Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ansari, Farhan
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Galland, Sylvain
    Fernberg, P.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Stiff and ductile nanocomposites of epoxy reinforced with cellulose nanofibrils2013In: ICCM International Conferences on Composite Materials, International Committee on Composite Materials , 2013, p. 5575-5582Conference paper (Refereed)
  • 2.
    Brett, Calvin
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. DESY, Photon Sci, Hamburg, Germany.
    Mittal, Nitesh
    KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ohm, Wiebke
    DESY, Photon Sci, Hamburg, Germany..
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences (SCI), Mechanics, Fluid Physics.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. DESY, Photon Sci, Hamburg, Germany..
    In situ self-assembly study in bio-based thin films2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 3.
    Herrera, Martha
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Thitiwutthisakul, Kasinee
    SCG Packaging Publ Co Ltd, Prod & Technol Dev Ctr, Ban Pong 70110, Ratchaburi, Thailand..
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, S-10044 Stockholm, Sweden.;KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, S-10044 Stockholm, Sweden..
    Rujitanaroj, Pim-on
    SCG Packaging Publ Co Ltd, Prod & Technol Dev Ctr, Ban Pong 70110, Ratchaburi, Thailand..
    Rojas, Ramiro
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 5, p. 3121-3133Article in journal (Refereed)
    Abstract [en]

    High Klason lignin content (23 wt%) cellulose nanofibrils (LCNF) were successfully isolated from eucalyptus pulp through catalyzed chemical oxidation, followed by high-pressure homogenization. LCNFs had a diameter of ca. 13 nm according to AFM evaluation. Dense films were obtained through vacuum filtration (nanopaper) and subjected to different drying methods. When drying under heat and mild vacuum (93 degrees C, 95 kPa) a higher water contact angle, lower roughness and oxygen transmission rate were observed, compared to those drying at room temperature under compression conditions. DSC experiments showed difference in signals associated to T-g of LCNF compared to CNF produced from spruce bleached pulp through enzymatic pre-treatment. The LCNF-based nanopaper showed mechanical properties slightly lower than for those made from cellulose nanofibrils, yet with increased hydrophobicity. In summary, the high-lignin content cellulose nanofibrils proved to be a suitable material for the production of low oxygen permeability nanopaper, with chemical composition close to native wood.

  • 4. Hohn, N.
    et al.
    Schlosser, S. J.
    Bießmann, L.
    Grott, S.
    Xia, S.
    Wang, K.
    Schwartzkopf, M.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. Deutsches Elektronen-Synchrotron, Germany.
    Müller-Buschbaum, P.
    Readily available titania nanostructuring routines based on mobility and polarity controlled phase separation of an amphiphilic diblock copolymer2018In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 10, no 11, p. 5325-5334Article in journal (Refereed)
    Abstract [en]

    The amphiphilic diblock copolymer polystyrene-block-polyethylene oxide is combined with sol-gel chemistry to control the structure formation of blade-coated foam-like titania thin films. The influence of evaporation time before immersion into a poor solvent bath and polarity of the poor solvent bath are studied. Resulting morphological changes are quantified by scanning electron microscopy (SEM) and grazing incidence small angle X-ray scattering (GISAXS) measurements. SEM images surface structures while GISAXS accesses inner film structures. Due to the correlation of evaporation time and mobility of the polymer template during the phase separation process, a decrease in the distances of neighboring titania nanostructures from 50 nm to 22 nm is achieved. Furthermore, through an increase of polarity of an immersion bath the energetic incompatibility of the hydrophobic block and the solvent can be enhanced, leading to an increase of titania nanostructure distances from 35 nm to 55 nm. Thus, a simple approach is presented to control titania nanostructure in foam-like films prepared via blade coating, which enables an easy upscaling of film preparation.

  • 5.
    Lo Re, Giada
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Sessini, V.
    Wet feeding approach for cellulosic materials/PCL Biocomposites2018In: Biomass Extrusion and Reaction Technologies: Principles to Practices and Future Potential, American Chemical Society (ACS), 2018, p. 209-226Chapter in book (Refereed)
    Abstract [en]

    In the past decades, cellulosic materials attracted increasing interest for their potential as reinforcement in bioplastics due to their intrinsic strength and light weight, although uniform fiber dispersion is a challenge. Among biodegradable polyesters, polycaprolactone (PCL) has regained attention for its biodegradability in marine environment together with its ductility. Its low strength, petroleum-based origin and comparably high cost, limit the use of PCL. PCL, therefore, is a good candidate for beneficial effect of cellulose material addition for the preparation of biodegradable composites with improved properties. A one-step wet compounding is reported in this chapter to validate a sustainable method to improve the cellulose dispersion in a hydrophobic polymer matrix as PCL. A comparison between cellulosic wood pulp fibers, microfibrillated cellulose and nanofibrils is made to assess the feasibility of the wet feeding approach for the processing of the biocomposites. Assessment of matrix molar mass demonstrated that PCL is insensitive to the presence of the water during the melt compounding. FE-SEM and X-ray tomography was used to characterize the morphology and to evaluate the nanofibrillation. Tensile tests were carried out to evaluate the mechanical properties of the biocomposites. The shortening and dispersion of the cellulose fibers after the melt processing were evaluated. Young's modulus values indicated that the wet feeding approach improve the dispersion of the cellulose and resulted in enhanced mechanical properties of the biocomposites. The beneficial effect of the wet feeding approach was greater for the pulp fibers compared to the microfibrillated cellulose or the nanofibrils due to a more efficient melt processing and more significant effect on the preservation of the fiber length and their aspect ratio.

  • 6.
    Lo Re, Giada
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Spinella, Stephen
    NYU Tandon School of Engineering, Six Metrotech Center, Brooklyn, New York 11201, United States.
    Boujemaoui, Assya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Vilaseca, Fabiola
    BIMATEC Group, Department of Chemical Engineering, Agricultural and Food Technology, University of Girona, C/Maria Aurèlia Capmany 61, 17003 Girona, Spain.
    Larsson, Per Tomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. RISE Bioeconomy, Teknikringen 56, Stockholm, SE-100 44, Sweden.
    Adås, Fredrik
    RISE Bioeconomy, Teknikringen 56, Stockholm, SE-100 44, Sweden.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Poly(ε-caprolactone) Biocomposites Based on Acetylated Cellulose Fibers and Wet Compounding for Improved Mechanical Performance2018In: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 5, no 6, p. 6753-6760Article in journal (Refereed)
    Abstract [en]

    Poly(epsilon-caprolactone) (PCL) is a ductile thermoplastic, which is biodegradable in the marine environment. Limitations include low strength, petroleum-based origin, and comparably high cost. Cellulose fiber reinforcement is therefore of interest although uniform fiber dispersion is a challenge. In this study, a one-step wet compounding is proposed to validate a sustainable and feasible method to improve the dispersion of the cellulose fibers in hydrophobic polymer matrix as PCL, which showed to be insensitive to the presence of the water during the processing. A comparison between unmodified and acetylated cellulosic wood fibers is made to further assess the net effect of the wet feeding and chemical modification on the biocomposites properties, and the influence of acetylation on fiber structure is reported (ATR-FTIR, XRD). Effects of processing on nano fibrillation, shortening, and dispersion of the cellulose fibers are assessed as well as on PCL molar mass. Mechanical testing, dynamic mechanical thermal analysis, FE-SEM, and X-ray tomography is used to characterize composites. With the addition of 20 wt % cellulosic fibers, the Young's modulus increased from 240 MPa (neat PCL) to 1850 MPa for the biocomposites produced by using the wet feeding strategy, compared to 690 MPa showed for the biocomposites produced using dry feeling. A wet feeding of acetylated cellulosic fibers allowed even a greater increase, with an additional 46% and 248% increase of the ultimate strength and Young's modulus, when compared to wet feeding of the unmodified pulp, respectively.

  • 7. Ohm, Wiebke
    et al.
    Rothkirch, Andre
    Pandit, Pallavi
    Koerstgens, Volker
    Mueller-Buschbaum, Peter
    Rojas, Ramiro
    Yu, Shun
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Brett, Calvin J.
    Soderberg, Daniel L.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Morphological properties of airbrush spray-deposited enzymatic cellulose thin films2018In: JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, ISSN 1945-9645, Vol. 15, no 4, p. 759-769Article in journal (Refereed)
    Abstract [en]

    We investigate the layer formation of enzymatic cellulose by airbrush spray coating on silicon oxide surfaces. The layer structure and morphology of enzymatic cellulose films in the thickness range between 86 nm and 2.1 A mu m is determined as a function of the spray coating procedures. For each spray coating step, layer buildup, surface topography, crystallinity as well as the nanoscale structure are probed with atomic force microscopy and surface-sensitive X-ray scattering methods. Without intermittent drying, the film thickness saturates; with intermittent drying, a linear increase in layer thickness with the number of spray pulses is observed. A closed cellulose layer was always observed. The crystallinity remains unchanged; the nanoscale structures show three distinct sizes. Our results indicate that the smallest building blocks increasingly contribute to the morphology inside the cellulose network for thicker films, showing the importance of tailoring the cellulose nanofibrils. For a layer-by-layer coating, intermittent drying is mandatory.

  • 8.
    Panzer, Matthew B.
    et al.
    Univ Virginia, Ctr Appl Biomech, Charlottesville, VA USA..
    Giudice, J. Sebastian
    Univ Virginia, Ctr Appl Biomech, Charlottesville, VA USA..
    Caudillo, Adrian
    Univ Virginia, Ctr Appl Biomech, Charlottesville, VA USA..
    Mukherjee, Sayak
    Univ Virginia, Ctr Appl Biomech, Charlottesville, VA USA..
    Kong, Kevin
    Univ Virginia, Ctr Appl Biomech, Charlottesville, VA USA..
    Cronin, Duane S.
    Univ Waterloo, Waterloo, ON, Canada..
    Barker, Jeffrey
    Univ Waterloo, Waterloo, ON, Canada..
    Gierczycka, Donata
    Univ Waterloo, Waterloo, ON, Canada..
    Bustamante, Michael
    Univ Waterloo, Waterloo, ON, Canada..
    Bruneau, David
    Univ Waterloo, Waterloo, ON, Canada..
    Corrales, Miguel
    Univ Waterloo, Waterloo, ON, Canada..
    Halldin, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Neuronic Engineering. KTH Royal Inst Technol, Stockholm, Sweden..
    Fahlstedt, Madelen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Neuronic Engineering.
    Arnesen, Marcus
    Jungstedt, Erik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Gayzik, F. Scott
    Wake Forest Univ, Bowman Gray Sch Med, Winston Salem, NC USA..
    Stitzel, Joel D.
    Wake Forest Univ, Bowman Gray Sch Med, Winston Salem, NC USA..
    Decker, William
    Wake Forest Univ, Bowman Gray Sch Med, Winston Salem, NC USA..
    Baker, Alex M.
    Wake Forest Univ, Bowman Gray Sch Med, Winston Salem, NC USA..
    Ye, Xin
    Wake Forest Univ, Bowman Gray Sch Med, Winston Salem, NC USA..
    Brown, Philip
    Wake Forest Univ, Bowman Gray Sch Med, Winston Salem, NC USA..
    NUMERICAL CROWDSOURCING OF NFL FOOTBALL HELMETS2018In: Journal of Neurotrauma, ISSN 0897-7151, E-ISSN 1557-9042, Vol. 35, no 16, p. A148-A148Article in journal (Other academic)
  • 9. Scaffaro, R.
    et al.
    Maio, A.
    Lo Re, Giada
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Parisi, A.
    Busacca, A.
    Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends2018In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 156, p. 166-176Article in journal (Refereed)
    Abstract [en]

    This work focuses on the preparation of a piezoresistive sensor device, by exploiting an amphiphilic sample of graphene oxide (GO) as a compatibilizer for poly (lactic acid) (PLA)-Poly (ethylene-glycol) (PEG) blends. The presence of GO determined a high stiffening and strengthening effect, without affecting toughness, and allowed a good stability of mechanical properties up to 40 days. Moreover, GO endowed the materials with electrical properties highly sensitive to pressure and strain variations: the biodegradable pressure sensor showed a responsivity of 35 μA/MPa from 0.6 to 8.5 MPa, a responsivity around 19 μA/MPa from 8.5 to 25 MPa. For lower pressure values (around 0.16–0.45 MPa), instead, the responsivity increases up to 220 μA/MPa in terms of ΔI/ΔP (i.e. (ΔI/ΔI0)/P close to 1 kPa−1). Furthermore, this novel sensor is able to monitor submicrometric displacements with an impressive sensitivity (up to 25 μA/μm in terms of ΔI/ΔL, or 70 in terms of (ΔI/I0)/ε). We implemented a model able to predict pressure changes up to 25 MPa, by monitoring and measuring variations in electrical conductivity, thus paving the road to use these biodegradable, ecofriendly materials as low-cost sensors for a large pressure range.

  • 10.
    Soeta, Hiroto
    et al.
    Univ Tokyo, Dept Biomat Sci, Grad Sch Agr & Life Sci, Tokyo 1138657, Japan..
    Lo Re, Giada
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden.;KTH Royal Inst Technol, Dept Fiber & Polymer Technol, SE-10044 Stockholm, Sweden..
    Masuda, Akihiro
    Toray Res Ctr Ltd, Morphol Res Labs, Morphol Res Lab 3, Otsu, Shiga 5208567, Japan..
    Fujisawa, Shuji
    Univ Tokyo, Dept Biomat Sci, Grad Sch Agr & Life Sci, Tokyo 1138657, Japan..
    Saito, Tsuguyuki
    Univ Tokyo, Dept Biomat Sci, Grad Sch Agr & Life Sci, Tokyo 1138657, Japan..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden.;KTH Royal Inst Technol, Dept Fiber & Polymer Technol, SE-10044 Stockholm, Sweden..
    Isogai, Akira
    Univ Tokyo, Dept Biomat Sci, Grad Sch Agr & Life Sci, Tokyo 1138657, Japan..
    Tailoring Nanocellulose-Cellulose Triacetate Interfaces by Varying the Surface Grafting Density of Poly(ethylene glycol)2018In: ACS OMEGA, ISSN 2470-1343, Vol. 3, no 9, p. 11883-11889Article in journal (Refereed)
    Abstract [en]

    Careful design of the structures of interfaces between nanofillers and polymer matrices can significantly improve the mechanical and'thermal' properties of the overall nanocomposites. Here, we investigate]how the grafting density on the surface of nanocelluloses influences the properties of nanocellulose/cellulose triacetate (CTA) composites. 2,2,6,6 The surface of nanocellulose, which was preparedby tetramethylpiperidine-l-oxyl oxidation, was modified with long poly(ethylene glycol) (PEG) chains at different grafting_ densities. The PEG -grafted nanocelluloses were h omogene ously embedded in CTA matrices. The mechanical and thermal properties of the nanocomposites were characterized. Increasing the grafting density caused the soft PEG chains to form denser and thicker layers around the rigid nanocelluloses. The PEG layers were not completely miscible with the CTA matrix. This structure consfderably enhanced the energy dissipation by allowing sliding at the interface, which increased the toughness of the nanocomposites. The thermal and mechanical properties of the composites could be tailored by controlling the grafting density. These findings provide a deeper understanding about interfacial design for nanocellulose-based composite materials.

  • 11. Wang, K.
    et al.
    Körstgens, V.
    Yang, D.
    Hohn, N.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
    Müller-Buschbaum, P.
    Morphology control of low temperature fabricated ZnO nanostructures for transparent active layers in all solid-state dye-sensitized solar cells2018In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 10, p. 4405-4415Article in journal (Refereed)
    Abstract [en]

    Based on a method using sol-gel chemistry combined with diblock copolymer templating, a low-temperature route to fabricate zinc oxide (ZnO) films with tunable morphologies including foam-like, worm-like and sphere-like structures is demonstrated. The morphologies are probed using scanning electron microscopy and grazing-incidence small-angle X-ray scattering. Based on controlled nanostructured ZnO films, all solid-state dye-sensitized solar cells (ssDSSCs) are prepared, for which every layer is deposited at low temperature to reduce the energy consumption of the manufacturing process. Transparent active layers for ssDSSCs are obtained, which demonstrates the possibility for building integrated solar cells. The ssDSSCs with a worm-like ZnO morphology, exhibiting relatively better ordered interconnected three-dimensional structures and larger meso-pore sizes, show the highest power conversion efficiencies and almost 100% efficiency of charge separation and collection for the absorbed photons. After 120 days, almost 80% of the initial power conversion efficiency is maintained in ambient air conditions, which demonstrates good long-term stability of the ssDSSCs even without special encapsulation. 

  • 12.
    Zhong, Qi
    et al.
    Zhejiang Sci Tech Univ, Natl Base Int Sci & Technol Cooperat Text & Consu, Engn Res Ctr Ecodyeing & Finishing Text, Key Lab Adv Text Mat & Mfg Technol,Minist Educ, Hangzhou 310018, Zhejiang, Peoples R China.;Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat Fachgebiet Phys Weicher Mat, James Franck Str 1, D-85748 Garching, Germany..
    Mi, Lei
    Zhejiang Sci Tech Univ, Natl Base Int Sci & Technol Cooperat Text & Consu, Engn Res Ctr Ecodyeing & Finishing Text, Key Lab Adv Text Mat & Mfg Technol,Minist Educ, Hangzhou 310018, Zhejiang, Peoples R China..
    Metwalli, Ezzeldin
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat Fachgebiet Phys Weicher Mat, James Franck Str 1, D-85748 Garching, Germany..
    Biessmann, Lorenz
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat Fachgebiet Phys Weicher Mat, James Franck Str 1, D-85748 Garching, Germany..
    Philipp, Martine
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat Fachgebiet Phys Weicher Mat, James Franck Str 1, D-85748 Garching, Germany..
    Miasnikova, Anna
    Univ Potsdam, Inst Chem, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany..
    Laschewsky, Andre
    Univ Potsdam, Inst Chem, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany.;Fraunhofer Inst Angew Polymerforschung, Geiselbergstr 69, D-14476 Potsdam, Germany..
    Papadakis, Christine M.
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat Fachgebiet Phys Weicher Mat, James Franck Str 1, D-85748 Garching, Germany..
    Cubitt, Robert
    Inst Laue Langevin, 6 Rue Jules Horowitz, F-38000 Grenoble, France..
    Schwartzkopf, Matthias
    Deutsch Elektronen Synchrotron DESY, Photon Sci, Notkestr 85, D-22607 Hamburg, Germany..
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Wang, Jiping
    Zhejiang Sci Tech Univ, Natl Base Int Sci & Technol Cooperat Text & Consu, Engn Res Ctr Ecodyeing & Finishing Text, Key Lab Adv Text Mat & Mfg Technol,Minist Educ, Hangzhou 310018, Zhejiang, Peoples R China..
    Mueller-Buschbaum, Peter
    Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat Fachgebiet Phys Weicher Mat, James Franck Str 1, D-85748 Garching, Germany..
    Effect of chain architecture on the swelling and thermal response of star-shaped thermo-responsive (poly(methoxy diethylene glycol acrylate)-block-polystyrene)(3) block copolymer films2018In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 14, no 31, p. 6582-6594Article in journal (Refereed)
    Abstract [en]

    The effect of chain architecture on the swelling and thermal response of thin films obtained from an amphiphilic three-arm star-shaped thermo-responsive block copolymer poly(methoxy diethylene glycol acrylate)-block-polystyrene ((PMDEGA-b-PS)(3)) is investigated by in situ neutron reflectivity (NR) measurements. The PMDEGA and PS blocks are micro-phase separated with randomly distributed PS nanodomains. The (PMDEGA-b-PS)(3) films show a transition temperature (TT) at 33 degrees C in white light interferometry. The swelling capability of the (PMDEGA-b-PS)(3) films in a D2O vapor atmosphere is better than that of films from linear PS-b-PMDEGA-b-PS triblock copolymers, which can be attributed to the hydrophilic end groups and limited size of the PS blocks in (PMDEGA-b-PS)(3). However, the swelling kinetics of the as-prepared (PMDEGA-b-PS)(3) films and the response of the swollen film to a temperature change above the TT are significantly slower than that in the PS-b-PMDEGA-b-PS films, which may be related to the conformation restriction by the star-shape. Unlike in the PS-b-PMDEGA-b-PS films, the amount of residual D2O in the collapsed (PMDEGA-b-PS)(3) films depends on the final temperature. It decreases from (9.7 +/- 0.3)% to (7.0 +/- 0.3)% or (6.0 +/- 0.3)% when the final temperatures are set to 35 degrees C, 45 degrees C and 50 degrees C, respectively. This temperature-dependent reduction of embedded D2O originates from the hindrance of chain conformation from the star-shaped chain architecture.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf