Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Antypas, H.
    et al.
    Karolinska Inst, Dept Neurosci, Swedish Med Nanosci Ctr, Stockholm, Sweden..
    Veses-Garcia, M.
    Karolinska Inst, Dept Neurosci, Swedish Med Nanosci Ctr, Stockholm, Sweden..
    Weibull, Emelie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Svahn Andersson, Helene
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Richter-Dahlfors, A.
    Karolinska Inst, Dept Neurosci, Swedish Med Nanosci Ctr, Stockholm, Sweden..
    A universal platform for selection and high-resolution phenotypic screening of bacterial mutants using the nanowell slide2018In: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 18, no 12, p. 1767-1777Article in journal (Refereed)
    Abstract [en]

    The Petri dish and microtiter plate are the golden standard for selection and screening of bacteria in microbiological research. To improve on the limited resolution and throughput of these methods, we developed a universal, user-friendly platform for selection and high-resolution phenotypic screening based on the nanowell slide. This miniaturized platform has an optimal ratio between throughput and assay complexity, holding 672 nanowells of 500 nl each. As monoclonality is essential in bacterial genetics, we used FACS to inoculate each nanowell with a single bacterium in 15 min. We further extended the protocol to select and sort only bacteria of interest from a mixed culture. We demonstrated this by isolating single transposon mutants generated by a custom-made transposon with dual selection for GFP fluorescence and kanamycin resistance. Optical compatibility of the nanowell slide enabled phenotypic screening of sorted mutants by spectrophotometric recording during incubation. By processing the absorbance data with our custom algorithm, a phenotypic screen for growth-associated mutations was performed. Alternatively, by processing fluorescence data, we detected metabolism-associated mutations, exemplified by a screen for -galactosidase activity. Besides spectrophotometry, optical compatibility enabled us to perform microscopic analysis directly in the nanowells to screen for mutants with altered morphologies. Despite the miniaturized format, easy transition from nano- to macroscale cultures allowed retrieval of bacterial mutants for downstream genetic analysis, demonstrated here by a cloning-free single-primer PCR protocol. Taken together, our FACS-linked nanowell slide replaces manual selection of mutants on agar plates, and enables combined selection and phenotypic screening in a one-step process. The versatility of the nanowell slide, and the modular workflow built on mainstream technologies, makes our universal platform widely applicable in microbiological research.

  • 2.
    Banerjee, Indradumna
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Russom, Aman
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Lab-on-DVD: Optical Disk Drive-Based Platforms for Point-of-Care Diagnostics2018In: Frugal Innovation in Bioengineering for the Detection of Infectious Diseases / [ed] AK Chavali, R Ramji, Switzerland: Springer, 2018, 2, p. 23-38Chapter in book (Refereed)
    Abstract [en]

    There is a growing demand for simple, affordable, reliable and quality-assured point-of-care (POC) diagnostics for use in resource-limited settings. Among the top ten leading causes of death worldwide, three are infectious diseases, namely, respiratory infections, HIV/AIDS and diarrheal diseases (World Health Organization 2012). Although high-quality diagnostic tests are available, these are often not available to patients in developing countries. While recent development in microfluidics and “lab-on-a-chip” devices has the potential to spur the development of protocols and affordable instruments for diagnosis of infectious disease at POC, integration of complex sample preparation and detection into automated molecular and cellular systems remain a bottleneck for implementation of these systems at resource-limited settings. Towards this, we describe here how low-cost optical drives can, with minor modifications, be turned into POC diagnostic platforms. A DVD drive is essentially a highly advanced and low-cost optical laser-scanning microscope, with the capability to deliver high-resolution images for biological applications. Furthermore, the inherent centrifugal force on rotational discs is elegantly used for sample preparation and integration. Hence, the merging of low-cost optical disc drives with centrifugal microfluidics is feasible concept for POC diagnostics, specifically designed to meet the needs at resource-limited settings.

  • 3.
    Faridi, Muhammad Asim
    et al.
    KTH.
    Shahzad, Adnan Faqui
    KTH.
    Russom, Aman
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Wiklund, Martin
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Milliliter scale acoustophoresis based bioparticle processing platform2018In: ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2018, ASME Press, 2018Conference paper (Refereed)
    Abstract [en]

    Bioparticles such as mammalian cells and bacteria can be manipulated directly or indirectly for multiple applications such as sample preparation for diagnostic applications mainly up-concentration, enrichment & separation as well as immunoassay development. There are various active and passive microfluidic particle manipulation techniques where Acoustophoresis is a powerful technique showing high cell viability. The use of disposable glass capillaries for acoustophoresis, instead of cleanroom fabricated glass-silicon chip can potentially bring down the cost factor substantially, aiding the realization of this technique for real-world diagnostic devices. Unlike available chips and capillary-based microfluidic devices, we report milliliter-scale platform able to accommodate 1ml of a sample for acoustophoresis based processing on a market available glass capillary. Although it is presented as a generic platform but as a demonstration we have shown that polystyrene suspending medium sample can be processed with trapping efficiency of 87% and the up-concentration factor of 10 times in a flow through manner i.e., at 35µl/min. For stationary volume accommodation, this platform practically offers 50 times more sample handling capacity than most of the microfluidic setups. Furthermore, we have also shown that with diluted blood (0.6%) in a flow-through manner, 82% of the white blood cells (WBCs) per ml could be kept trapped. This milliliter platform could potentially be utilized for assisting in sample preparation, plasma separation as well as a flow-through immunoassay assay development for clinical diagnostic applications.

  • 4. Piening, Brian D.
    et al.
    Zhou, Wenyu
    Contrepois, Kevin
    Rost, Hannes
    Urban, Gucci Jijuan Gu
    Mishra, Tejaswini
    Hanson, Blake M.
    Bautista, Eddy J.
    Leopold, Shana
    Yeh, Christine Y.
    Spakowicz, Daniel
    Banerjee, Imon
    Chen, Cynthia
    Kukurba, Kimberly
    Perelman, Dalia
    Craig, Colleen
    Colbert, Elizabeth
    Salins, Denis
    Rego, Shannon
    Lee, Sunjae
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhang, Cheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Wheeler, Jessica
    Sailani, M. Reza
    Liang, Liang
    Abbott, Charles
    Gerstein, Mark
    Mardinoglu, Adil
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Chalmers University of Technology, Sweden.
    Smith, Ulf
    Rubin, Daniel L.
    Pitteri, Sharon
    Södergren, Erica
    McLaughlin, Tracey L.
    Weinstock, George M.
    Snyder, Michael P.
    Integrative Personal Omics Profiles during Periods of Weight Gain and Loss2018In: Cell Systems, ISSN 2405-4712, Vol. 6, no 2, p. 157-170.e8Article in journal (Refereed)
    Abstract [en]

    Advances in omics technologies now allow an unprecedented level of phenotyping for human diseases, including obesity, in which individual responses to excess weight are heterogeneous and unpredictable. To aid the development of better understanding of these phenotypes, we performed a controlled longitudinal weight perturbation study combining multiple omics strategies (genomics, transcriptomics, multiple proteomics assays, metabolomics, and microbiomics) during periods of weight gain and loss in humans. Results demonstrated that: (1) weight gain is associated with the activation of strong inflammatory and hypertrophic cardiomyopathy signatures in blood; (2) although weight loss reverses some changes, a number of signatures persist, indicative of long-term physiologic changes; (3) we observed omics signatures associated with insulin resistance that may serve as novel diagnostics; (4) specific biomolecules were highly individualized and stable in response to perturbations, potentially representing stable personalized markers. Most data are available open access and serve as a valuable resource for the community.

  • 5. Sangeeta, K.
    et al.
    Jain, Saumey
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Satija, J.
    Investigation of bimetallic hollow nanoparticles for colorimetric detection of mercury2018In: Proceedings of SPIE - The International Society for Optical Engineering, SPIE , 2018Conference paper (Refereed)
    Abstract [en]

    In this study, we have investigated the potential of bimetallic hollow nanostructures (BHNS) consisting of silver and gold metals for the detection of mercury in an aqueous medium. The BHNS of varying compositions of gold and silver were prepared by galvanic etching of the template silver nanoparticles (AgNPs) using gold(III) salt solution. The BHNS of varying composition were prepared by modulating the molar ratio, of gold to silver, ranging from 0.13 to 2.0, in the reaction mixture. The resultant nanostructures were characterized using UV-Vis spectroscopy and transmission electron microscopy. The absorption maxima of the BHNS batches were found to be increased from 463 ± 9 nm to 611 ± 12 nm as a function of gold to silver molar ratio. An increase in the nanoparticles size was observed from 54 ± 6 (molar ratio = 0.25) to 75 ± 10 (molar ratio = 2.0) with an increase in gold to silver molar ratio. The interaction of different volumes of mercury solution (ranging from 0.1 to 0.4 mL) with all types of BHNS was studied. A considerable change in color of the solution was observed and consequently, a change in the absorbance intensity and a shift in the peak plasmonic wavelength was also noticed. Among the different BHNS batches investigated, the highest change in the intensity and peak wavelength was observed for BHNS0.13, with higher silver and lower gold content. This suggests that the reaction between silver and mercury is more favored compared to that between mercury and gold.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf