Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alander, B.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Capezza, A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Department of Plant Breeding, The Swedish University of Agricultural Sciences, Box 101, Alnarp, Sweden.
    Wu, Q.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Johansson, E.
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Hedenqvist, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption2018In: Industrial crops and products (Print), ISSN 0926-6690, E-ISSN 1872-633X, Vol. 119, p. 41-48Article in journal (Refereed)
    Abstract [en]

    A novel and facile method to produce inexpensive protein biofoams suitable for sponge applications is presented. The protein used in the study was wheat gluten (WG), readily available as a by/co-product, but the method is expected to work for other cross-linkable proteins. The foams were obtained by high-speed stirring of pristine WG powder in water at room temperature followed by drying. Glutaraldehyde was used to crosslink the foam material in order to stabilize the dispersion, reduce its tackiness and improve the strength of the final foam. The foams were of medium to high density and absorbed readily both hydrophobic and hydrophilic liquids. The foam structure, consisting primarily of an open pore/channel system, led to a remarkably fast capillary-driven (pore-filling only) uptake of a hydrophobic liquid (limonene). Essentially all uptake occurred within the first second (to ca. 90% of the dry weight). In a polar liquid (water), the rapid pore-filling occurred in parallel with a more time-dependent swelling of the foam matrix material. Further improvement in the foam strength was achieved by making a denser foam or adding TEMPO-oxidized cellulose nanofibres. Soft foams were obtained by adding glycerol.

  • 2.
    Aljure, Mauricio
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Becerra Garcia, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering.
    Karlsson, Mattias E.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Streamer Inception from Ultra-Sharp Needles in Mineral Oil Based Nanofluids2018In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 11, no 8, article id 2064Article in journal (Refereed)
    Abstract [en]

    Positive and negative streamer inception voltages from ultra-sharp needle tips (with tip radii below 0.5 m) are measured in TiO2, SiO2, Al2O3, ZnO and C-60 nanofluids. The experiments are performed at several concentrations of nanoparticles dispersed in mineral oil. It is found that nanoparticles influence positive and negative streamers in different ways. TiO2, SiO2 and Al2O3 nanoparticles increase the positive streamer inception voltage only, whilst ZnO and C-60 nanoparticles augment the streamer inception voltages in both polarities. Using these results, the main hypotheses explaining the improvement in the dielectric strength of the host oil due to the presence of nanoparticles are analyzed. It is found that the water adsorption hypothesis of nanoparticles is consistent with the increments in the reported positive streamer inception voltages. It is also shown that the hypothesis of nanoparticles reducing the electron velocity by hopping transport mechanisms fails to explain the results obtained for negative streamers. Finally, the hypothesis of nanoparticles attaching electrons according to their charging characteristics is found to be consistent with the results hereby presented on negative streamers.

  • 3. Ceresino, E. B.
    et al.
    Kuktaite, R.
    Sato, H. H.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Johansson, E.
    Impact of gluten separation process and transglutaminase source on gluten based dough properties2019In: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 87, p. 661-669Article in journal (Refereed)
    Abstract [en]

    This study evaluated the effect of the wheat gluten (WG) separation process and transglutaminase (TG) microbial source on WG dough quality, and opportunities to use these factors to tailor dough quality. Two types of gluten (harshly and mildly separated), two types of TG (commercial and novel SB6), and three TG concentrations were evaluated for effects on dough mixing properties, protein structure and solubility. Mildly separated gluten improved dough development parameters, resulting into higher values of most compared with harshly separated gluten. Despite more strongly cross-linked proteins being found in the harshly separated gluten, both gluten types showed similar levels of cross-linking at optimum mixing time, although differences in the secondary protein structure were indicated. Thus, disulfide-sulfhydryl exchange reactions were found to be promoted by mixing, although restrictions on establishment of new bonds because of prior cross-links in the material were clearly indicated. Degree of polymerization in doughs made from mildly separated gluten increased to varying extents with TG addition depending on TG source and concentration. Thus, for the first time, we show that an appropriate combination of WG separation procedure and TG source can be used to tailor gluten dough end-use properties.

  • 4.
    Das, Oisik
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Loho, Thomas Aditya
    Univ Auckland, Dept Chem & Mat Engn, Auckland 1142, New Zealand..
    Capezza, Antonio Jose
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Swedish Univ Agr Sci, Fac Landscape Planning Hort & Crop Prod Sci, Dept Plant Breeding, S-23053 Alnarp, Sweden..
    Lemrhari, Ibrahim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    A Novel Way of Adhering PET onto Protein (Wheat Gluten) Plastics to Impart Water Resistance2018In: Coatings, ISSN 2079-6412, Vol. 8, no 11, article id 388Article in journal (Refereed)
    Abstract [en]

    This study presents an approach to protect wheat gluten (WG) plastic materials against water/moisture by adhering it with a polyethylene terephthalate (PET) film using a diamine (Jeffamine (R)) as a coupling agent and a compression molding operation. The laminations were applied using two different methods, one where the diamine was mixed with the WG powder and ground together before compression molding the mixture into plates with PET films on both sides. In the other method, the PET was pressed to an already compression molded WG, which had the diamine brushed on the surface of the material. Infrared spectroscopy and nanoindentation data indicated that the diamine did act as a coupling agent to create strong adhesion between the WG and the PET film. Both methods, as expected, yielded highly improved water vapor barrier properties compared to the neat WG. Additionally, these samples remained dimensionally intact. Some unintended side effects associated with the diamine can be alleviated through future optimization studies.

  • 5. Ghaani, M.
    et al.
    Rovera, C.
    Pucillo, F.
    Ghaani, M. R.
    Olsson, Richard T.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Scampicchio, M.
    Farris, S.
    Determination of 2,4-diaminotoluene by a bionanocomposite modified glassy carbon electrode2018In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 277, p. 477-483Article in journal (Refereed)
    Abstract [en]

    This work describes the development of a modified glassy carbon electrode (GCE) for the selective determination of 2,4-diaminotoluene (TDA), a primary aromatic amines (PAAs) that can be formed in food packaging materials including aromatic polyurethane (PU) adhesives. The electrode's surface was modified with multi-walled carbon nanotubes (MWCNTs), MWCNTs in chitosan (CS), and gold nanoparticles (AuNPs). The highest current response was achieved with AuNPs/MWCNTs-CS/GC electrodes, which exhibited an oxidation peak of 9.87 μA by cyclic voltammetry (CV), compared with 1.39 μA of the bare GCE. A detection limit of 35 nM was estimated by amperometry experiments. The oxidation of TDA was strongly dependent on the pH of the medium, having maximum sensitivity at pH ∼ 7. From a mechanistic point of view, the diffusion coefficient of TDA (D = 6.47 × 10−4 cm2 s−1) and the number of electrons (n ≈ 2) involved in the catalytic oxidation of TDA at the surface of the AuNPs/MWCNTs-CS/GCE were determined. The practical utility of this nanocomposite modified electrode was demonstrated by migration studies from conventional food packaging materials. 

  • 6.
    Karlsson, Mattias E.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Mamie, Yann C.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Calamida, Andrea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Gardner, James M.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Ström, Valter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Engineering Material Physics.
    Pourrahimi, Amir Masoud
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Synthesis of Zinc Oxide Nanorods via the Formation of Sea Urchin Structures and Their Photoluminescence after Heat Treatment2018In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, no 17, p. 5079-5087Article in journal (Refereed)
    Abstract [en]

    A protocol for the aqueous synthesis of ca. 1-mu m-long zinc oxide (ZnO) nanorods and their growth at intermediate reaction progression is presented, together with photoluminescence (PL) characteristics after heat treatment at temperatures of up to 1000 degrees C. The existence of solitary rods after the complete reaction (60 min) was traced back to the development of sea urchin structures during the first 5 s of the precipitation. The rods primarily formed in later stages during the reaction due to fracture, which was supported by the frequently observed broken rod ends with sharp edges in the final material, in addition to tapered uniform rod ends consistent with their natural growth direction. The more dominant rod growth in the c direction (extending the length of the rods), together with the appearance of faceted surfaces on the sides of the rods, occurred at longer reaction times (>5 min) and generated zinc-terminated particles that were more resistant to alkaline dissolution. A heat treatment for 1 h at 600 or 800 degrees C resulted in a smoothing of the rod surfaces, and PL measurements displayed a decreased defect emission at ca. 600 nm, which was related to the disappearance of lattice imperfections formed during the synthesis. A heat treatment at 1000 degrees C resulted in significant crystal growth reflected as an increase in luminescence at shorter wavelengths (ca. 510 nm). Electron microscopy revealed that the faceted rod structure was lost for ZnO rods exposed to temperatures above 600 degrees C, whereas even higher temperatures resulted in particle sintering and/or mass redistribution along the initially long and slender ZnO rods. The synthesized ZnO rods were a more stable Wurtzite crystal structure than previously reported ball-shaped ZnO consisting of merging sheets, which was supported by the shifts in PL spectra occurring at ca. 200 degrees C higher annealing temperature, in combination with a smaller thermogravimetric mass loss occurring upon heating the rods to 800 degrees C.

  • 7.
    Kubyshkina, Elena
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering.
    Unge, Mikael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. ABB Corporate Research.
    Impact of interfacial structure on charge dynamics in nanocomposite dielectricsManuscript (preprint) (Other academic)
  • 8. Nakamura, K.
    et al.
    Ankyu, S.
    Nilsson, Fritjof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Kanno, T.
    Niwano, Y.
    Vult von Steyern, P.
    Örtengren, U.
    Critical considerations on load-to-failure test for monolithic zirconia molar crowns2018In: Journal of The Mechanical Behavior of Biomedical Materials, ISSN 1751-6161, E-ISSN 1878-0180, Vol. 87, p. 180-189Article in journal (Refereed)
    Abstract [en]

    Application of monolithic zirconia crowns (MZCs) with reduced thickness to the molar region has been proposed, but potential complications have yet to be fully evaluated in laboratory tests. The present study aimed to develop a clinically relevant load-to-failure test in combination with fatigue treatments involving thermal and mechanical cycling (TC and MC) to evaluate the fracture resistance of molar MZCs. MZCs with a minimal thickness of 0.5 mm were bonded to dies made of resin-based composite (RBC), epoxy resin (EP), or polyoxymethylene-copolymer (POM-C). The samples were either untreated (UT) or subjected to TC (5–55 °C for 1 × 105 cycles) and MC (300 N for 2.4 × 106 cycles). The stress generated by TC and MC was simulated by finite element modeling. The load-to-failure test was performed using an inverse V-shaped two-plane indenter and was followed by fractographic analysis. The median values of fracture load for MZC/RBC and MZC/EP in the TC group were significantly lower than those in the UT group. MC also decreased the median value of fracture load for MZC/RBC significantly, but not that for MZC/EP and MZC/POM-C. Fractography revealed that the fracture started in the cervical area in all groups, which is similar to clinically failed crowns. The simulation confirmed stress concentration at the cervical area in both TC and MC groups. The present study suggests that the load-to-failure test using a two-plane indenter could induce clinically relevant fracture of MZCs, the vulnerability of the MZCs depends largely on the die material employed, and MZCs are more likely to be damaged by thermal fatigue than mechanical fatigue.

  • 9.
    Nakamura, Keisuke
    et al.
    Tohoku Univ, Dept Adv Free Rad Sci, Grad Sch Dent, Aoba Ku, 4-1 Seiryo Machi, Sendai, Miyagi 9808575, Japan..
    Ankyu, Shuhei
    Sweden Dent Sendai, Miyagino Ku, 1-6-2 Tsutsujigaoka, Sendai, Miyagi 9830852, Japan..
    Nilsson, Fritjof
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Kanno, Taro
    Tohoku Univ, Dept Adv Free Rad Sci, Grad Sch Dent, Aoba Ku, 4-1 Seiryo Machi, Sendai, Miyagi 9808575, Japan..
    Niwano, Yoshimi
    Shumei Univ, Fac Nursing, 1-1 Daigaku Cho, Yachiyo, Chiba 2760003, Japan..
    von Steyern, Per Vult
    Malmo Univ, Fac Odontol, Dept Mat Sci & Technol, SE-20506 Malmo, Sweden..
    Örtengren, Ulf
    Univ Gothenburg, Sahlgrenska Acad, Inst Odontol, Dept Cariol, SE-40530 Gothenburg, Sweden.;Arctic Univ Norway, Fac Hlth Sci, Dept Clin Dent, N-9037 Tromso, Norway..
    Critical considerations on load-to-failure test for monolithic zirconia molar crowns2018In: Journal of The Mechanical Behavior of Biomedical Materials, ISSN 1751-6161, E-ISSN 1878-0180, Vol. 87, p. 180-189Article in journal (Refereed)
    Abstract [en]

    Application of monolithic zirconia crowns (MZCs) with reduced thickness to the molar region has been proposed, but potential complications have yet to be fully evaluated in laboratory tests. The present study aimed to develop a clinically relevant load-to-failure test in combination with fatigue treatments involving thermal and mechanical cycling (TC and MC) to evaluate the fracture resistance of molar MZCs. MZCs with a minimal thickness of 0.5 mm were bonded to dies made of resin-based composite (RBC), epoxy resin (EP), or polyoxymethylene-copolymer (POM-C). The samples were either untreated (UT) or subjected to TC (5-55 degrees C for 1 x 10(5) cycles) and MC (300 N for 2.4 x 10(6) cycles). The stress generated by TC and MC was simulated by finite element modeling. The load-to-failure test was performed using an inverse V-shaped two-plane indenter and was followed by fractographic analysis. The median values of fracture load for MZC/RBC and MZC/EP in the TC group were significantly lower than those in the UT group. MC also decreased the median value of fracture load for MZC/RBC significantly, but not that for MZC/EP and MZC/POM-C. Fractography revealed that the fracture started in the cervical area in all groups, which is similar to clinically failed crowns. The simulation confirmed stress concentration at the cervical area in both TC and MC groups. The present study suggests that the load-to-failure test using a two-plane indenter could induce clinically relevant fracture of MZCs, the vulnerability of the MZCs depends largely on the die material employed, and MZCs are more likely to be damaged by thermal fatigue than mechanical fatigue.

  • 10.
    Pourrahimi, Amir Masoud
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    The Role of Interfaces in Polyethylene/Metal-Oxide Nanocomposites for Ultrahigh-Voltage Insulating Materials2018In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 4, article id 1703624Article in journal (Refereed)
    Abstract [en]

    Recent progress in the development of polyethylene/metal-oxide nanocomposites for extruded high-voltage direct-current (HVDC) cables with ultrahigh electric insulation properties is presented. This is a promising technology with the potential of raising the upper voltage limit in today's underground/submarine cables, based on pristine polyethylene, to levels where the loss of energy during electric power transmission becomes low enough to ensure intercontinental electric power transmission. The development of HVDC insulating materials together with the impact of the interface between the particles and the polymer on the nanocomposites electric properties are shown. Important parameters from the atomic to the microlevel, such as interfacial chemistry, interfacial area, and degree of particle dispersion/aggregation, are discussed. This work is placed in perspective with important work by others, and suggested mechanisms for improved insulation using nanoparticles, such as increased charge trap density, adsorption of impurities/ions, and induced particle dipole moments are considered. The effects of the nanoparticles and of their interfacial structures on the mechanical properties and the implications of cavitation on the electric properties are also discussed. Although the main interest in improving the properties of insulating polymers has been on the use of nanoparticles, leading to nanodielectrics, it is pointed out here that larger microscopic hierarchical metal-oxide particles with high surface porosity also impart good insulation properties. The impact of the type of particle and its inherent properties (purity and conductivity) on the nanocomposite dielectric and insulating properties are also discussed based on data obtained by a newly developed technique to directly observe the charge distribution on a nanometer scale in the nanocomposite.

  • 11.
    Rasheed, Faiza
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials. Swedish Univ Agr Sci, Dept Plant Breeding, Växtskyddsvägen 1, SE-23053 Alnarp, Sweden.
    Plivelic, Tomas S.
    Lund Univ, MAX IV Lab, Box 118, SE-22100 Lund, Sweden..
    Kuktaite, Ramune
    Swedish Univ Agr Sci, Dept Plant Breeding, Vaxtskyddsvagen 1, SE-23053 Alnarp, Sweden..
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Johansson, Eva
    Swedish Univ Agr Sci, Dept Plant Breeding, Vaxtskyddsvagen 1, SE-23053 Alnarp, Sweden..
    Unraveling the Structural Puzzle of the Giant Glutenin Polymer-An Interplay between Protein Polymerization, Nanomorphology, and Functional Properties in Bioplastic Films2018In: ACS OMEGA, ISSN 2470-1343, Vol. 3, no 5, p. 5584-5592Article in journal (Refereed)
    Abstract [en]

    A combination of genotype, cultivation environment, and protein separation procedure was used to modify the nanoscale morphology, polymerization, and chemical structure of glutenin proteins from wheat. A low-polymerized glutenin starting material was the key to protein-protein interactions mainly via SS cross-links during film formation, resulting in extended beta-sheet structures and propensity toward the formation of nanoscale morphologies at molecular level. The properties of glutenin bioplastic films were enhanced by the selection of a genotype with a high number of cysteine residues in its chemical structure and cultivation environment with a short grain maturation period, both contributing positively to gluten strength. Thus, a combination of factors affected the structure of glutenins in bioplastic films by forming crystalline beta-sheets and propensity toward the ordered nanostructures, thereby resulting in functional properties with high strength, stiffness, and extensibility.

  • 12.
    Rovera, Cesare
    et al.
    Univ Milan, Dept Food Environm & Nutr Sci, DeFENS, Via Celoria 2, I-20133 Milan, Italy..
    Ghaani, Masoud
    Univ Milan, Dept Food Environm & Nutr Sci, DeFENS, Via Celoria 2, I-20133 Milan, Italy..
    Santo, Nadia
    Univ Milan, Dept Biosci, Via Celoria 26, I-20133 Milan, Italy..
    Trabattoni, Silvia
    Univ Milano Bicocca, Dept Mat Sci, Via R Cozzi 55, I-20125 Milan, Italy..
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Romano, Diego
    Univ Milan, Dept Food Environm & Nutr Sci, DeFENS, Via Celoria 2, I-20133 Milan, Italy.;Univ Milan, Local Unit, Natl Consortium Mat Sci & Technol, INSTM, Via Celoria 2, I-20133 Milan, Italy..
    Farris, Stefano
    Univ Milan, Dept Food Environm & Nutr Sci, DeFENS, Via Celoria 2, I-20133 Milan, Italy.;Univ Milan, Local Unit, Natl Consortium Mat Sci & Technol, INSTM, Via Celoria 2, I-20133 Milan, Italy..
    Enzymatic Hydrolysis in the Green Production of Bacterial Cellulose Nanocrystals2018In: ACS SUSTAINABLE CHEMISTRY & ENGINEERING, ISSN 2168-0485, Vol. 6, no 6, p. 7725-7734Article in journal (Refereed)
    Abstract [en]

    In this study, we extensively describe experimental models, with correlating experimental conditions, which were used to investigate the enzymatic hydrolysis of bacterial cellulose (BC) to obtain nanocrystals. Cellulase from Trichoderma reesei was used in five enzyme/BC ratios over a period of 74 h. The turbidity data was modeled using both logistic regression and empirical regression to determine the fractal kinetics, resulting in unique kinetic patterns for the mixtures that were richest in BC and in enzymes. The evolution of the yield was inversely related to the turbidity, as confirmed through a semiempirical approach that was adopted to model the experimental data. The yield values after 74 h of hydrolysis were higher for the substrate-rich mixtures (similar to 20%) than for the enzyme rich mixtures (similar to 5%), as corroborated by cellobiose and glucose quantification. Transmission electron microscopy and atomic force microscopy analyses revealed a shift from a fibril network to a needle-like morphology (i.e., aggregated nanocrystals or individual nanocrystals similar to 6 nm width and 200-800 nm in length) as the enzyme/BC ratios went from lower to higher. These results were explained in terms of the heterogeneous substrate model and the erosion model. This work initiated a promising, environmentally friendly method that could serve as an alternative to the commonly used chemical hydrolysis routes.

  • 13.
    Wei, Xin-Feng
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Kallio, K. J.
    Bruder, S.
    Bellander, M.
    Gedde, Ulf W
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Long-term performance of a polyamide-12-based fuel line with a thin poly(ethylene-co-tetrafluoroethylene) (ETFE) inner layer exposed to bio- and petroleum diesel2018In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 156, p. 170-179Article in journal (Refereed)
    Abstract [en]

    The long-term performance of a polyamide-12 (PA12)-based (bio)diesel fuel line/pipe with a thin poly(ethylene-co-tetrafluoroethylene) (ETFE) inner layer was investigated in “close to real” and high-temperature isothermal conditions with fuel on the inside and air on the outside of the pipe. The inner carbon-black-containing ETFE layer resisted fuel attack, as revealed by the small fuel uptake, the very low degree of oxidation, and the unchanged electrical conductivity, glass transition and melting behaviour. The properties of the ETFE layer remained the same after exposure to all the fuel types tested (petroleum diesel, biodiesel and a blend of 80% diesel with 20% biodiesel). Because of the presence of the ETFE layer on the inside, the fuel pipe experienced noticeable changes only in the outer PA12 pipe layer through migration of plasticizer, annealing and slight oxidation. The evaporation of plasticizer was found to be diffusion-controlled and it led to an increase in the glass transition temperature of PA12 by 20 °C. This, together with a small annealing-induced increase in crystallinity, resulted in a stiffer and stronger pipe with an increase in the flexural/tensile modulus and strength. The oxidation of PA12 remained at a low level and did not lead to an embrittled pipe during the simulated lifetime of the vehicle. This study reveals that fluoropolymers have a great potential for use as fuel-contacting materials in “demanding” motor vehicle fuel line systems. 

  • 14.
    Wei, Xin-Feng
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Kallio, Kai J.
    Volvo Car Corp, Polymer Ctr, SE-40531 Gothenburg, Sweden..
    Bruder, Stefan
    Scania CV AB, Mat Technol, SE-15187 Sodertalje, Sweden..
    Bellander, Martin
    Scania CV AB, Mat Technol, SE-15187 Sodertalje, Sweden..
    Kausch, Hans-Henning
    Swiss Fed Inst Technol Lausanne EPFL, CH-1015 Lausanne, Switzerland..
    Gedde, Ulf W
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Diffusion-limited oxidation of polyamide: Three stages of fracture behavior2018In: Polymer degradation and stability, ISSN 0141-3910, E-ISSN 1873-2321, Vol. 154, p. 73-83Article in journal (Refereed)
    Abstract [en]

    Polyamides (PAs) frequently experience diffusion-limited oxidation (DLO) under elevated temperatures due to their combination of relatively high oxygen barrier properties and high susceptibility to, and rate of, oxidation; under DLO conditions, oxidation is uneven and limited to a thin surface layer. In this study, the reduced extensibility/embrittlement of unstabilized PA6 under DLO conditions was understood by revealing DLO-induced fracture behavior. The DLO was induced by thermally ageing PA6 samples at 180 degrees C; the built-up of the thin oxidized layer by ageing was revealed by infrared microscopy. Notably, the formation of the thin oxidized layer significantly reduced the strain-at-break. Depending on whether the oxidized layer was brittle, two types of surface behavior (voiding and cracking) occurred during the tensile tests, which in turn lead to three types (stages) of tensile fracture behavior. In particular, in the early stage (Stage I) of ageing, the fracture was caused by a long crack formed by the coalescence of adjacent surface voids, leading to a decrease in the strain-at-break from 300% to 30%. In Stage II, multiple surface cracks, which initiated in the oxidized layer, was arrested by the interface between the oxidized and unoxidized material, leading to an almost constant strain-at-break (at or close to the necking strain). Maximum brittleness occurred in Stage III, where a more extensive oxidation of the oxidized layer initiated cracks with high propagation rate, causing the interface to be unable to arrest the cracks. 

  • 15.
    Ye, Xinchen
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Junel, Kristina
    RISE Bioecon Innventia AB, Drottning Kristinas Vag 61, SE-11486 Stockholm, Sweden..
    Gallstedt, Mikael
    SIG Combibloc, Vasagatan 7, SE-11120 Stockholm, Sweden..
    Langton, Maud
    SLU Swedish Agr Univ, Dept Mol Sci, Box 7015, S-75007 Uppsala, Sweden..
    Wei, Xin-Feng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Lendel, Christofer
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Chem, SE-10044 Stockholm, Sweden..
    Hedenqvist, Mikael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Protein/Protein Nanocomposite Based on Whey Protein Nanofibrils in a Whey Protein Matrix2018In: ACS Sustainable Chemistry and Engineering, ISSN 2168-0485, Vol. 6, no 4, p. 5462-5469Article in journal (Refereed)
    Abstract [en]

    This article describes nanocomposite films with separately grown protein nanofibrils (PNFs) in a nonfibrillar protein matrix from the same protein starting material (whey). Tensile tests on the glycerol-plasticized films indicate an increased elastic modulus and a decreased extensibility with increasing content of PNFs, although the films are still ductile at the maximum PNF content (15 wt %). Infrared spectroscopy confirms that the strongly hydrogen-bonded beta-sheets in the PNFs are retained in the composites. The films appear with a PNF-induced undulated upper surface. It is shown that micrometer-scale spatial variations in the glycerol distribution are not the cause of these undulations. Instead, the undulations seem to be a feature of the PNF material itself. It was also shown that, apart from plasticizing the protein film, the presence of glycerol seemed to favor to some extent exfoliation of stacked beta-sheets in the proteins, as revealed by X-ray diffraction.

1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf