molecular dynamics simulation transfer applications due to desirable thermal characteristics, such as wide operating temperature range, low Molten alkali carbonates causticity and excellent thermal stability. In this study, molecular dynamics (MD) simulations were performed Local structures on molten alkali carbonate K2CO3 based on an effective pair potential model, a Born-Mayer type combined with Thermodynamic properties a Coulomb term. The radial distribution functions (RDF) and coordination number curves of the molten salt were characterized to explore the temperature dependences of macroscopic properties from microscopic view. The results suggest that the distance between K2CO3 particles is getting larger with temperature increasing, resulting in the increase of molar volume and the diminished ability of resistance to shear deformation and heat transfer by vibration between ions. Besides, it can be concluded that the structure of CO32- is inferred reasonably to be ortho-triangular pyramid from the comprehensive analysis of local structures including the angular distribution functions (ADF). Moreover, the thermodynamic properties were simulated in detail from 1200 to 1600 K including the density, thermal expansion coefficient, specific heat capacity, sheer viscosity, thermal conductivity and ion self-diffusion coefficient, which was hard to be measured from experiments under high-temperature extreme conditions, All the simulation results are in satisfactory agreement with available experimental data with high accuracy, and the minimum simulation error is as low as 1.42%.

  • 8. Ding, Y.
    et al.
    Shao, C.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. School of Business, Society and Engineering, Mälardalen University, SE-72123 Västerås, Sweden.
    Song, Y.
    Zhang, C.
    Guo, C.
    Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 228, p. 426-436Article in journal (Refereed)
    Abstract [en]

    The inherent stochastic nature of wind power requires additional flexibility during power system operation. Traditionally, conventional generation is the only option to provide the required flexibility. However, the provision of the flexibility from the conventional generation such as coal-fired generating units comes at the cost of significantly additional fuel consumption and carbon emissions. Fortunately, with the development of the technologies, energy storage and customer demand response would be able to compete with the conventional generation in providing the flexibility. Give that power systems should deploy the most economic resources for provision of the required operational flexibility, this paper presents a detailed analysis of the economic characteristics of these key flexibility options. The concept of “balancing cost” is proposed to represent the cost of utilizing the flexible resources to integrate the variable wind power. The key indicators are proposed respectively for the different flexible resources to measure the balancing cost. Moreover, the optimization models are developed to evaluate the indicators to find out the balancing costs when utilizing different flexible resources. The results illustrate that exploiting the potential of flexibility from demand side management is the preferred option for integrating variable wind power when the penetration level is below 10%, preventing additional fuel consumption and carbon emissions. However, it may require 8% of the customer demand to be flexible and available. Moreover, although energy storage is currently relatively expensive, it is likely to prevail over conventional generation by 2025 to 2030, when the capital cost of energy storage is projected to drop to approximately $ 400/kWh or lower. 

  • 9.
    Firmansyah, Husni
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
    Tan, Yuting
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Power and methanol production from biomass combined with solar and wind energy: analysis and comparison2018In: RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID / [ed] Yan, J Wang, C Yu, J Jia, H Wu, J Xu, T Zhang, Y, ELSEVIER SCIENCE BV , 2018, p. 576-581Conference paper (Refereed)
    Abstract [en]

    This study addresses the techno-economic analysis and comparison of systems for power and methanol production from biomass combined with solar and wind energy, from both technical and economic perspectives. Three different systems, based on Integrated Gasification Combined-Cycle (IGCC), Oxy-fuel combustion, and syngas gasification, were evaluated. The hydrogen required for methanol production comes from water electrolysis driven by solar and wind energy. In addition, the effect of location was discussed.

  • 10.
    Gao, Ge
    et al.
    Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing 100081, Peoples R China.;Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China..
    Wang, Ke
    Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing 100081, Peoples R China.;Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China.;Sustainable Dev Res Inst Econ & Soc Beijing, Beijing 100081, Peoples R China.;Beijing Key Lab Energy Econ & Environm Management, Beijing 100081, Peoples R China..
    Zhang, Chi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Wei, Yi-Ming
    Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing 100081, Peoples R China.;Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China.;Sustainable Dev Res Inst Econ & Soc Beijing, Beijing 100081, Peoples R China.;Beijing Key Lab Energy Econ & Environm Management, Beijing 100081, Peoples R China..
    Synergistic effects of environmental regulations on carbon productivity growth in China's major industrial sectors2019In: Natural Hazards, ISSN 0921-030X, E-ISSN 1573-0840, Vol. 95, no 1-2, p. 55-72Article in journal (Refereed)
    Abstract [en]

    It is crucial that the implementation of environmental regulations have a positive synergistic effect on carbon productivity growth (i.e., environmentally adjusted productivity growth with the consideration of carbon emissions) for China to realize its sustainable development goals because the country is currently under tripartite pressures of economic growth, carbon emissions control, and environmental pollution reduction. This paper investigates the impact of changes in environmental regulation stringency on industrial-level carbon productivity growth in China. Through utilizing the information entropy method, a new index of environmental regulation stringency is established by taking into account the effects of both pollution reduction consequences and pollution reduction measures. In addition, based on the data envelopment analysis method, a Malmquist carbon productivity index is proposed to estimate the industrial carbon productivity growth of 21 major industrial sectors in China's 30 provinces over 2004-2014. Finally, an econometric regression model is applied to test the synergistic effects of environmental regulations on carbon productivity in China's major industrial sectors. The results show that (1) a stringent environmental regulation is associated with an increase in overall industrial carbon productivity growth in China; (2) there exist significant pass-through effects in China's major industrial sectors that technology can transmit effectively from leader to follower; (3) there also exist obvious follow-up effects in China's major industrial sectors, i.e., the industrial sectors that have larger technological gaps with the leaders catch up faster than others; and (4) the environmental regulations have different effects on industrial sectors with different polluting levels, i.e., there is a positive linear relationship between environmental regulation stringency and industrial-level carbon productivity growth in low-polluting industrial sectors, a parabolic nonlinear relationship between them in high-polluting industrial sectors, and an inverted U-shaped relationship between them in moderate-polluting industrial sectors.

  • 11. Gao, X.
    et al.
    Wei, P.
    Xie, Y.
    Zhang, S.
    Niu, Z.
    Lou, Y.
    Yang, Xiaohu
    KTH.
    Jin, L.
    Yan, Jerry
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Experimental investigation of the cubic thermal energy storage unit with coil tubes2017In: Energy Procedia, Elsevier Ltd , 2017, p. 3709-3714Conference paper (Refereed)
    Abstract [en]

    This study presented experimental investigations on the thermal performance of a thermal energy storage (TES) unit with coil tubes. A designed test rig was built and the melting heat transfer characteristics (melting front and temperature distribution) inside the TES unit were examined. The effects of charging flow rate on the overall phase change process were examined. The results showed that natural convection accelerated the thermal energy transport in the melt phase in the top region, but weakened the heat transfer in the bottom region; this resulted in the unmelt PCM at the bottom. The melting heat transfer was overall enhanced by the increase in inlet flow rate, indicating that the full charging time can be shortened by a larger flow rate.

  • 12. Guo, S.
    et al.
    Liu, Q.
    Zhao, J.
    Jin, G.
    Wu, W.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. School of Business, Society and Engineering, Mälardalen University, 721 23 Västerås, Sweden.
    Li, H.
    Jin, H.
    Mobilized thermal energy storage: Materials, containers and economic evaluation2018In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 177, p. 315-329Article in journal (Refereed)
    Abstract [en]

    The transportation of thermal energy is essential for users who are located far away from heat sources. The networks connecting them achieve the goal in efficient heat delivery and reasonable cost, especially for the users with large heat demands. However, it is difficult to satisfy the heat supply of the detached or emergent users with the existing pipelines. Therefore, a promising alternative, called mobilized thermal energy storage (M-TES), was proposed to deliver the heat flexibly without the restriction of networks. In this paper, a review of studies on M-TES is conducted in terms of materials, containers and economic evaluation. The potential candidates of materials, such as sugar alcohols, hydrated salts, alkalies and zeolite are reviewed and compared based on their thermophysical properties, price, advantages and disadvantages. Various containers, including the shell-and-tube, encapsulated, direct-contact, detachable and sorptive types, are discussed from the aspects of configuration, performance and utilization. Furthermore, the studies on the economic evaluation of M-TES systems are summarized and discussed based on the analysis of the economic indicators, including initial cost, operating cost, revenue, subsidy and energy cost. Finally, the challenges and future perspectives for developing M-TES are presented.

  • 13. Hao, Y.
    et al.
    Li, W.
    Tian, Z.
    Campana, Pietro Elia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. School of Business, Society and Engineering, Mälardalen University, SE 72123 Västerås, Sweden.
    Li, H.
    Jin, H.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering. School of Business, Society and Engineering, Mälardalen University, SE 72123 Västerås, Sweden.
    Integration of concentrating PVs in anaerobic digestion for biomethane production2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 231, p. 80-88Article in journal (Refereed)
    Abstract [en]

    Biogas produced from anaerobic digestion processes is considered as an important alternative to natural gas and plays a key role in the emerging market for renewable energy. Aiming at achieving a more sustainable and efficient biomethane production, this work proposed a novel energy system, which integrates concentrating photovoltaic/thermal (C-PV/T) hybrid modules into a biogas plant with chemical absorption for biogas upgrading. The investigated energy system was optimized based on the data from an existing biogas plant, and its techno-economic feasibility was evaluated. Results show that about 7% of the heat consumption and 12% of the electricity consumption of the biogas plant can be covered by solar energy, by using the produced heat in a cascade way according to the operating temperature of different processes. The production of biomethane can also be improved by 25,800 N m3/yr (or 1.7%). The net present value of the integrated system is about 2.78 MSEK and the payback period is around 10 years. In order to further improve the economic performance, it is of great importance to lower the capital cost of the C-PV/T module. 

  • 14. Huang, C.
    et al.
    Li, Y.
    Li, X.
    Wang, H.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Wang, X.
    Wu, J.
    Li, F.
    Understanding the water-energy nexus in urban water supply systems with city features2018In: Energy Procedia, Elsevier Ltd , 2018, p. 265-270Conference paper (Refereed)
    Abstract [en]

    The water-energy nexus has been introduced into urban water supply systems (WSSs) to improve the current plight of scarce resources and greenhouse effect in recent years. Urban water-energy integrated management is limited by the characteristics and reality of each city. In this paper, we characterize the comprehensive influence factors of energy use in China urban WSSs including geographic differences and city forms. The results indicate that the pressure of pipeline network and plain area ratio restricted by geomorphology would significantly impact the energy consumption during conveyance and distribution stage. For the city form aspect, the total volume of urban water supply and the leakage rate of pipeline networks play important roles in energy consumption of urban WSSs in China. In this study, the specific electricity consumption in WSSs was quantified, and several factors affected by city features which show strong correlation with energy use were determined. The results are of great significance to the energy saving in water supply systems in urban areas.

  • 15. Jiang, M.
    et al.
    Lv, Y.
    Wang, T.
    Sun, Z.
    Liu, J.
    Yu, X.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Performance analysis of a photovoltaics aided coal-fired power plant2019In: Energy Procedia, Elsevier Ltd , 2019, p. 1348-1353Conference paper (Refereed)
    Abstract [en]

    In this article, integration of photovoltaics (PV) into a coal-fired power plant was proposed. The performance including economic analysis and environmental impact was conducted by a case study in the northwest area of China. The results show that the PV system can replace part of auxiliary power consumption using renewable electricity to reduce internal power consumption and the emissions. Due to the feature of the integration into a power plant, the curtailment of solar PV electricity does not occur compared to stand-alone PV system. The investment cost, operation and maintenance (O&M) expenditure were feasible compared with other PV power generation plants. 

  • 16.
    Jurasz, Jakub
    et al.
    AGH Univ Sci & Technol, Krakow, Poland.;Malardalen Univ, Vasteras, Sweden..
    Campana, Pietro Elia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    The potential of photovoltaic systems to reduce energy costs for office buildings in time-dependent and peak-load-dependent tariffs2019In: Sustainable cities and society, ISSN 2210-6707, Vol. 44, p. 871-879Article in journal (Refereed)
    Abstract [en]

    Electrical power generation across the world is facing dramatic changes for a variety of reasons related to reliability, economics and environmental concerns. Over recent years a significant increase has been observed in installed capacity of photovoltaic systems. Due to their typical seasonal and diurnal energy conversion patterns their integration into power systems creates new opportunities as well as threats. This paper intends to show how photovoltaics can contribute to reducing peak load in office buildings and thereby minimise expenditure on electricity during time- and peak-load-dependent energy prices/tariffs. An additional benefit is also provided to the national power system by reducing the need for peaking power stations. The calculations are performed for energy tariffs commonly used for commercial buildings in Poland. The simulation relies on climatic and price data for 2016. The results show significant potential for photovoltaics to reduce the peak load (from almost 60 kW to slightly over 44 kW) whilst simultaneously minimising energy costs to the building (from 1.2% up to 5.8% depending on the selected tariff). This study demonstrates the economic benefits of using PV system for reducing peak loads. A sensitivity analysis with regard to photovoltaics investment costs is carried out showing that the increasing investment costs have different impact on total energy cost depending on the considered energy tariff.

  • 17.
    Leung, Dennis Y. C.
    et al.
    Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China..
    Yang, Hongxing
    Hong Kong Polytech Univ, Hong Kong, Hong Kong, Peoples R China..
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Editorial for Special Issue of the First International Conference on Applied Energy, ICAE'09, Hong Kong, January 5-7, 2009 at the journal, Applied Energy2010In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 87, no 9, p. 2861-2861Article in journal (Other academic)
  • 18. Li, H.
    et al.
    Campana, Pietro Elia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Tan, Yuting
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering.
    Yan, Jerry
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Feasibility study about using a stand-alone wind power driven heat pump for space heating2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 228, p. 1486-1498Article in journal (Refereed)
    Abstract [en]

    Reducing energy consumption and increasing the use of renewable energy in the building sector are crucial to the mitigation of climate change. Wind power driven heat pumps have been considered as a sustainable measure to supply heat to the detached houses, especially those that even do not have access to the electricity grid. This work is to investigate the dynamic performance of a heat pump system driven by wind turbine through dynamic simulations. In order to understand the influence on the thermal comfort, which is the primary purpose of space heating, the variation of indoor temperature has been simulated in details. Results show that the wind turbine is not able to provide the electricity required by the heat pump during the heating season due to the intermittent characteristic of wind power. To improve the system performance, the influences of the capacity of wind turbine, the size of battery and the setpoint of indoor temperature were assessed. It is found that increasing the capacity of wind turbines is not necessary to reduce the loss of load probability; while on the contrary, increasing the size of battery can always reduce the loss of load probability. The setpoint temperature clearly affects the loss of load probability. A higher setpoint temperature results in a higher loss of thermal comfort probability. In addition, it is also found that the time interval used in the dynamic simulation has significant influence on the result. In order to have more accurate results, it is of great importance to choose a high resolution time step to capture the dynamic behaviour of the heat supply and its effect on the indoor temperature. 

  • 19. Liang, X.
    et al.
    Tian, W.
    Li, R.
    Niu, Z.
    Yang, X.
    Meng, X.
    Jin, L.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. School of Sustainable Development of Society and Technology, Mälardalen University (MDH), Västerås, 721 23, Sweden.
    Numerical investigations on outdoor thermal comfort for built environment: Case study of a Northwest campus in China2019In: Innovative Solutions for Energy Transitions, Elsevier, 2019, Vol. 158, p. 6557-6563Conference paper (Refereed)
    Abstract [en]

    Outdoor thermal comfort has been receiving more and more attentions due to the increased demand of outdoor activities during last decades. People require good thermal comfort when they are exposed to the outdoor thermal environment. However, the natural environment is severely suffering from the pollution of air, water as well as the extremely hot weather. Therefore, construction of ecological living environment is of great importance. To evaluate and improve the built environment, a campus area located in Northwest China was selected. Numerical simulations based on the software ENVI-met V4.0 were conducted and the effect of growing plants upon the outdoor thermal comfort was analyzed. Numerical results were compared using different thermal Indexes: Physiological Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI). Results demonstrated that UTCI gave a lower prediction than that of PET and was more suitable for evaluating the outdoor thermal comfort. Growing trees can significantly reduce the uncomfortable hours during hot summer but the improvement will reach the limitation after growing amount of trees.

  • 20.
    Liu, Minzhang
    et al.
    Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China..
    Zhu, Chunguang
    Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China..
    Zhang, Huan
    Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China.;Tianjin Univ, Minist Educ China, Key Lab Efficient Utilizat Low & Medium Grade Ene, Tianjin 300350, Peoples R China..
    Zheng, Wandong
    Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China.;Tianjin Univ, Minist Educ China, Key Lab Efficient Utilizat Low & Medium Grade Ene, Tianjin 300350, Peoples R China..
    You, Shijun
    Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China.;Tianjin Univ, Minist Educ China, Key Lab Efficient Utilizat Low & Medium Grade Ene, Tianjin 300350, Peoples R China..
    Campana, Pietro Elia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    The environment and energy consumption of a subway tunnel by the influence of piston wind2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 246, p. 11-23Article in journal (Refereed)
    Abstract [en]

    With the flourishing development of the subway construction, it becomes increasingly urgent to improve the subway tunnel environment and reduce the energy consumption of the tunnel ventilation system. The tunnel environment is significantly affected by the piston wind, which is influenced by the train speed. In this paper, a three-dimensional computational model of a subway tunnel is developed and validated through experiments. The model is used to study the carbon dioxide concentration and thermal environment of the subway tunnel. The optimal train speed is proposed with the aim to minimize the volume of mechanical supply air and to optimize the carbon dioxide concentration and thermal environment of the tunnel. In parallel with the considerations of tunnel environment, the subways in 25 cities of China are analyzed to study the energy conservation of the tunnel ventilation system by making full use of piston wind. The results indicate that the optimal train speed is 30 m/s based on the carbon dioxide concentration and thermal environment. The effective utilization of the piston wind can reduce 13% similar to 32% of the energy consumption for tunnel ventilation. The calculation method of the optimal train speed developed in this paper is also applicable to ordinary railway tunnels and high-speed railway tunnels.

  • 21. Lv, Y.
    et al.
    Si, P.
    Liu, J.
    Ling, W.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Performance of a hybrid solar photovoltaic - Air source heat pump system with energy storage2019In: Energy Procedia, Elsevier Ltd , 2019, p. 1311-1316Conference paper (Refereed)
    Abstract [en]

    The paper introduced a smart renewable energy based microgrid system which is composed of three subsystems: solar photovoltaic subsystem, air source heat pump subsystem and energy storage subsystem. This microgrid system was applied to the demonstration project located in Xining City, Qinghai Province, China. The energy performance of the smart renewable energy based microgrid system was evaluated and compared with that of traditional energy supply system which totally depends on the electricity grid and natural gas. The comparison study demonstrates that the proposed hybrid energy supply system is superior to traditional system, significantly decreasing additional energy consumption for buildings and reducing pollutant emissions.

  • 22.
    Lv, Yuexia
    et al.
    Qilu Univ Technol, Shandong Acad Sci, Sch Mech & Automot Engn, Jinan 250353, Shandong, Peoples R China.;Ningbo RK Solar Tech Ltd, Ningbo 315201, Zhejiang, Peoples R China..
    Si, Pengfei
    Tsinghua Univ, Sch Architecture, Beijing 100084, Peoples R China.;China Southwest Architecture Design & Res Inst Co, Chengdu 610041, Sichuan, Peoples R China..
    Rong, Xiangyang
    China Southwest Architecture Design & Res Inst Co, Chengdu 610041, Sichuan, Peoples R China..
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Mälardalen Univ, Sch Business Soc & Engn, S-72123 Västerås, Sweden..
    An Optimization Method for CCHP and River Water Source Heat Pump Combined System2018In: RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID / [ed] Yan, J Wang, C Yu, J Jia, H Wu, J Xu, T Zhang, Y, ELSEVIER SCIENCE BV , 2018, p. 592-597Conference paper (Refereed)
    Abstract [en]

    Combined Cooling, Heating and Power (CCHP) systems have been widely utilized in the buildings to achieve high efficiency cascade utilization of energy. Heat pump is another widely utilized technology to improve the building energy efficiency. The paper presents a hybrid system which integrates the CCHP with river water source heat pump to combine the advantages of these two technologies. A physical model with energy storage module was firstly developed for the combined system. A case study was further carried out to investigate the optimized configuration and operation performance of the combined system. Copyright

  • 23.
    Lv, Yuexia
    et al.
    Qilu Univ Technol, Shandong Acad Sci, Sch Mech & Automot Engn, Jinan, Shandong, Peoples R China.;Ningbo RK Solar Tech Ltd, Ningbo, Zhejiang, Peoples R China..
    Si, Pengfei
    Tsinghua Univ, Sch Architecture, Beijing, Peoples R China.;China Southwest Architecture Design & Res Inst Co, Chengdu, Sichuan, Peoples R China..
    Rong, Xiangyang
    China Southwest Architecture Design & Res Inst Co, Chengdu, Sichuan, Peoples R China..
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Malardalen Univ, Sch Business Soc & Energy, Vasteras, Sweden..
    Feng, Ya
    China Southwest Architecture Design & Res Inst Co, Chengdu, Sichuan, Peoples R China..
    Zhu, Xiaohong
    Sichuan Prov Architectural Design Inst, Chengdu, Sichuan, Peoples R China..
    Determination of optimum tilt angle and orientation for solar collectors based on effective solar heat collection2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 219, p. 11-19Article in journal (Refereed)
    Abstract [en]

    Determination of optimum tilt angle and orientation of solar collectors by maximizing the total solar radiation may overestimate the energy production benefits, because a considerable amount of solar radiation is ineffective for practical solar collectors. In this paper, the concept of effective solar heat collection is proposed to rule out the ineffective solar radiation that could not be converted to available energy. Accordingly, an optimized mathematical model is developed and used to determine the optimum tilt angle and orientation of solar collectors installed in Lhasa during the heating season. Compared with the total solar radiation based optimum results, there is a deviation of 5 degrees in the optimum orientations based on the effective solar heat collection. The case study shows that it is not advisable to adjust the optimum tilt angle on a monthly basis because there is no significance change in total solar energy gains in comparison with the case of no such adjustment during the heating season. In addition, the correction factors to achieving the maximum effective solar heat collection are given at different tilt angles and orientations to guide installation of solar collectors in practical engineering applications.

  • 24.
    Lv, Yuexia
    et al.
    Qilu Univ Technol, Shandong Acad Sci, Sch Mech & Automot Engn, Jinan 250353, Shandong, Peoples R China.;Ningbo RK Solar Tech Ltd, Ningbo 315201, Zhejiang, Peoples R China..
    Xia, Longyu
    Qilu Univ Technol, Shandong Acad Sci, Sch Mech & Automot Engn, Jinan 250353, Shandong, Peoples R China..
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Mälardalen Univ, Sch Business Soc & Engn, S-72123 Västerås, Sweden..
    Bi, Jinpeng
    Qilu Univ Technol, Shandong Acad Sci, Sch Mech & Automot Engn, Jinan 250353, Shandong, Peoples R China..
    Design of a Hybrid Fiber Optic Daylighting and PV Solar Lighting System2018In: RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID / [ed] Yan, J Wang, C Yu, J Jia, H Wu, J Xu, T Zhang, Y, ELSEVIER SCIENCE BV , 2018, p. 586-591Conference paper (Refereed)
    Abstract [en]

    Residential buildings with limited natural lighting are generally lit by fuel-based electricity which contributes to increase of CO2 concentration in the atmosphere. This paper presents the design of a hybrid fiber-optic daylighting and PV solar lighting system for household applications. The system is composed of a light collecting subsystem, a light guiding subsystem, an optical fiber light diffuser subsystem and corresponding control system. Preliminary system performance shows that, the developed system could provide comfortable and natural indoor illumination. Meanwhile, the hybrid lighting system can provide an average of 9h of electric lighting under clear sky conditions, and reduce 158.2kg of carbon dioxide emission in a year within the tested dark room of 5m(2).

  • 25.
    Lönnqvist, Tomas
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. IVL Swedish Environm Res Inst, Box 210 60, S-10031 Stockholm, Sweden..
    Anderberg, Stefan
    Linkoping Univ, Dept Management & Engn, S-58183 Linkoping, Sweden..
    Ammenberg, Jonas
    Linkoping Univ, Dept Management & Engn, S-58183 Linkoping, Sweden..
    Sandberg, Thomas
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.).
    Grönkvist, Stefan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Stimulating biogas in the transport sector in a Swedish region - An actor and policy analysis with supply side focus2019In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 113, article id UNSP 109269Article, review/survey (Refereed)
    Abstract [en]

    This article addresses incentives and barriers for the development of biogas production and use in transport. It is based on statistics, interviews with biogas actors in a Swedish region, as well as a literature study. These actors perceive that the stagnating vehicle gas demand is the major barrier for biogas development. Policy support could stimulate the vehicle gas demand to strengthen incentives for investments along the entire biogas value chain. There are opportunities on the supply side to increase biogas production based on waste and residues, to improve digestate handling, and to expand the gas distribution infrastructure. However, the sector perceives a high risk in biogas investments partially due to the low predictability of Swedish policy instruments and this, together with the stagnated demand for vehicle gas, are identified as the main barriers for biogas development. Thus, policy makers should focus on these barriers if the intention is to develop the use of biogas in transport.

  • 26.
    Lönnqvist, Tomas
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Sandberg, Thomas
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.).
    Birbue, Juan Cristóbal
    Olsson, Jesper
    Espinosa, Cecilia
    Thorin, Eva
    Grönkvist, Stefan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Gómez, María F.
    Large-scale biogas generation in Bolivia – a stepwise reconfiguration2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 180, p. 494-504Article in journal (Refereed)
    Abstract [en]

    Renewable energy is well recognized not only as resource that helps to protect the environment for future generations but also as a driver for development. Waste-to-energy systems can provide renewable energy and also improve sustainability in waste management. This article contributes a case study of stepwise reconfiguration of the waste management system in a developing country to the literature of transitions. The conditions for a systemic transition that integrates large-scale biogas generation into the waste management system have been analyzed. The method included a multi-criteria evaluation of three development steps for biogas, an economic analysis, and an institutional and organizational analysis. The results revealed economic as well as institutional and organizational barriers. Clearly, public and private sectors need to engage in sustainability. There is also a lack of pressure – mainly because of fossil fuel subsidies – that prevents a transition and creates a lock-in effect. To break the lock-in effect the municipality's institutional capacity should be strengthened. It is possible to strengthen biogas economically by integrated waste management services and sales of biofertilizer. A stepwise reconfiguration would be initiated by adopting technologies that are already established in many developed countries but are novelties in a Bolivian context – as a response to sustainability challenges related to waste management. The article focuses on the main challenges and the potential for biogas technology in Bolivia and a pathway towards a new, more sustainable system is suggested.

  • 27. Mancuso, M. V.
    et al.
    Campana, Pietro Elia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. School of Sustainable Development of Society and Technology, Malardalen University, Västerås.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. School of Sustainable Development of Society and Technology, Malardalen University, Västerås.
    Evaluation of grid-connected micro-grid operational strategies2019In: Innovative Solutions for Energy Transitions, Elsevier, 2019, Vol. 158, p. 1273-1278Conference paper (Refereed)
    Abstract [en]

    This study investigates the operational performances of a grid-connected microgrid with integrated solar photovoltaic and battery energy storage. The study is based upon the techno-economic specifications and theoretical performance of the distributed energy resource and storage systems, as well as on measured consumer load data and electrical utility retail and distribution data for representative residential and commercial loads for the city of Västerås, Sweden. The open-source Matlab®-based simulation tool, OptiCE, is used for performing simulations and optimization. To support the attainment of one of the objectives, peak shaving of the consumer load, a battery operational strategy algorithm has been developed to balance peak shaving and PV self-consumption. Comparisons among three types of battery, lead-acid, lithium-ion and vanadium-redox flow, are also performed. A 117 kW p photovoltaic system paired with a lithium-ion battery of 41.1 kWh capacity is the optimal solution found for the considered commercial load. The calculated battery capacity represents the best trade-off for the set multi-objective optimization problem. The simulation of this system predicts the possibility to shave the customer load profile peaks up to 20% for the month of April. The corresponding self-consumption ratio is 88%. Differences in the relationship between the load profiles and the system performance have been qualitatively noted. Furthermore, the simulation results for lead-acid, lithium-ion and vanadium-redox flow battery systems reveal that lithium-ion batteries delivers the best trade-off between total annualized cost and peak shaving performance for both residential and commercial applications.

  • 28. Niu, Z.
    et al.
    Yu, J.
    Cui, X.
    Yang, X.
    Sun, Y.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. School of Sustainable Development of Society and Technology, Mälardalen University (MDH), Västerås, 721 23, Sweden.
    Experimental investigations on the thermal energy storage performance of shell and tube unit with composite phase change materials2019In: Innovative Solutions for Energy Transitions, Elsevier, 2019, Vol. 158, p. 4889-4896Conference paper (Refereed)
    Abstract [en]

    This work presented experimental investigations on the thermal energy storage performance of the shell and tube unit with composite phase change materials (PCM). A cylindrical heat storage tank filled with open-cell copper foam was proposed and its melting process characteristics were studied. A designed test system was established to record the PCM real-time temperature data. The results showed that, compared with traditional smooth-tube phase-change heat exchangers, the composite PCM unit accelerated the bottom paraffin melting. The temperature disparity among different height reduced, which resulted in better internal temperature uniformity. Due to the expanded heat transfer area, improved heat transfer coefficient and weakened natural convection, the bottom phase-change materials in the composite-PCM heat-storage unit melt faster.

  • 29. Prabaharan, N.
    et al.
    Campana, Pietro Elia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. School of Business, Society and Engineering, Future Energy Center, Mälardalen University, Västerås, 72123, Sweden.
    Ann Jerin, A. R.
    Palanisamy, K.
    A new approach for grid integration of solar photovoltaic system with maximum power point tracking using multi-output converter2019In: Renewable Energy Integration with Mini/Microgrid, Elsevier, 2019, Vol. 159, p. 521-526Conference paper (Refereed)
    Abstract [en]

    This paper proposes a new approach for grid integration of solar photovoltaic system using modified incremental conductance maximum power point tracking algorithm with multi-output converter and multilevel inverter. The multi-output converter is a combination of boost converter and switched capacitor function to generate different self-balanced output voltages using single switch, single inductor, 2N-1 diodes and 2N-1 capacitors. This topology is proposed to be used as DC link in applications where several controlled voltage levels are required with self-balancing and unidirectional current flow, such as photovoltaic (PV) or fuel cell generation systems with multilevel inverter. The utilization of multilevel inverter in the proposed system provides better quality of output voltage and current waveform thereby reducing the size of passive filters. Also, it eliminates the requirement of bulky transformers for grid integration. Multicarrier unipolar phase disposition pulse width modulation technique is employed for triggering the switches of the multilevel inverter. The proposed system is tested with standard test conditions using MATLAB/SIMULINK.

  • 30.
    Sadegh-Vaziri, Ramiar
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Bäbler, Matthäus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Providing sulfur free syngas to a fuel cell system2019In: Energy Procedia, Elsevier Ltd , 2019, p. 448-453Conference paper (Refereed)
    Abstract [en]

    Fuel cells are viable alternatives as power backup systems for mini-grids. In this work a case is considered, where the hydrogen fuel to the fuel cells is supplied from biomass gasification. However, the producer gas obtained from biomass gasification needs to be cleaned of impurities and contaminants. In this work we examined the superiority of the hot producer gas cleaning, which results in a better thermal efficiency since the heat loss from the system is reduced. In order to have a viable hot cleaning process, sulfur should be removed at 800°C and this was shown possible by promising primary data from the experiments where H 2 S was removed down to an acceptable level. 

  • 31. Salman, C. A.
    et al.
    Naqvi, M.
    Thorin, E.
    Yan, Jerry
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Mälardalen University, Sweden.
    A polygeneration process for heat, power and DME production by integrating gasification with CHP plant: Modelling and simulation study2017In: Proceedings of the 9th International Conference on Applied Energy, Elsevier, 2017, Vol. 142, p. 1749-1758Conference paper (Refereed)
    Abstract [en]

    Biofuels are a good substitute for the transport sector petroleum fuels to minimize carbon footprint and greenhouse gases emissions. Di-Methyl Ether (DME) is one such alternative with properties similar to liquefied petroleum gas but with lower SOx, NOx, and particulate emissions. In this work, a polygeneration process, integrating an existing combined heat and power (CHP) plant with biomass gasification to synthesize DME, is proposed and modelled. Process integration is based on a hypothesis that the CHP plant provides the necessary heat to run the co-located gasification plant for DME synthesis and the waste heat from the gasification process is recovered and transferred to the CHP plant. The feed for gasification is taken as refuse derived fuel (RDF) instead of conventional wood derived biomass. The process integration leads to higher overall combined efficiency (up to 71%) which is greater than stand-alone efficiencies (up to 63%) but lower than stand-alone CHP plant efficiency (73.2%). The further technical evaluation shows that the efficiency of the polygeneration process is depends heavily on the gasifier capacity integrated with the existing CHP plant and also on the conversion route selected for DME synthesis i.e. recycling of unconverted syngas to the DME reactor or transferring it to the boiler of the CHP plant. The simulation results also indicate that once-through conversion yields less DME than recycling, but at the same time, once-through conversion affects the district heat and electric power production of the CHP plant lesser than by using the recycling route.

  • 32. Salman, C. A.
    et al.
    Schwede, S.
    Naqvi, M.
    Thorin, E.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. School of Business, Society and Engineering, Mälardalen University.
    Synergistic combination of pyrolysis, anaerobic digestion, and CHP plants.2019In: Innovative Solutions for Energy Transitions, Elsevier, 2019, Vol. 158, p. 1323-1329Conference paper (Refereed)
    Abstract [en]

    The anaerobic digestion of biodegradable fraction of municipal solid waste (MSW) is a widely used process for biogas production. However, the biodegradable fraction of MSW also contains lignocellulosic waste which hinders the biogas production if added to the digester in higher quantity. So it needs to be separated from biodegradable waste and sent for alternate treatment, e.g., incineration, landfilling or compositing. Pyrolysis of lignocellulosic waste to produce biochar, syngas, and bio oil is an alternate treatment to consider. Furthermore, there is a reported correlation between the addition of biochar in the digester and higher biogas production. Previously, we coupled the pyrolysis of lignocellulosic waste with anaerobic digestion plant. Pyrolysis produces the biochar and vapors. Biochar was added in the digester to enhance the biomethane production. The vapors produced in the pyrolysis process were converted to biomethane through the catalytic methanation process. The combination gives the overall efficiency of 67%. In this work, we modified the process concept to increase the integration level of these processes. The main issue with the pyrolysis process is its heat required to operate, while some of its downstream processes also generate excess heat. In this study, the pyrolysis of lignocellulosic waste is integrated with an operating combined heat and power (CHP) plant, by using its existing infrastructure for heat transport among different pyrolysis operations. The combustor of the CHP plant provides the heat for drying and pyrolysis while the excess heat is transferred back to the combustor. The biochar produced from pyrolysis is transported back to the digester as an adsorbent. The process simulation results show that the combined efficiency of pyrolysis with CHP plant reached 80%. If the biochar is sent back to the anaerobic digester, the synergetic efficiency of all three processes, i.e., pyrolysis-CHP and anaerobic digestion was obtained at 79.7% as compared with the 67% efficiency when the pyrolysis was only integrated with the anaerobic digestion process.

  • 33. Salman, C. A.
    et al.
    Schwede, S.
    Thorin, E.
    Li, H.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. School of Business, Society, and Engineering, Mälardalen University, 883, SE-72 123, Sweden.
    Identification of thermochemical pathways for the energy and nutrient recovery from digested sludge in wastewater treatment plants2019In: Innovative Solutions for Energy Transitions, Elsevier, 2019, Vol. 158, p. 1317-1322Conference paper (Refereed)
    Abstract [en]

    There are several restrictions and limitations on the emissions and disposal of materials and pollutants related to wastewater treatment plants (WWTPs) emphasizing improvement of current processes and development of new methods. Process integration is one way to use all fractions of waste for improved efficiency. WWTPs produces sludge which is usually anaerobically digested to produce biogas and a byproduct called digestate. Digestate is an organic material that contains macro and micronutrients such as nitrogen, phosphorous, and potassium and also contains heavy metals. Digestate is mainly used for agricultural applications because of the presence of nutrients. However, digestate also contains energy in the form of carbon and hydrogen which can be harnessed through various processes and integrated with nitrogen recovery process. This study aims to recover the energy and nutrients from digestate through thermochemical treatment processes. Combustion, pyrolysis, and gasification are assessed and compared in this work. An ammonia stripping method is assumed to recover nitrogen from digestate. The thermochemical processes are heat integrated with ammonia stripping through modeling and simulation. Results show that almost half of the energy present in digested sludge is required for its drying. Moreover, nitrogen recovery also requires much energy. The combustion and gasification of digested sludge give better results than pyrolysis. The heat integration becomes feasible when the auxiliary biogas is also burned along with products from the thermochemical treatment of sludge.

  • 34.
    Shang, Nan
    et al.
    Zhejiang Univ, Coll Elect Engn, Hangzhou 310058, Zhejiang, Peoples R China..
    Lin, You
    Zhejiang Univ, Coll Elect Engn, Hangzhou 310058, Zhejiang, Peoples R China..
    Ding, Yi
    Zhejiang Univ, Coll Elect Engn, Hangzhou 310058, Zhejiang, Peoples R China..
    Ye, Chengjin
    Zhejiang Univ, Coll Elect Engn, Hangzhou 310058, Zhejiang, Peoples R China..
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Nodal market power assessment of flexible demand resources2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 235, p. 564-577Article in journal (Refereed)
    Abstract [en]

    With the incorporation of higher shares of intermittent renewable energies (RES), more flexible resources are required in power systems to keep load balance. Under some extreme circumstances, the flexible demand resources (FDRs) may have the potential to dominate and obtain excess benefits, preventing other FDRs from participating in the electricity markets. Therefore, it is of great significance to identify the key FDR market power locations and implement some corresponding regulations. However, the relevant researches in power systems focused on the supply side, rather than the demand side. In this paper, a novel nodal market power analysis method is proposed to evaluate the potential influence of FDRs on electricity markets. Firstly, a multi-state model is established to present the multiple power system operation states including the random failures of system components. Then, the nodal market power assessment model is established under each specific state and new indices are proposed to evaluate the nodal market power of FDRs quantitatively. Furthermore, the key FDR nodes in demand side with stronger power in capturing excess revenue are identified. The 24-bus IEEE Reliability Test System is modified to demonstrate the feasibility of the proposed method. The numerical results of the proposed method are capable to display the existence of market power in demand side, and provide some valuable guidance for classification and operation of electricity markets.

  • 35.
    Tan, Yuting
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Nookuea, W.
    Li, H.
    Thorin, E.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Impacts of thermos-physical properties on plate-fin multi-stream heat exchanger design in cryogenic process for CO 2 capture2019In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, p. 1445-1453Article in journal (Refereed)
    Abstract [en]

    Oxy-fuel combustion is one of the most promising technologies for CO 2 capture for power plants. In oxy-fuel combustion plants, cryogenic process can be applied for CO 2 purification because the main impurities in flue gas are non-condensable gases. The multi-stream plate-fin heat exchanger is one of the most important components in the CO 2 cryogenic system. In-depth understanding of the impacts of property on the heat exchanger is of importance for appropriate design. In order to investigate the impacts of properties on sizing the heat exchanger and to further identify the key properties to be prioritized for the property model development, this paper presented the design procedure for the plate-fin multi-stream heat exchanger for the CO 2 cryogenic process. Sensitivity study was conducted to analyze the impacts of thermos-physical properties including density, viscosity, heat capacity and thermal conductivity. The results show that thermal conductivity has the most significant impact and hence, developing a more accurate thermal conductivity model is more important for the heat exchanger design. In addition, even though viscosity has less significant impact compared to other properties, the larger deviation range of current viscosity models may lead to higher uncertainties in volume design and annual capital cost of heat exchanger.

  • 36.
    Tian, Zhenyu
    et al.
    Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China.;Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Hao, Yong
    Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China.;Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Li, Wenjia
    Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China.;Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Campana, Pietro Elia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Mälardalen Univ, Sch Sustainable Dev Soc & Technol, SE-72123 Västerås, Sweden..
    Li, Hailong
    Mälardalen Univ, Sch Sustainable Dev Soc & Technol, SE-72123 Västerås, Sweden..
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Mälardalen Univ, Sch Sustainable Dev Soc & Technol, SE-72123 Västerås, Sweden..
    Jin, Hongguang
    Chinese Acad Sci, Inst Engn Thermophys, Beijing 100190, Peoples R China.;Univ Chinese Acad Sci, Beijing 100049, Peoples R China..
    Integrating concentrating PVs in biogas upgrading2018In: RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID / [ed] Yan, J Wang, C Yu, J Jia, H Wu, J Xu, T Zhang, Y, ELSEVIER SCIENCE BV , 2018, p. 598-603Conference paper (Refereed)
    Abstract [en]

    Biogas produced from anaerobic digestion processes has been considered as an important alternative to natural gas and plays a key role in the emerging market for renewable energy. By removing CO2, biogas can be upgraded to vehicle fuel. Chemical absorption is one of the widely used upgrading technologies, which advantages include high purity and low loss of biomethane. However, chemical absorption usually suffers from the high consumption of thermal energy, which is required by the regeneration of the solvent. Aiming at achieving a more sustainable and efficient biomethane production, this work proposed a novel system, which integrate concentrating photovoltaic/thermal hybrid (C-PV/T) in the upgrading of biogas. Due to the ability to produce electricity and heat simultaneously and efficiently, C-PV/T can provide the demands of both the electricity and heat. By doing dynamic simulation of the energy production of C-PV/T, the technical feasibility of such a system is analyzed. Based on the design to meet the heat demand of solvent regeneration, without energy storage, the produced heat can cover 17% of the heat demand of the solvent regeneration, but 51.1% of the electricity demand; meanwhile, 140.3 MWh excess electricity can be sold for one year.

  • 37.
    Wang, C. S.
    et al.
    Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 30072, Peoples R China..
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Malardalen Univ, Sch Sustainable Dev Soc & Technol, S-72123 Vasteras, Sweden.
    Jia, H. J.
    Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 30072, Peoples R China..
    Wu, J. Z.
    Cardiff Univ, Sch Engn, Cardiff CF24 3AA, S Glam, Wales..
    Yu, J. C.
    State Grid Tianjin Elect Power Co, Tianjin 300010, Peoples R China..
    Xu, T.
    Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 30072, Peoples R China..
    Zhang, Y.
    Malardalen Univ, Sch Sustainable Dev Soc & Technol, S-72123 Vasteras, Sweden..
    Renewable and distributed energy integration with mini/microgrids2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 237, p. 920-923Article in journal (Other academic)
  • 38.
    Wang, Fu
    et al.
    Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Zhejiang, Peoples R China..
    Zhu, Yingming
    Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610065, Sichuan, Peoples R China..
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Performance of solar PV micro-grid systems: A comparison study2018In: RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID / [ed] Yan, J Wang, C Yu, J Jia, H Wu, J Xu, T Zhang, Y, ELSEVIER SCIENCE BV , 2018, p. 570-575Conference paper (Refereed)
    Abstract [en]

    Two solar PV micro-grid systems were stablished in this paper to examine and investigate their operation ability according to TOU price. Battery storage was used to adjust the operation strategies and bring in different economic benefits. Heat storage and simulation loads were also chosen to simulate the load variation. The power generation of the PV was comprehensively compared in two locations with different solar resources. The power output from PV systems in Ningbo is higher than that in Sichuan under local climate conditions, the accumulated power generation in Ningbo is 40% more than the power output in Sichuan. A preliminary operation strategy shows that the micro-grid can be continuously operated in the set mode. The battery storage has the capacity to achieve the economic optimization of the micro-grid systems.

  • 39.
    Wang, Ke
    et al.
    Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing, Peoples R China.;Beijing Inst Technol, Sch Management & Econ, Beijing, Peoples R China.;Beijing Key Lab Energy Econ & Environm Management, Beijing, Peoples R China.;Sustainable Dev Res Inst Econ & Soc Beijing, Beijing, Peoples R China..
    Yang, Kexin
    Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing, Peoples R China.;Beijing Inst Technol, Sch Management & Econ, Beijing, Peoples R China..
    Wei, Yi-Ming
    Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing, Peoples R China.;Beijing Inst Technol, Sch Management & Econ, Beijing, Peoples R China.;Beijing Key Lab Energy Econ & Environm Management, Beijing, Peoples R China.;Sustainable Dev Res Inst Econ & Soc Beijing, Beijing, Peoples R China..
    Zhang, Chi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Shadow prices of direct and overall carbon emissions in China's construction industry: A parametric directional distance function-based sensitive estimation2018In: Structural Change and Economic Dynamics, ISSN 0954-349X, E-ISSN 1873-6017, Vol. 47, p. 180-193Article in journal (Refereed)
    Abstract [en]

    Construction industry, together with building materials industries supplying it, is one of China's largest emitters of CO2. Structural change in construction industry has been promoted to mitigate CO2. This paper estimates CO2 shadow price of construction industry and its supporting materials industries in China so as to help them to mitigate CO2 cost-effectively. A parametric directional distance function model, taking into account all possible directional vectors, is applied to address issues regarding arbitrary selection of direction that will affect estimation of shadow price. Results show that there is larger potential for CO2 reduction in supporting material industries than in construction industry itself and shadow price of overall CO2 is much lower than that of direct CO2. The existence of enlarging heterogeneity in shadow prices among different regions provides strong support for introducing a national carbon trading market, thereby helping construction industry and building materials industries to reduce their abatement costs.

  • 40. Wang, L.
    et al.
    Liang, Z.
    Cai, M.
    Zhang, Yang
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Adaptive structural control of floating wind turbine with application of MR damper2019In: Innovative Solutions for Energy Transitions, Elsevier, 2019, Vol. 158, p. 254-259Conference paper (Refereed)
    Abstract [en]

    Floating wind turbine has become the most promising technology for deep-sea wind power generation. Therefore, some means to reduce the structural load for stabilizing the wind turbine has been developing. In this paper, a semi-active structural control is realized by replacing the damper in passive TMD with the magnetorheological (MR) damper. The damping force of the MR damper can be changed by altering the voltage applied to it. A simple and convenient control method is designed, which includes adaptive control force design and retrogression controller. The simulation results show that the semi-active control method has a good damping effect, which mitigates much of the structural load with respect to the passive structural control.

  • 41.
    Wu, Zhenjing
    et al.
    Tianjin Univ, Sch Environm Sci & Technol, Tianjin 300072, Peoples R China..
    You, Shijun
    Tianjin Univ, Sch Environm Sci & Technol, Tianjin 300072, Peoples R China..
    Zhang, Huan
    Tianjin Univ, Sch Environm Sci & Technol, Tianjin 300072, Peoples R China..
    Fan, Man
    Tianjin Univ, Sch Environm Sci & Technol, Tianjin 300072, Peoples R China..
    Zheng, Wandong
    Tianjin Univ, Sch Environm Sci & Technol, Tianjin 300072, Peoples R China..
    Wang, Yaran
    Tianjin Univ, Sch Environm Sci & Technol, Tianjin 300072, Peoples R China..
    Zhang, Yang
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Mathematical Modeling and Performance Analysis of Seawater Heat Exchanger in Closed-Loop Seawater-Source Heat Pump System2019In: Journal of energy engineering, ISSN 0733-9402, E-ISSN 1943-7897, Vol. 145, no 4, article id 04019012Article in journal (Refereed)
    Abstract [en]

    The seawater source heat pump (SWHP) utilizes low-grade energy from seawater to satisfy heating/cooling requirements of coastal buildings. Compared with the open-loop SWHP system, the closed-loop system is more stable and reliable when used in cold regions because the seawater heat exchanger can mitigate icing and corrosion problems. This study established mathematical modeling for the seawater heat exchanger, which was validated by the experimental results, to estimate the heat transfer performance. The thermal performance of the seawater heat exchanger under different operating conditions was predicted, and the effects of several key parameters on thermal resistance were analyzed. The results revealed that the pipe wall thermal resistance of the original heat exchanger was the most important factor limiting the heat transfer. Hence, a cost analysis of the heat exchangers with different pipe materials was conducted, and the steel pipe with anticorrosive coating was proven to be optimal in reducing pipe wall thermal resistance and economy. The findings are useful in designing and optimizing the seawater heat exchanger and promoting the application of ocean thermal energy.

  • 42. Xu, J.
    et al.
    Luo, P.
    Lu, B.
    Wang, H.
    Wang, X.
    Wu, J.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Energy-water nexus analysis of wastewater treatment plants (WWTPs) in China based on statistical methodologies2018In: Energy Procedia, Elsevier Ltd , 2018, p. 259-264Conference paper (Refereed)
    Abstract [en]

    Wastewater treatment plants (WWTPs) are considered as energy-intensive facilities. Against the background of stricter policy requirements and discharge standard, thousands of municipal WWTPs are experiencing upgrading and reconstruction in China. However, the accompanying energy consumption cannot be ignored. Based on the statistical analysis of energy consumption and relevant factors from data of more than six thousand WWTPs over China, in this paper we analyzed the most influential factors related to energy consumption, which include treatment technology, wastewater amount, removed pollutants, social and economic characteristics, etc. Furthermore, we set up systematic method of energy performance assessment for WWTPs and explored the potential of energy saving in WWTPs. Results showed that processing capacity, organic pollutant concentration, discharge standard and economic factors have major effects on energy efficiency. Although sludge treatment and disposal normally consume intensive energy, it is possible to recover energy from biomass in the sludge. The results indicate that there is huge potential for energy saving and recovery in WWTPs, and we propose a conceptual roadmap for energy efficiency improving in WWTPs in China.

  • 43.
    Yan, Jie
    et al.
    North China Elect Power Univ, Sch Renewable Energy, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China..
    Lai, Fuxing
    North China Elect Power Univ, Sch Renewable Energy, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China..
    Liu, Yongqian
    North China Elect Power Univ, Sch Renewable Energy, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China..
    Yu, David C.
    Univ Wisconsin, Dept Elect Engn & Comp Sci, Milwaukee, WI 53201 USA..
    Yi, Wenjing
    Natl Dev & Reform Commiss, Energy Res Inst, Beijing, Peoples R China..
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Mälardalen Univ, Västerås, Sweden..
    Multi-stage transport and logistic optimization for the mobilized and distributed battery2019In: Energy Conversion and Management, ISSN 0196-8904, E-ISSN 1879-2227, Vol. 196, p. 261-276Article in journal (Refereed)
    Abstract [en]

    High share of variable renewable energy is challenging to the traditional power system technically and economically. This calls for a significant increase to the system flexibility, which might result in the costs associated with energy storage and costly upgrades to the traditional transmission and distribution system. This paper presents a multi-stage battery transportation and logistics optimization method to increase the renewable energy consumptions, economics, and mobilities of the battery utilization. A new approach is proposed in which the batteries are charged in the renewable power plants and transported back and forth by railways between the renewable power plants and cities. Based on the forecasts of battery supplies/demands, multiple optimization stages (full train transport and carpooling) are designed by the branch-and-bound algorithm and genetic algorithm respectively. The proposed battery transportation and logistics concept and model are performed using the Beijing-Tianjin-Hebei region in China as an example. The results show that the levelized cost of energy of the battery transportation and logistics model is $0.045/kWh averagely. Also, by the use of mobilized batteries, the proposed battery transportation and logistics model increases the system flexibilities and renewable energy deliveries to the end users without the reinforcement of transmission and distribution system and any constraint from a highly penetrated power system.

  • 44.
    Yan, Jinyue
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes. Royal Inst Technol, Stockholm, Sweden.;Malardalen Univ, Vasteras, Sweden..
    Biofuels in Asia2009In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 86, p. S1-S10Article in journal (Other academic)
  • 45.
    Yan, Jinyue
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Dahlquist, E.
    Malardalen Univ, IGEC III, Vasteras, Sweden..
    Yang, H.
    Hong Kong Polytech Univ, Hong Kong, Hong Kong, Peoples R China..
    Guest editorial for a special issue on green energy2008In: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 32, no 12, p. 1065-1065Article in journal (Other academic)
  • 46.
    Yan, Jinyue
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Dahlquist, Erik
    Editorial for Special Issue of the Third International Green Energy Conference, VisterAs, Sweden, June 18-20, 2007 at Applied Energy2009In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 86, no 2, p. 125-125Article in journal (Other academic)
  • 47.
    Yan, Jinyue
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Jin, H. G.
    Chinese Acad Sci, Inst Engn Thermophys, Beijing 100864, Peoples R China..
    Editorial for Special Issue of the IGEC-IV, the 4th International Green Energy Conference (IGEC-IV), Beijing, China, October 20-22, 2008 at the journal, Applied Energy2010In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 87, no 9, p. 2769-2769Article in journal (Other academic)
  • 48.
    Yan, Jinyue
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Kaldellis, P. J. K.
    Campana, Pietro Elia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    REM2018: Renewable Energy Integration with Mini/Microgrid2019In: 2018 Renewable Energy Integration with Mini/Microgrid, REM 2018, Vol. 159Article in journal (Refereed)
  • 49.
    Yan, Jinyue
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Wu, J.
    Yang, Y.
    Li, H.
    Wang, H.
    Wang, X.
    Editorial cleaner energy for cleaner city2018In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 152, p. 1-2Article in journal (Refereed)
  • 50.
    Yan, Jinyue
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Yang, H.
    Li, H.
    KTH, School of Chemical Science and Engineering (CHE).
    Chen, X.
    Innovative solutions for energy transitions: Proceedings of the 10th International Conference on Applied Energy (ICAE2018)2019In: Innovative Solutions for Energy Transitions, Elsevier, 2019, Vol. 158, p. 1-2Conference paper (Refereed)
12 1 - 50 of 69
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf