Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Atasoy, Merve
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Owusu-Agyeman, Isaac
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Plaza, Elzbieta
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Cetecioglu, Zeynep
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges2018In: Bioresource Technology, ISSN 0960-8524, E-ISSN 1873-2976, Vol. 268, p. 773-786Article, review/survey (Refereed)
    Abstract [en]

    Bio-based volatile fatty acid (VFA) production from waste-stream is getting attention due to increasing market demand and wide range usage area as well as its cost-effective and environmentally friendly approach. The aim of this paper is to give a comprehensive review of bio-based VFA production and recovery methods and to give an opinion on future research outlook. Effects of operation conditions including pH, temperature, retention time, type of substrate and mixed microbial cultures on VFA production and composition were reviewed. The recovery methods in terms of gas stripping with absorption, adsorption, solvent extraction, electrodialysis, reverse osmosis, nanofiltration, and membrane contractor of VFA were evaluated. Furthermore, strategies to enhance bio-based VFA production and recovery from waste streams, specifically, in-line VFA recovery and bioaugmentation, which are currently not used in common practice, are seen as some of the approaches to enhance bio-based VFA production.

  • 2.
    Kaya, Şerif
    et al.
    Middle East Technical University.
    Peters, Edward Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Forsberg, Kerstin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Dittrich, Carsten
    MEAB Chemie Technik GmbH.
    Stopic, Srecko
    RWTH Aachen University.
    Friedrich, Bernd
    RWTH Aachen University.
    Scandium Recovery from an Ammonium Fluoride Strip Liquor by Anti-Solvent Crystallization2018In: Metals, ISSN 2075-4701, Vol. 8, no 10Article in journal (Refereed)
    Abstract [en]

    In this study, the crystallization of scandium from ammonium fluoride strip liquor, obtained by solvent extraction, was investigated using an anti-solvent crystallization technique. Acetone, ethanol, methanol and isopropanol were added individually to the strip liquor as the anti-solvent and scandium was precipitated and obtained in the form of (NH4)3ScF6 crystals. The results show that scandium can be effectively crystallized from the strip liquor to obtain an intermediate, marketable scandium product. Yields greater than 98% were obtained using an anti-solvent to strip liquor volumetric ratio of 0.8. Acetone had the least performance at lower anti-solvent to strip liquor volumetric ratios, possibly due to its limited H bonding capability with water molecules when compared to alcohols.

  • 3.
    Owusu-Agyeman, Isaac
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Resource recovery.
    Fluoride removal by nanofiltration and reverse osmosis: impact of pH, organic and inorganic carbon2017Conference paper (Other academic)
    Abstract [en]

    High fluoride (F) levels in drinking water can result in fluorosis. The WHO recommends F limit of 1.5 mg/L in drinking water, however, up to 300 mg/L has been recorded [1]. The issue of high F levels usually occurs in rural areas in developing country where alternative sources are unavailable. Nanofiltration (NF) and reverse osmosis (RO) efficient in remove inorganic contaminant including F, as well as organic and microbial contaminants, simultaneously. The main quality parameters of fluoride-rich waters are pH, inorganic carbon (IC) and organic matter content [2]. The study has sought to understand the complexity of removing F and OM from tropical natural waters. The mechanisms of the impact of IC, speciation and organic carbon on F and OM removal NF/RO by over a wide pH range 2-12, have been explored. Two NF/RO membranes, namely NF270 and BW30 were studied, by experimenting with synthetic and Tanzania natural waters with varying OM, IC concentration but similar F concentration of 50 mg/L. F retention by NF/RO increased with pH increase due to speciation and membrane surface charge. As expected, the BW30 membrane which is a ‘tight’ membrane, removed F better (80-99%) than the NF270 membrane (20-85%) at pH ≥4. IC reduced F retention by NF270 from 80% to 70% at pH >10 where IC exists as divalent CO32− and was retained more easily than the monovalent F−. OM enhanced the retention of F by both NF/RO membranes at pH > 7 [3]. The enhancement effect was attributed to an increase in surface charge due to OM presence. The F and IC results of synthetic waters were in agreement with that obtained with Tanzanian natural waters. The study has shown that in implementing appropriate membrane technology in rural areas where water quality is variable, the mechanism of F and OM retention can be different.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf