Change search
Refine search result
12 1 - 50 of 62
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abedifar, V.
    et al.
    Furdek, Marija
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Muhammad, Ajmal
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Eshghi, M.
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Routing, modulation format, spectrum and core allocation in SDM networks based on programmable filterless nodes2018In: Optics InfoBase Conference Papers, Optics Info Base, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    An RMSCA approach based on binary particle swarm optimization is proposed for programmable filterless SDM networks, aimed at minimizing core and spectrum usage. Nearoptimal resource consumption.

  • 2.
    Bogoni, Antonella
    et al.
    Scuola Super Sant Anna, I-56127 Pisa, Italy..
    Mecozzi, Antonio
    Univ Aquila, Dept Phys & Chem Sci, I-67100 Laquila, Italy..
    Okonkwo, Chigo M.
    Eindhoven Univ Technol, NL-5612 AZ Eindhoven, Netherlands..
    Plant, David V.
    McGill Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada..
    Saitoh, Kunimasa
    Hokkaido Univ, Elect Engn, Sapporo, Hokkaido 0600814, Japan.;Hokkaido Univ, Grad Sch Engn, Sapporo, Hokkaido 0600814, Japan.;Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan..
    Wosinska, Lena
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics. KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Liu, Gordon Ning
    Huawei Technol Co Ltd, Shenzhen 518129, Peoples R China..
    Umbach, Andreas
    AUCCEPT Consulting GmbH, D-14055 Berlin, Germany..
    Charlet, Gabriel
    Huawei Paris Res Ctr, F-75002 Paris, France..
    Gaudino, Roberto
    Politecn Torino, Dipartimento Elettron & Telecomunicaz, I-10129 Turin, Italy..
    Foreword to the Special Issue on the 44th European Conference on Optical Communication (ECOC 2018)2019In: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 37, no 5, p. 1450-1455Article in journal (Other academic)
  • 3.
    Cao, Yuan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Zhao, Yongli
    Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China..
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Yu, Xiaosong
    Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China..
    Zhang, Jie
    Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Multi-tenant secret-key assignment over quantum key distribution networks2019In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 27, no 3, p. 2544-2561Article in journal (Refereed)
    Abstract [en]

    Quantum key distribution (QKD) networks are promising to progress towards widespread practical deployment over existing fiber infrastructures in the near future. Given the high cost and difficulty of deploying QKD networks, multi-tenancy becomes promising to improve cost efficiency for future QKD networks. In a multi-tenant QKD network, multiple QKD tenants can sham the same QKD network infrastructure to obtain secret keys for securing their data transfer. Since the secret-key resources are finite and precious in QKD networks, how to achieve efficient multi-tenant secret-key assignment (MTKA) to satisfy the secret-key demands of multiple QKD tenants over QKD networks becomes a significant problem. In this regard, this study addresses the MTKA problem over QKD networks. A new multi-tenant QKD network architecture is proposed based on software defined networking (SDN) and quantum key pool (QKP) techniques. A secret-key rate sharing scheme is presented and a heuristic algorithm is designed to implement efficient MTKA over QKD networks. A new performance metric, namely matching degree (MD) that reflects the balance between QKD network secret-key resources and QKD tenant requests, is defined and evaluated. Simulation studies indicate that high QKD tenant requests accommodation and efficient secret-key resource usage can be achieved via maximizing the value of MD. 

  • 4. Chen, X.
    et al.
    Lin, R.
    Cui, J.
    Gan, L.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Ozolins, O.
    Udalcovs, A.
    Jiang, T.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Tang, M.
    Fu, S.
    Liu, D.
    TDHQ Enabling Fine-Granularity Adaptive Loading for SSB-DMT Systems2018In: IEEE Photonics Technology Letters, ISSN 1041-1135, E-ISSN 1941-0174, Vol. 30, no 19, p. 1687-1690, article id 8443443Article in journal (Refereed)
    Abstract [en]

    In this letter, we introduce time domain hybrid quadrature amplitude modulation (TDHQ) for the single sideband discrete multi-tone systems. The experimental results reveal that with a single precoding set and the proposed adaptive loading algorithm, the TDHQ scheme can achieve finer granularity and therefore smoother continuous growth of data rate than that with the conventional quadrature amplitude modulation. Besides, thanks to the frame construction and the tailored mapping rule, the scheme with TDHQ has an obviously better peak to an average power ratio. 

  • 5.
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Optical Interconnects for Next Generation Data Centers: Architecture Design and Resource Allocation2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The current data center architectures based on blade servers and elec- tronic packet switches face several problems, e.g., limited resource utilization, high power consumption and cost, when handling the rapidly growing of data traffic. Optical networks offering ultra-high capacity and requiring low energy consumption are considered as a good option to address these problems. This thesis presents new data center architectures based on optical interconnects and transmissions, and evaluates performance by extensive simulations.

    The first main contribution of the thesis is to introduce a passive optical top-of-rack interconnect (POTORI) architecture. The data plane of POTORI mainly consists of passive components to interconnect the servers within the rack. Using the passive components makes it possible to significantly reduce power consumption while achieving high reliability in a cost-efficient way. In addition, the POTORI’s control plane is based on a centralized controller, which is responsible for coordinating the communications among the servers in the rack. A cycle-based medium access control (MAC) protocol and a dy- namic bandwidth allocation (DBA) algorithm are designed for the POTORI to efficiently manage the exchange of control messages and the data transmis- sion inside the rack. Simulation results show that under realistic DC traffic scenarios, the POTORI with the proposed DBA algorithm is able to achieve an average packet delay below 10 μs with the use of fast tunable optical transceivers.

    The second main contribution of the thesis is to investigate rack-scale disaggregated data center (DDC) architecture for improving resource utiliza- tion. In contrast to the traditional DC with blade servers that integrate various types of resources (e.g., central processing unit (CPU), memory) in a chassis, the rack-scale DDC contains fully decoupled resources held on differ- ent blades, referred to as resource blades. The resource blades are required to be interconnected within the rack by an ultra-high bandwidth optical in- terconnect through the optical interfaces (OIs). A resource allocation (RA) algorithm is proposed to efficiently schedule the resources in the DDC for virtual machine requests. Results show that with sufficient bandwidth on the OIs, the rack-scale DDC with the proposed RA algorithm can achieve 20% higher resource utilization and make 30% more revenue comparing to the traditional DC.

  • 6.
    Cheng, Yuxin
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    De Andrade, Marilet
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Resource Disaggregation versus Integrated Servers in Data Centers: Impact of Internal Transmission Capacity Limitation2018In: Proceedings 2018 European Conference on Optical Communication (ECOC), Institute of Electrical and Electronics Engineers (IEEE), 2018Conference paper (Refereed)
    Abstract [en]

    This paper shows that internal transmission capacity limitations in disaggregated data centers cannot be ignored. Insufficient capacity may reduce the inherent benefits of resource disaggregation in terms of resource utilization compared to the integrated solutions.

  • 7.
    Cheng, Yuxin
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS. KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Fiorani, Matteo
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    POTORI: A Passive Optical Top-of-Rack Interconnect Architecture for Data Centers2017In: Journal of Optical Communications and Networking, ISSN 1943-0620, E-ISSN 1943-0639, Vol. 9, no 5, p. 401-411Article in journal (Refereed)
    Abstract [en]

    Several optical interconnect architectures inside data centers (DCs) have been proposed to efficiently handle the rapidly growing traffic demand. However, not many works have tackled the interconnects at top-of-rack (ToR), which have a large impact on the performance of the data center networks (DCNs) and can introduce serious scalability limitations due to their high cost and power consumption. In this paper, we propose a passive optical ToR interconnect architecture (POTORI) to replace the conventional electronic packet switch (EPS) in the access tier of DCNs. In the data plane, POTORI relies on a passive optical coupler to interconnect the servers within the rack and interfaces toward the aggregation/core tiers. The POTORI control plane is based on a centralized rack controller responsible for managing the communications among the servers in the rack. We propose a cycle-based medium access control (MAC) protocol to efficiently manage the exchange of control messages and the data transmission inside the rack. We also introduce and evaluate a dynamic bandwidth allocation algorithm for POTORI, namely largest first (LF). Extensive simulation results show that, with the use of fast tunable optical transceivers, POTORI and the proposed LF strategy are able to achieve an average packet delay below 10 μs under realistic DC traffic scenarios, outperforming conventional EPSs. On the other hand, with slower tunable optical transceivers, a careful configuration of the network parameters (e.g., maximum cycle time of the MAC protocol) is necessary to obtain a good network performance in terms of the average packet delay.

  • 8.
    Cheng, Yuxin
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    De Andrade, Marilet
    Ericsson Research, Sweden.
    Wosinska, Lena
    Department of Electrical Engineering, Chalmers University of Technology, Sweden.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Disaggregated Data Centers: Challenges and Tradeoffs2019In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896Article in journal (Other academic)
    Abstract [en]

    Resource utilization of modern data centers is significantly limited by the mismatch between the diversity of the resources required by running applications and the fixed amount of hardwired resources (e.g., number of central processing unit CPU cores, size of memory) in the server blades. In this regard, the concept of function disaggregation is introduced, where the integrated server blades containing all types of resources are replaced by the resource blades including only one specific function. Therefore, disaggregated data centers can offer high flexibility for resource allocation and hence their resource utilization can be largely improved. In addition, introducing function disaggregation simplifies the system upgrade, allowing for a quick adoption of new generation components in data centers. However, the communication between different resources faces severe problems in terms of latency and transmission bandwidth required. In particular,the CPU-memory interconnects in fully disaggregated data centers require ultra-low latency and ultra-high transmission bandwidth in order to prevent performance degradation for running applications. Optical fiber communication is a promising technique to offer high capacity and low latency, but it is still very challenging for the state-of-the-art optical transmission technologies to meet the requirements of the fully disaggregated data centers. In this paper, different levels of function disaggregation are investigated. For the fully disaggregated data centers, two architectural options are presented, where optical interconnects are necessary for CPU-memory communications. We review the state-of-the-art optical transmission technologies and carry out performance assessment when employing them to support function disaggregation in data centers. The results reveal that function disaggregation does improve the efficiency of resource usage in the data centers, although the bandwidth provided by the state-of-the-art optical transmission technologies is not always sufficient for the fully disaggregated data centers. It calls for research in optical transmission to fully utilize the advantages of function disaggregation in data centers.

  • 9.
    Chen, Qiman
    et al.
    South China Normal Univ, ZJU SCNU Joint Res Ctr Photon, Guangzhou, Guangdong, Peoples R China..
    Yang, Bing
    South China Normal Univ, ZJU SCNU Joint Res Ctr Photon, Guangzhou, Guangdong, Peoples R China..
    Zhang, Dan
    South China Normal Univ, ZJU SCNU Joint Res Ctr Photon, Guangzhou, Guangdong, Peoples R China..
    Zhang, Qiong
    Fujitsu Labs Amer Inc, Richardson, TX USA..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Flexible Service Chain Mapping in Server-Centric Optical Datacenter Networks2018In: 2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), IEEE , 2018Conference paper (Refereed)
    Abstract [en]

    We investigate flexible service chain mapping in server-centric optical terconnects, handling virtual network function (VNF) dependency operly. Blocking probability decreases by a factor of 10 when signing multiple VNFs in the same server is allowed.

  • 10.
    da Silva, Carlos Natalino
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Chiaraviglio, Luca
    Idzikowski, Filip
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Monti, Paolo
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Joint Optimization of Failure Management Costs, Electricity Costs, and Operator Revenue in Optical Core Networks2017In: IEEE Transactions on Green Communications and Networking, ISSN 2473-2400, Vol. PP, no 99Article in journal (Refereed)
    Abstract [en]

    We focus on the problem of maximizing profitability in an optical core network by acting on the power states of Optical Line Amplifiers (OLAs) and Line Cards (LCs) operating under varying traffic. Specifically, the profitability metric considered in this work takes into account the electricity costs of OLAs and LCs, the failure management costs derived from the application of power states to the network devices, and the operator revenue. After proving that all terms of the considered profitability function are deeply inter-correlated, we formulate the optimization problem of maximizing the network profitability in an optical core network with multi-period traffic. By solving the proposed formulation on a realistic scenario, we show that it is possible to wisely trade between the considered costs and revenue, and achieve higher network profitability than in the case in which the single terms are considered in isolation, e.g., only electricity consumption or only Failure Management Costs (FMC).

  • 11.
    Dixit, Abhishek
    et al.
    Ghent Univ iMinds, Dept Informat Technol, Ghent, Belgium..
    Mahloo, Mozhgan
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lannoo, Bart
    Ghent Univ iMinds, Dept Informat Technol, Ghent, Belgium..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Colle, Didier
    Ghent Univ iMinds, Dept Informat Technol, Ghent, Belgium..
    Pickavet, Mario
    Ghent Univ iMinds, Dept Informat Technol, Ghent, Belgium..
    Protection strategies for Next Generation Passive Optical Networks-22014In: 2014 INTERNATIONAL CONFERENCE ON OPTICAL NETWORK DESIGN AND MODELING, IEEE , 2014, p. 13-18Conference paper (Refereed)
    Abstract [en]

    Next Generation Passive Optical Networks-2 (NGPON2) are being considered to upgrade the current PON technology to meet the ever increasing bandwidth requirements of the end users while optimizing the network operators' investment. Reliability performance of NG-PON2 is very important due to the extended reach and, consequently, large number of served customers per PON segment. On the other hand, the use of more complex and hence more failure prone components than in the current PON systems may degrade reliability performance of the network. Thus designing reliable NG-PON2 architectures is of a paramount importance. Moreover, for appropriately evaluating network reliability performance, new models are required. For example, the commonly used reliability parameter, i.e., connection availability, defined as the percentage of time for which a connection remains operable, doesn't reflect the network wide reliability performance. The network operators are often more concerned about a single failure affecting a large number of customers than many uncorrelated failures disconnecting fewer customers while leading to the same average failure time. With this view, we introduce a new parameter for reliability performance evaluation, referred to as the failure impact. In this paper, we propose several reliable architectures for two important NGPON2 candidates: wavelength division multiplexed (WDM) PON and time and wavelength division multiplexed (TWDM) PON. Furthermore, we evaluate protection coverage, availability, failure impact and cost of the proposed schemes in order to identify the most efficient protection architecture.

  • 12. Dobrijevic, O.
    et al.
    Natalino, Carlos
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Furdek, Marija
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Hodzic, H.
    Dzanko, M.
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Another price to pay: An availability analysis for SDN virtualization with network hypervisors2018In: Proceedings of 2018 10th International Workshop on Resilient Networks Design and Modeling, RNDM 2018, Institute of Electrical and Electronics Engineers Inc. , 2018Conference paper (Refereed)
    Abstract [en]

    Communication networks are embracing the software defined networking (SDN) paradigm. Its architectural shift assumes that a remote SDN controller (SDNC) in the control plane is responsible for configuring the underlying devices of the forwarding plane. In order to support flexibility-motivated network slicing, SDN-based networks employ another entity in the control plane, a network hypervisor (NH). This paper first discusses different protection strategies for the control plane with NHs and presents the corresponding availability models, which assume possible failures of links and nodes in the forwarding plane and the control plane. An analysis of these protection alternatives is then performed so as to compare average control plane availability, average path length for the control communication that traverses NH, and infrastructure resources required to support them. Our results confirm the intuition that the NH introduction generally results in a reduction of the control plane availability, which stresses the need for appropriate protection. However, the availability achieved by each of the considered strategies is impacted differently by the node availability and the link failure probability, thus calling for a careful selection that is based on the infrastructure features.

  • 13.
    Estaran, Jose Manuel
    et al.
    Nokia Bell Labs, F-91620 Nozay, France..
    Mardoyan, Haik
    Nokia Bell Labs, F-91620 Nozay, France..
    Jorge, Filipe
    Joint Lab Nokia Bell Labs Thales Res & Technol, Lab 3 5, F-91767 Palaiseau, France.;CEA Leti, F-91767 Palaiseau, France..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, S-16425 Kista, Sweden..
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, S-16425 Kista, Sweden..
    Konczykowska, Agnieszka
    Joint Lab Nokia Bell Labs Thales Res & Technol, Lab 3 5, F-91767 Palaiseau, France.;CEA Leti, F-91767 Palaiseau, France..
    Riet, Muriel
    Joint Lab Nokia Bell Labs Thales Res & Technol, Lab 3 5, F-91767 Palaiseau, France.;CEA Leti, F-91767 Palaiseau, France..
    Duval, Bernadette
    Joint Lab Nokia Bell Labs Thales Res & Technol, Lab 3 5, F-91767 Palaiseau, France.;CEA Leti, F-91767 Palaiseau, France..
    Nodjiadjim, Virginie
    Joint Lab Nokia Bell Labs Thales Res & Technol, Lab 3 5, F-91767 Palaiseau, France.;CEA Leti, F-91767 Palaiseau, France..
    Dupuy, Jean-Yves
    Joint Lab Nokia Bell Labs Thales Res & Technol, Lab 3 5, F-91767 Palaiseau, France.;CEA Leti, F-91767 Palaiseau, France..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Bigo, Sebastien
    Nokia Bell Labs, F-91620 Nozay, France..
    140/180/204-Gbaud OOK Transceiver for Inter- and Intra-Data Center Connectivity2019In: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 37, no 1, p. 178-187Article in journal (Refereed)
    Abstract [en]

    We report on an ON OFF keying intensity-modulation and direct-detection C-band optical transceiver capable of addressing all datacenter interconnect environments at well beyond 100 Gbaud. For this, the transmitter makes the use of two key InP technologies: a 2:1 double heterojunction bipolar transistor selector multiplexer and a monolithically integrated distributed feedback laser traveling-wave electro-absorption modulator, both exceeding 100-GHz of 3-dB analog bandwidth. A preamplified 110-Gaz PIN photodiode prior to a 100-CHs analog-to-digital converter complete the ultrahigh bandwidth transceiver module; the device under study. In the experimental work, which discriminates between intra- and inter-data center scenarios (dispersion unmanaged 120, 560, and 960 m; and dispersion-managed 10 and 80 km of standard single-mode fiber), we evaluate the bit-error rate evolution against the received optical power at 140, 180, and 204 Gbaud ON OFF keying for different equalization configurations (adaptive linear filter with and without the help of short-memory sequence estimation) and forward error correction schemes (hard-decision codes with 7% and 20% overhead); drawing conclusions from the observed system-level limitations of the respective environments at this ultrahigh baudrate, as well as from the operation margins and sensitivity metrics. From the demonstration, we highlight three results: successful operation with >6-dB sensitivity margin below the 7% error-correction at 140 Gbaud over the entire 100 m-80 km range with only linear feed-forward equalization. Then, the transmission of a 180-Gbaud ON OFF keying carrier over 80 km considering 20% error-correction overhead. Finally, a 10-km communication at 204 (Maud ON OFF keying with up to 6 dB sensitivity margin, and regular 7% overhead error-correction.

  • 14. Gong, Y.
    et al.
    Yang, B.
    Zhang, D.
    Hong, X.
    Lu, Y.
    He, Sailing
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering. South China Normal University, Guangzhou, China.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). South China Normal University, Guangzhou, China.
    Crosstalk-aware multiple-AWG based optical interconnects for datacenter networks2018In: Optics Communications, ISSN 0030-4018, E-ISSN 1873-0310, Vol. 426, p. 151-157Article in journal (Refereed)
    Abstract [en]

    This paper proposes a crosstalk-aware passive optical interconnect architecture based on multiple arrayed waveguide gratings (AWGs). With two-stage cascaded AWGs, it can realize the communications not only within but also among the clusters for large-scale datacenters. To overcome serious crosstalk in multiple-AWG based optical interconnects, crosstalk suppression schemes are proposed. Proof-of-concept experiments are carried out to verify the necessity and feasibility of the proposed crosstalk suppression schemes for multiple-AWG based optical interconnects.

  • 15. Goscien, R.
    et al.
    Natalino, Carlos
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Furdek, Marija
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Impact of high-power jamming attacks on SDM networks2018In: 22nd Conference on Optical Network Design and Modelling, ONDM 2018 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 77-81Conference paper (Refereed)
    Abstract [en]

    Space Division Multiplexing (SDM) is a promising solution to provide ultra-high capacity optical network infrastructure for rapidly increasing traffic demands. Such network infrastructure can be a target of deliberate attacks that aim at disrupting a large number of vital services. This paper assesses the effects of high-power jamming attacks in SDM optical networks utilizing Multi-Core Fibers (MCFs), where the disruptive effect of the inserted jamming signals may spread among multiple cores due to increased Inter-Core CrossTalk (ICo-XT). We first assess the jamming-induced reduction of the signal reach for different bit rates and modulation formats. The obtained reach limitations are then used to derive the maximal traffic disruption at the network level. Results indicate that connections provisioned satisfying the normal operating conditions are highly vulnerable to these attacks, potentially leading to huge data losses at the network level.

  • 16.
    Hong, Xuezhi
    et al.
    KTH Royal Inst Technol, Sch ICT, Kista, Sweden.;South China Normal Univ, ZJU SCNU Joint Res Ctr Photon, Guangzhou, Guangdong, Peoples R China..
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). KTH Royal Inst Technol, Sch ICT, Kista, Sweden.;RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Guo, Changjian
    South China Normal Univ, ZJU SCNU Joint Res Ctr Photon, Guangzhou, Guangdong, Peoples R China..
    Nordwall, Fredrik
    Tektronix AB, Stockholm, Sweden..
    Engenhardt, Klaus M.
    Tektronix GmbH, Stuttgart, Germany..
    Kakkar, Aditya
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Rodrigo Navarro, Jaime
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Xiao, Shilin
    Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Shanghai, Peoples R China..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    200-Gbps DMT Transmission over 1.6-km SSMF with A Single EML/DAC/PD for Optical Interconnects at C-Band2017In: 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We report on the first experimental demonstration of 200-Gbps (net rate 166.7-Gbps) 1.55-mu m DMT IMDD transmission over 1.6 km fiber using a single monolithically-integrated-EML, DAC and photodiode, achieving an effective electrical spectrum efficiency of 4.93 bit/s/Hz.

  • 17. Jia, S.
    et al.
    Wang, S.
    Liu, K.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Zhang, H.
    Jin, X.
    Zheng, S.
    Chi, H.
    Zhang, X.
    Yu, X.
    A unified system with integrated generation of high-speed communication and high-resolution sensing signals based on THz photonics2018In: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 36, no 19, p. 4549-4556, article id 8425966Article in journal (Refereed)
    Abstract [en]

    Multifunctional convergence is one of the key physical features in future generation networks and Internet of things architectures. In this paper, we propose and experimentally demonstrate a unified terahertz (THz) system operating in the 300 GHz band, with a potential of simultaneously enabling high-speed communication and high-resolution ranging over a common optical infrastructure. Both THz communication and THz sensing signals are generated based on THz photonics and cutting-edge terahertz transceiver technologies. In the experiment, 16-quadrature amplitude modulation modulated THz signal is generated by photo-mixing two free running lasers for the communication, and linear frequency modulated (LFM) THz pulses are generated based on optical interferometer-based frequency-to-time mapping (FTM) for sensing. The experimental results show that up to 56 Gbit/s net rate is successfully transmitted over a 2 m free-space line-of-sight link, and the THz LFM pulses with a time-bandwidth product of up to 207 are successfully generated, which is potentially able to enable a cm-scale range resolution. We also investigate the frequency multiplexing schemes for two signals by changing the channel gap at the transmitter side. To the best of our knowledge, such a system represents the first demonstration of integrated generation system in the THz region above 300 GHz, which has great potential in prospective applications of future converged networks. 

  • 18.
    Li, Jun
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Shen, Xiaoman
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Chen, Lei
    RISE Viktoria, S-41756 Gothenburg, Sweden..
    Van, Dung Pham
    Ou, Jiannan
    South China Normal Univ, South China Acad Adv Optoelect, MOE Int Lab Opt Informat Technol, Guangzhou 511400, Guangdong, Peoples R China..
    Wosinska, Lena
    Chalmers Univ Technol, Dept Elect Engn, S-41296 Gothenburg, Sweden..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Service Migration in Fog Computing Enabled Cellular Networks to Support Real-Time Vehicular Communications2019In: IEEE Access, E-ISSN 2169-3536, Vol. 7, p. 13704-13714Article in journal (Refereed)
    Abstract [en]

    Driven by the increasing number of connected vehicles and related services, powerful communication and computation capabilities are needed for vehicular communications, especially for real-time and safety-related applications. A cellular network consists of radio access technologies, including the current long-term evolution (LTE), the LTE advanced, and the forthcoming 5th generation mobile communication systems. It covers large areas and has the ability to provide high data rate and low latency communication services to mobile users. It is considered the most promising access technology to support real-time vehicular communications. Meanwhile, fog is an emerging architecture for computing, storage, and networking, in which fog nodes can be deployed at base stations to deliver cloud services close to vehicular users. In fog computing-enabled cellular networks, mobility is one of the most critical challenges for vehicular communications to maintain the service continuity and to satisfy the stringent service requirements, especially when the computing and storage resources are limited at the fog nodes. Service migration, relocating services from one fog server to another in a dynamic manner, has been proposed as an effective solution to the mobility problem. To support service migration, both computation and communication techniques need to be considered. Given the importance of protocol design to support the mobility of the vehicles and maintain high network performance, in this paper, we investigate the service migration in the fog computing-enabled cellular networks. We propose a quality-of-service aware scheme based on the existing handover procedures to support the real-time vehicular services. A case study based on a realistic vehicle mobility pattern for Luxembourg scenario is carried out, where the proposed scheme, as well as the benchmarks, are compared by analyzing latency and reliability as well as migration cost.

  • 19.
    Lin, Rui
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lu, Yang
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, SE-16425 Kista, Sweden..
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, SE-16425 Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, SE-16425 Kista, Sweden..
    Tang, Ming
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China..
    Liu, Deming
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    First Experimental Demonstration of Physical-Layer Network Coding in PAM4 System for Passive Optical Interconnects2017In: 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We propose to implement physical-layer network coding (PLNC) in coupler-based passive optical interconnects. The PLNC over PAM4 system is for the first time experimentally validated, where simultaneous mutual communications can be kept within the same wavelength channel, doubling spectrum efficiency.

  • 20.
    Lin, Rui
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Van Kerrebrouck, J.
    Belgium.
    Verplaetse, M.
    Belgium.
    Ozolins, O.
    Udalcovs, A.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Gan, L.
    China.
    Tang, M.
    China.
    Fu, S.
    China.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, D.
    China.
    Tong, W.
    China.
    De Keulenaer, T.
    Belgium.
    Torfs, G.
    Belgium.
    Bauwelinck, J.
    Belgium.
    Yin, X.
    Belgium.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Real-time 100 Gbps/λ/core NRZ and EDB IM/DD transmission over 10 km multicore fiber2018In: Optics InfoBase Conference Papers, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    A BiCMOS chip-based real-time IM/DD spatial division multiplexing system is experimentally demonstrated for short-reach communications. 100 Gbps/λ/core NRZ and EDB transmission is achieved below 7%-overhead HD-FEC limit after 10km 7-core fiber with optical dispersion compensation.

  • 21.
    Lu, Yang
    et al.
    KTH.
    Agrell, Erik
    Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Hong, Xuezhi
    KTH.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects2017In: 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    An arbitrary multiple-wavelength reception scheme using only a few fixed-wavelength filters is proposed for optical interconnects. Filter matrices design based on error-control coding theory is devised. The feasibility of the proposed scheme is demonstrated in a four-wavelength reception experiment.

  • 22.
    Lu, Yang
    et al.
    Hangzhou Dianzi Univ, Coll Commun Engn, Hangzhou, Zhejiang, Peoples R China..
    Agrell, Erik
    Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Hong, Xuezhi
    South China Normal Univ, ZJU SCNU Joint Res Ctr Photon, Guangzhou 510006, Guangdong, Peoples R China..
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Multi-channel collision-free reception for optical interconnects2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 10, p. 13214-13222Article in journal (Refereed)
    Abstract [en]

    A multi channel reception scheme that allows each node to receive an arbitrary set of wavelengths simultaneously (i.e., collision-free) is proposed for optical interconnects. The proposed scheme only needs to use a few receivers and fixed-wavelength filters that are designed based on error-control coding theory. Experiments with up to four channel collision-free reception units are carried out to demonstrate the feasibility of the proposed scheme.

  • 23.
    Monti, Paolo
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Shen, Gangxiang (Steven)
    Soochow Univ, Suzhou, Peoples R China..
    Wong, Elaine
    Univ Melbourne, Melbourne, Vic, Australia..
    Introduction to the Feature Issue on the IEEE Globecom 2017 ONS Symposium2018In: Journal of Optical Communications and Networking, ISSN 1943-0620, E-ISSN 1943-0639, Vol. 10, no 8, p. ONS1-ONS2Article in journal (Other academic)
    Abstract [en]

    This feature issue is based on extended and revised versions of the top-ranked papers presented at the Optical Networks and Systems (ONS) Symposium that took place during the IEEE Global Communications Conference (GLOBECOM 2017). The papers appearing in this Feature Issue cover a wide range of topics, including elastic optical networks, mobile fronthaul, network function virtualization, survivability, and hybrid datacenter networks.

  • 24.
    Natalino, Carlos
    et al.
    KTH.
    Idzikowski, F.
    Chiaraviglio, L.
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Monti, Paolo
    KTH.
    EFAH: An energy and fatigue aware heuristic for provisioning highly available connections in optical backbone networks2017In: Proceedings of 2017 9th International Workshop on Resilient Networks Design and Modeling, RNDM 2017, Institute of Electrical and Electronics Engineers Inc. , 2017Conference paper (Refereed)
    Abstract [en]

    Optical backbone operators need to meet the availability requirements specified in the Service Level Agreements (SLAs). While less stringent availability constraints, i.e., less than three 9's might be met by provisioning connections without any protection, more stringent requirements, i.e., five 9's, force operator to use proactive protection strategies. The connection provisioning process becomes more cost-efficient when green aspects are considered. On the other hand, energy awareness introduces thermal fatigue effects, which may in turn lower the lifetime of devices that undergo frequent power state transitions, i.e., between Active Mode (AM) and Sleep Mode (SM). As a result the availability level experienced by the unprotected connections may decrease. At the same time, with devices failing more frequently the protection level chosen for a given connection might not be enough to guarantee the required average connection availability performance. This work tackles the problem of managing an optical back-bone network when green and thermal fatigue aspects are introduced. We propose an Energy and Fatigue Aware Heuristic (EFAH) that is able to balance between thermal fatigue effects and energy saving performance. When compared to the pure Energy-Aware (EA) strategies, EFAH manages to significantly improve the value of the average connection availability of both unprotected and protected connections. On the other hand, there is a price to pay in terms of lower energy saving performance.

  • 25.
    Natalino, Carlos
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Idzikowski, Filip
    Poznan Univ Tech, Fac Elect & Telecommun, Poznan, Poland..
    Chiaraviglio, Luca
    Univ Roma Tor Vergata, EE Dept, Rome, Italy..
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Monti, Paolo
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Energy- and fatigue-aware RWA in optical backbone networks2019In: Optical Switching and Networkning Journal, ISSN 1573-4277, E-ISSN 1872-9770, Vol. 31, p. 193-201Article in journal (Refereed)
    Abstract [en]

    Connection provisioning in Wavelength Division Multiplexing (WDM) networks needs to account for a number of crucial parameters. On the one hand, operators need to ensure the connection availability requirements defined in Service Level Agreements (SLAs). This is addressed by selecting an appropriate amount of backup resources and recovery strategies for the connections over which services are provisioned. Services requiring less strict availability requirements can be routed over unprotected lightpaths. Services with more strict availability requirements are provisioned over protected lightpaths in order to cope with possible failures in the network. Another important aspect to consider during the provisioning process is energy efficiency. Green strategies leverage on setting network devices in Sleep Mode (SM) or Active Mode (AM) depending on whether or not they are needed to accommodate traffic. However, frequent power state changes introduce thermal fatigue which in turn has a negative effect on the device lifetime. Finally, in multi-period traffic scenarios, it is also important to minimize the number of reconfigurations of lightpaths already established in the network in order to avoid possible traffic disruptions at higher layers. The work presented in this paper tackles the connection provisioning paradigm in an optical backbone network with a multi-period traffic scenario. More specifically the paper looks into the interplay among (i) energy efficiency, (ii) thermal fatigue, and (iii) lightpath reconfiguration aspects. To this end, the Energy and Fatigue Aware Heuristic with Unnecessary Reconfiguration Avoidance (EFAH-URA) is introduced, showing that it is possible to balance the three aspects mentioned above in an efficient way. When compared to the pure energy-aware strategies, EFAH-URA significantly improves the average connection availability for both unprotected and protected connections. On the other hand, it is done at the expense of reduced energy saving.

  • 26.
    Natalino, Carlos
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Raza, Muhammad Rehan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    O¨hlen, P.
    Batista, P.
    Santos, M.
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Monti, Paolo
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Machine-learning-based routing of QoS-constrained connectivity services in optical transport networks2018In: Optics InfoBase Conference Papers, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    Quality of Service (QoS) constraints are crucial in 5G networks. The paper presents a provisioning strategy for connectivity services with different priorities based on reinforcement learning able to accommodate QoS requirements while maximizing provider profits.

  • 27.
    Natalino, Carlos
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Yayimli, Aysegul
    Valparaiso Univ, Comp & Informat Sci Dept, Indiana, PA USA..
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Furdek, Marija
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Infrastructure upgrade framework for Content Delivery Networks robust to targeted attacks2019In: Optical Switching and Networkning Journal, ISSN 1573-4277, E-ISSN 1872-9770, Vol. 31, p. 202-210Article in journal (Refereed)
    Abstract [en]

    Content Delivery Networks (CDNs) are crucial for enabling delivery of services that require high capacity and low latency, primarily through geographically-diverse content replication. Optical networks are the only available future-proof technology that meets the reach and capacity requirements of CDNs. However, the underlying physical network infrastructure is vulnerable to various security threats, and the increasing importance of CDNs in supporting vital services intensifies the concerns related to their robustness. Malicious attackers can target critical network elements, thus severely degrading network connectivity and causing large-scale service disruptions. One way in which network operators and cloud computing providers can increase the robustness against malicious attacks is by changing the topological properties of the network through infrastructure upgrades. This work proposes a framework for CDN infrastructure upgrade that performs sparse link and replica addition with the objective of maximizing the content accessibility under targeted link cut attacks. The framework is based on a newly defined content accessibility metric denoted as mu-ACA which allows the network operator to gauge the CDN robustness over a range of attacks with varying intensity. Two heuristics, namely Content-Accessibility Aware Link Addition Heuristic (CAA-LAH), and Content-Accessibility-Aware Replica Addition Heuristic (CAA-RAH) are developed to perform strategic link and replica placement, respectively, and hamper attackers from disconnecting users from the content even in severe attack scenarios. Extensive experiments on real-world reference network topologies show that the proposed framework effectively increases the CDN robustness by adding a few links or replicas to the network.

  • 28.
    Natalino, Carlos
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Raza, Muhammad Rehan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Rostami, A.
    Deutsche Bahn AG, Germany.
    Ohlen, P.
    Ericsson Research, Kista, Sweden.
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Monti, Paolo
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Machine Learning Aided Orchestration in Multi-Tenant Networks2018In: IEEE Photonics Society Summer Topicals Meeting Series, SUM 2018, Institute of Electrical and Electronics Engineers Inc. , 2018, p. 125-126Conference paper (Refereed)
    Abstract [en]

    Software Defined Networking enables the efficient sharing of a network infrastructure among different tenants, a concept known as network slicing. The paper presents a slicing strategy based on reinforcement learning able to efficiently orchestrate services requested by mobile and cloud tenants. 

  • 29.
    Natalino, Carlos
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Sousa, A. D.
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Furdek, Marija
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    On the trade-offs between user-to-replica distance and CDN robustness to link cut attacks2018In: Proceedings of 2018 10th International Workshop on Resilient Networks Design and Modeling, RNDM 2018, Institute of Electrical and Electronics Engineers Inc. , 2018Conference paper (Refereed)
    Abstract [en]

    Content Delivery Networks (CDNs) are a key enabler for geographically-distributed content delivery with high throughput and low latency. As CDNs utilize the underlying optical core network infrastructure, they inherit its vulnerability to targeted link cut attacks which can cause severe service degradation. One of the fundamental problems in CDN configuration is deciding on the placement of content replicas across the underlying network of data centers, which should obtain balance among multiple, often conflicting performance criteria. This paper investigates the implications of minimizing the average distance between the users and the content replicas on the CDN robustness to targeted link cuts.To this end, we compute Pareto-optimal replica placement solutions with minimal user-to-replica distance and maximal robustness to link cut attacks of the highest damaging potential. k-best replica placement solutions in terms of the user-to-replica distance are calculated by formulating the problem as an Integer Linear Programming (ILP) exact method. For each replica placement solution, the worst case link cut attack scenario is identified by defining the Critical Link Set Detection (CLSD) problem. CLSD returns the link set whose cutting disconnects the maximal number of nodes from the content. We develop an ILP model for the CLSD and evaluate the robustness of the resulting CDN attack scenario in terms of mean content accessibility. The approach is evaluated through extensive simulations on real-world reference topologies, indicating that it is possible to improve the robustness to link cuts at the expense of small user-to-replica distance penalties. Moreover, the improvement of robustness is more significant for topologies with smaller average node degree and when cuts involve a larger number of links.

  • 30. Ou, J.
    et al.
    Li, Jun
    KTH.
    Yi, L.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Resource allocation in passive optical network based mobile backhaul for user mobility and fog computing2017In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2017Conference paper (Refereed)
    Abstract [en]

    Several dynamic bandwidth allocation algorithms are investigated to handle user mobility and fog computing in PON-based mobile backhaul. Results show that latency and jitter of both migrated and non-migrated traffic can be reduced.

  • 31. Ozolins, O.
    et al.
    Da Ros, F.
    Cristofori, V.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, A.
    Schatz, R.
    Oxenløwe, L. K.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Peucheret, C.
    Impact of phase-filtering on optical spectral reshaping with microring resonators for directly-modulated 4-PAM signals2018In: Optics InfoBase Conference Papers, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    We investigate microring resonator (MRRs)-based optical spectral reshaping for directly-modulated 4-PAM signals. The phase-filtering of MRR, and consequent dispersion added to the signal, yields 120% reach increase compared to the 95% of amplitude-only filtering.

  • 32. Ozolins, O.
    et al.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, A.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Van Kerrebrouck, J.
    Gan, L.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Tang, M.
    Fu, S.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Liu, D.
    Tong, W.
    Torfs, G.
    Bauwelinck, J.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Yin, X.
    7×149 Gbit/s PAM4 transmission over 1 km multicore fiber for short-reach optical interconnects2018In: Optics InfoBase Conference Papers, Optics Info Base, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    We transmit 80 Gbaud/λ/core PAM4 signal enabled by 1.55 μm EML over 1 km 7-core fiber. The solution achieves single-wavelength and single-fiber 1.04 Tbit/s post-FEC transmission enhancing bandwidth-density for short-reach optical interconnects.

  • 33. Ozolins, O.
    et al.
    Udalcovs, A.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Djupsjöbacka, A.
    Mårtensson, J.
    Fröjdh, K.
    Gan, L.
    Tang, M.
    Fu, S.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, D.
    Tong, W.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    112 Gbps/λ PAM4 inter-DCI with continuous-fiber Bragg grating based dispersion compensators2018In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2018Conference paper (Refereed)
    Abstract [en]

    We demonstrate 56 Gbaud/λ PAM4 inter - data center interconnects over 81 km single core single mode fiber and 33.6 km 7-core single mode fiber with continuous-fiber Bragg grating based chromatic dispersion compensators covering C-band.

  • 34.
    Ozolins, Oskars
    et al.
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Pang, Xiaodan
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden.;KTH Royal Inst Technol, Sch ICT, Stockholm, Sweden.;KTH Royal Inst Technol, Sch SCI, Stockholm, Sweden..
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics. KTH Royal Inst Technol, Sch ICT, Stockholm, Sweden.;KTH Royal Inst Technol, Sch SCI, Stockholm, Sweden..
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Rodrigo Navarro, Jaime
    Kakkar, Aditya
    KTH.
    Nordwall, Fredrik
    Tektronix AB, Stockholm, Sweden..
    Engenhardt, Klaus M.
    Tektronix GmbH, Stuttgart, Germany..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    100 Gbaud 4PAM Link for High Speed Optical Interconnects2017In: 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We demonstrate 100 Gbaud 4PAM transmission over 400 meters SMF with monolithically integrated 1550 nm DFB-TWEAM having 100 GHz 3-dB bandwidth with 2 dB ripple. We evaluate its capabilities to enable two lanes 400 GbE client-side links for optical interconnects.

  • 35.
    Pang, Xiaodan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, O.
    Zhang, L.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Udalcovs, A.
    Storck, Joakim
    KTH.
    Maisons, G.
    Carras, M.
    Xiao, S.
    Jacobsen, G.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lourdudoss, Sebastian
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    4 Gbps PAM-4 and DMT Free Space Transmission using a 4.65-pm Quantum Cascaded Laser at Room Temperature2017In: European Conference on Optical Communication, ECOC, Institute of Electrical and Electronics Engineers Inc. , 2017, p. 1-3Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate 4Gbps PAM-4 and DMT transmissions using a quantum cascaded laser (QCL) emitting at mid-wavelength infrared of 4.65μm and a commercial infrared photovoltaic detector. The QCL is directly modulated and operated at room temperature with Peltier Cooling. 

  • 36.
    Pang, Xiaodan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Storck, Joakim
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Maisons, Gregory
    mirSense, Ctr Integrat Nanolnnov, F-91120 Palaiseau, France..
    Carras, Mathieu
    mirSense, Ctr Integrat Nanolnnov, F-91120 Palaiseau, France..
    Xiao, Shilin
    Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Shanghai, Peoples R China..
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lourdudoss, Sebastian
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    4 Gbps PAM-4 and DMT Free Space Transmission using A 4.65-mu m Quantum Cascaded Laser at Room Temperature2017In: 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate 4Gbps PAM-4 and DMT transmissions using a quantum cascaded laser (QCL) emitting at mid-wavelength infrared of 4.65-mu m and a commercial infrared photovoltaic detector. The QCL is directly modulated and operated at room temperature with Peltier Cooling.

  • 37.
    Pang, Xiaodan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). DLab., INTEC, Ghent University - Imec, Gent, BelgiumDLab., INTEC, Ghent University - Imec, Gent, Belgium.
    Van Kerrebrouck, J.
    Ozolins, O.
    Lin, R.
    Udalcovs, A.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Spiga, S.
    Amann, M. C.
    Van Steenberge, G.
    Gan, L.
    Tang, M.
    Fu, S.
    Schatz, R.
    Jacobsen, G.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, D.
    Tong, W.
    Torfs, G.
    Bauwelinck, J.
    Yin, X.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    7×100 Gbps PAM-4 transmission over 1-km and 10-km single mode 7-core fiber using 1.5-μm SM-VCSEL2018In: 2018 Optical Fiber Communications Conference and Exposition, OFC 2018 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 1-3Conference paper (Refereed)
    Abstract [en]

    100 Gbps/λ/core PAM-4 transmission is successfully demonstrated over 1-km and 10-km single mode 7-core fiber links, enabled by directly modulated 1.5-μm single mode VCSEL of 23 GHz modulation bandwidth with pre- and post-digital equalizations. © 2018 OSA.

  • 38.
    Pang, Xiaodan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Van Kerrebrouck, J.
    Belgium.
    Ozolins, O.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, A.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Spiga, S.
    Germany.
    Amann, M. C.
    Germany.
    Van Steenberge, G.
    Belgium.
    Gan, L.
    China.
    Tang, M.
    China.
    Fu, S.
    China.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, D.
    China.
    Tong, W.
    China.
    Torfs, G.
    Belgium.
    Bauwelinck, J.
    Belgium.
    Yin, X.
    Belgium.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    7×100 Gbps PAM-4 transmission over 1-km and 10-km single mode 7-core fiber using 1.5-μm SM-VCSEL2018In: Optics InfoBase Conference Papers, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    100 Gbps/λ/core PAM-4 transmission is successfully demonstrated over 1-km and 10- km single mode 7-core fiber links, enabled by directly modulated 1.5-μm single mode VCSEL of 23 GHz modulation bandwidth with pre- and post- digital equalizations.

  • 39.
    Pang, Xiaodan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Van Kerrebrouck, J.
    Belgium.
    Ozolins, O.
    Sweden.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, A.
    Sweden.
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Spiga, S.
    Germany.
    Amann, M. C.
    Germany.
    Van Steenberge, G.
    Belgium.
    Gan, L.
    China.
    Tang, M.
    China.
    Fu, S.
    China.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Sweden.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, D.
    China.
    Tong, W.
    China.
    Torfs, G.
    Belgium.
    Bauwelinck, J.
    Belgium.
    Yin, X.
    Belgium.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    High-speed SDM interconnects with directly-modulated 1.5-μm VCSEL enabled by low-complexity signal processing techniques2018In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2018Conference paper (Refereed)
    Abstract [en]

    We report on our recent work in supporting up to 100 Gbps/λ/core transmissions with a directly modulated 1.5-μm single mode VCSEL and multicore fiber, enabled by low-compleixty pre- and post- digital equalizations.

  • 40. Pederzolli, F.
    et al.
    Furdek, Marija
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Siracusa, D.
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Towards secure optical networks: A framework to aid localization of harmful connections2018In: Optics InfoBase Conference Papers, Optics Info Base, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    We model the scope of optical signal insertion attacks by defining attack syndromes for each connection, and present a cost-efficient routing heuristic that aids localization of harmful connections by reducing syndrome ambiguity in the network.

  • 41.
    Pederzolli, Federico
    et al.
    FBK CREATE NET, Via Cascata 56-D Povo, Trento, Italy..
    Furdek, Marija
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Siracusa, Domenico
    FBK CREATE NET, Via Cascata 56-D Povo, Trento, Italy..
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Towards Secure Optical Networks: A Framework to Aid Localization of Harmful Connections2018In: 2018 Optical Fiber Communications Conference and Exposition, OFC 2018 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2018Conference paper (Refereed)
    Abstract [en]

    We model the scope of optical signal insertion attacks by defining attack syndromes for each connection, and present a cost-efficient routing heuristic that aids localization of harmful connections by reducing syndrome ambiguity in the network.

  • 42. Ranaweera, C.
    et al.
    Monti, Paolo
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Skubic, B.
    Furdek, Marija
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Nirmalathas, A.
    Lim, C.
    Wong, E.
    Optical X-haul options for 5G fixed wireless access: Which one to choose?2018In: INFOCOM 2018 - IEEE Conference on Computer Communications Workshops, Institute of Electrical and Electronics Engineers Inc. , 2018, p. 1-2Conference paper (Refereed)
    Abstract [en]

    5G is anticipated to be a significant leap in the evolution of mobile communication. Being designed to facilitate 10 to 100 times more capacity than 4G, 5G is considered to be the most cost-efficient solution to provide Fixed Wireless Access (FWA) to households on a large scale where providing last mile access using wired solution might not be economically viable. With a range of promises to deliver user experience improvements, facilitating cost-efficient data transportation between FWA users and network core still remains an unsolved issue, given the enormous volume of data that will be traversing the superior 5G network. This work addresses this compelling problem by formulating a joint-optimization framework to plan and analyze the optimal deployment of diverse optical x-haul strategies that can be used in 5G-based FWA networks. The work provides a cornerstone for deployment strategies that will be imperative to realize future-proof FWA network. © 2018 IEEE.

  • 43.
    Ranaweera, Chathurika
    et al.
    Univ Melbourne, Melbourne, Vic, Australia..
    Monti, Paolo
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Skubic, Björn
    Ericsson Res, Stockholm, Sweden..
    Furdek, Marija
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Wosinska, Lena
    Ericsson Res, Stockholm, Sweden..
    Nirmalathas, Ampalavanapillai
    Univ Melbourne, Melbourne, Vic, Australia..
    Lim, Christina
    Univ Melbourne, Melbourne, Vic, Australia..
    Wong, Elaine
    Univ Melbourne, Melbourne, Vic, Australia..
    Optical X-haul Options for 5G Fixed Wireless Access: Which One to Choose?2018In: IEEE INFOCOM 2018 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), IEEE , 2018Conference paper (Refereed)
    Abstract [en]

    5G is anticipated to be a significant leap in the evolution of mobile communication. Being designed to facilitate 10 to 100 times more capacity than 4G, 5G is considered to be the most cost-efficient solution to provide Fixed Wireless Access (FWA)to households on a large scale where providing last mile access using wired solution might not be economically viable. With a range of promises to deliver user experience improvements, facilitating cost-efficient data transportation between FWA users and network core still remains an unsolved issue, given the enormous volume of data that will be traversing the superior 5G network. This work addresses this compelling problem by formulating a joint-optimization framework to plan and analyze the optimal deployment of diverse optical x-haul strategies that can be used in 5G-based FWA networks. The work provides a cornerstone for deployment strategies that will be imperative to realize future-proof FWA network.

  • 44.
    Raza, Muhammad Rehan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Orchestration Strategies for Slicing in 5G Networks: Design and Performance Evaluation2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The advent of 5th generation of mobile networks (5G) will introduce new challenges for the infrastructure providers (InPs). One of the major challenges is to provide a common platform for supporting a large variety of services. Such a platform can be realized by creating slices, which can be dynamically scaled up/down according to variation of service requirements. An InP generates revenue by accepting a slice request, however it has to pay a penalty if a slice cannot be scaled up when required. Hence, an InP needs to design intelligent policies (e.g., using big data analytics (BDA) or reinforcement learning (RL)) which maximize its net profit.

    This thesis presents the design and performance evaluation of different orchestration strategies for dynamic slicing of infrastructure resources. Apart from simulation, some strategies are also experimentally demonstrated. The analysis is presented for both single-tenant and multi-tenant cases.

    For single-tenant case, this thesis proposes a dynamic slicing strategy for a centralized radio access network with optical transport. Results show that an InP needs to deploy 31.4% less transport resources when using dynamic slicing as compared to overprovisioning.  For multi-tenant case, this thesis presents MILP formulations and heuristic algorithms for dynamic slicing. Results show that, via dynamic slicing, it is possible to achieve 5 times lower slice rejection probability as compared to static slicing.

    The analysis is then extended to how BDA can be used in the slice admission and scaling processes. The proposed BDA-based admission policy increases the profit of an InP by up to 49% as compared to an admission policy without BDA. Moreover, the proposed BDA-based scaling policy lowers the penalty by more than 51% as compared to a first-come-first-served policy. Finally, this thesis presents how RL can be used for slice admission. The proposed policy performs up to 54.5% better as compared to deterministic heuristics.

  • 45.
    Raza, Muhammad Rehan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS.
    Fiorani, Matteo
    Rostami, Ahmad
    Öhlen, Peter
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Monti, Paolo
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Dynamic Slicing Approach for Multi-Tenant 5G Transport Networks2018In: Journal of Optical Communications and Networking, ISSN 1943-0620, E-ISSN 1943-0639, Vol. 10, no 1, p. A77-A90Article in journal (Refereed)
    Abstract [en]

    Software defined networking allows network providers to share their physical network (PN) among multiple tenants by means of network slicing, where several virtual networks (VNs) are provisioned on top of the physical one. In this scenario, PN resource utilization can be improved by introducing advanced orchestration functionalities that can intelligently assign and redistribute resources among the slices of different tenants according to the temporal variation of the VN resource requirements. This is a concept known as dynamic slicing. This paper presents a solution for the dynamic slicing problem in terms of both mixed integer linear programming formulations and heuristic algorithms. The benefits of dynamic slicing are compared against static slicing, i.e., an approach without intelligent adaptation of the amount of resources allocated to each VN. Simulation results show that dynamic slicing can reduce the VN rejection probability by more than 1 order of magnitude compared to static slicing. This can help network providers accept more VNs into their infrastructure and potentially increase their revenues. The benefits of dynamic slicing come at a cost in terms of service degradation (i.e., when not all the resources required by a VN can be provided), but the paper shows that the service degradation level introduced by the proposed solutions is very small.

  • 46.
    Raza, Muhammad Rehan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Natalino, Carlos
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Öhlen, Peter
    Ericsson Research.
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Monti, Paolo
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    A Slice Admission Policy Based on Reinforcement Learning for a 5G Flexible RAN2018Conference paper (Refereed)
  • 47.
    Raza, Muhammad Rehan
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Rostami, Ahmad
    Deutsche Bahn AG, Germany.
    Wosinska, Lena
    KTH, Superseded Departments (pre-2005), Microelectronics and Information Technology, IMIT.
    Monti, Paolo
    A Slice Admission Policy Based on Big Data Analytics for Multi-Tenant 5G NetworksIn: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213Article in journal (Refereed)
  • 48. Rosa, P.
    et al.
    Rizzelli, G.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, O.
    Udalcovs, A.
    Tan, M.
    Sergeyev, S.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Ania-Castaño´n, J. D.
    Unrepeatered 64QAM over SMF-28 using Raman amplification and digital backpropagation2017In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2017Conference paper (Refereed)
    Abstract [en]

    Unrepeatered transmission over SMF-28 fibre is investigated using Raman based amplification. Experiments and simulations demonstrate a transmission up to 200 km (41 dB) span length using 28Gbaud 64 QAM modulation employing digital back propagation in DSP.

  • 49.
    Shen, Xiaoman
    et al.
    Zhejiang Univ, Ctr Opt Electromagnet Res, Hangzhou, Zhejiang, Peoples R China..
    He, Sailing
    Zhejiang Univ, Ctr Opt Electromagnet Res, Hangzhou, Zhejiang, Peoples R China..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Minimizing Registration Overhead for Multipoint-to-Multipoint Communication in Passive Optical Interconnects2017In: 2017 OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC) AND PHOTONICS GLOBAL CONFERENCE (PGC), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    To facilitate the conflict-free multipoint-to-multipoint communications in data center networks, we propose and evaluate two registration schemes, which are able to utilize the minimum amount of control frames exchange for the polling based medium access control protocol in passive optical interconnects electronic.

  • 50.
    Udalcovs, A.
    et al.
    Sweden.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, O.
    Sweden.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Gan, L.
    China.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Djupsjöbacka, A.
    Sweden.
    Mårtensson, J.
    Sweden.
    Tang, M.
    China.
    Fu, S.
    China.
    Liu, D.
    China.
    Tong, W.
    China.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    Sweden.
    MCF-enabled self-homodyne 16/64QAM transmission for SDM optical access networks2018In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2018Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate a 28-Gbaud circular and square 16/64QAM transmission over a 33.6-km long seven-core fiber with the LO passed through one of the cores for self-homodyne coherent detection employing a low-complexity digital signal processing.

12 1 - 50 of 62
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf