Change search
Refine search result
1234567 1 - 50 of 627
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    A. Mouris, Boules
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering. KTH Royal Institute of Technology.
    Ghauch, Hadi
    KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Network and Systems Engineering.
    Thobaben, Ragnar
    Jonsson, B. Lars G.
    KTH, Superseded Departments (pre-2005), Electromagnetic Theory. KTH, Superseded Departments (pre-2005), Electrical Systems. KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    Multi-tone Signal Optimization for Wireless Power Transfer in the Presence of Wireless Communication Links2020In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248Article in journal (Refereed)
    Abstract [en]

    In this paper, we study optimization of multi-tone signals for wireless power transfer (WPT) systems. We investigate different non-linear energy harvesting models. Two of them are adopted to optimize the multi-tone signal according to the channel state information available at the transmitter. We show that a second-order polynomial curve-fitting model can be utilized to optimize the multi-tone signal for any RF energy harvester design. We consider both single-antenna and multi-antenna WPT systems. In-band co-existing communication links are also considered in this work by imposing a constraint on the received power at the nearby information receiver to prevent its RF front end from saturation. We emphasize the importance of imposing such constraint by explaining how inter-modulation products, due to saturation, can cause high interference at the information receiver in the case of multi-tone signals. The multi-tone optimization problem is formulated as a non-convex linearly constrained quadratic program. Two globally optimal solution approaches using mixed-integer linear programming and finite branch-and-bound techniques are proposed to solve the problem. The achieved improvement resulting from applying both solution methods to the multi-tone optimization problem is highlighted through simulations and comparisons with other solutions existing in the literature.

  • 2.
    A. Mouris, Boules
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Information Science and Engineering. KTH Royal Institute of Technology.
    Kolitsidas, Christos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    Thobaben, Ragnar
    A Dual-Polarized Multi-Antenna Structure for Simultaneous Transmission of Wireless Information and Power2019In: A Dual-Polarized Multi-Antenna Structure for Simultaneous Transmission of Wireless Information and Power, IEEE, 2019Conference paper (Refereed)
    Abstract [en]

    In this paper, a dual-polarized multi-antenna structure is designed at 2.45 GHz with the goal of allowing simultaneous transmission of wireless information and power. Differential feeding was used to minimize the mutual coupling due to radiation leakage in addition to a mushroom-type EBG structure for suppressing the surface waves. Simulation results for the proposed structure show a mutual coupling level lower than -40 dB between the information transmitting antenna and the power transmitting antennas for both polarizations. The isolation level between the antennas is improved by at least 22 dB and 14 dB for the E-plane and H-plane coupling, respectively.

  • 3.
    Abedin, Ahmad
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Zurauskaite, Laura
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Asadollahi, Ali
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Garidis, Konstantinos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Jayakumar, Ganesh
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Malm, B. Gunnar
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Hellström, Per-Erik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics.
    Östling, Mikael
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Germanium on Insulator Fabrication for Monolithic 3-D Integration2018In: IEEE Journal of the Electron Devices Society, ISSN 2168-6734, Vol. 6, no 1, p. 588-593Article in journal (Refereed)
    Abstract [en]

    A low temperature (T-max = 350 degrees C) process for Germanium (Ge) on insulator (GOI) substrate fabrication with thicknesses of less than 25 nm is reported in this paper. The process is based on a single step epitaxial growth of a Ge/SiGe/Ge stack on Si, room temperature wafer bonding and an etch-back process using Si0.5Ge0.5 as an etch-stop layer. GOI substrates with surface roughness below 0.5 nm, 0.15% tensile strain, thickness nonuniformity of less than 3 nm and residual p-type doping of less than 1016 cm(-3) were fabricated. Ge pFETs are fabricated (T-max = 600 degrees C) on the GOI wafer with 70% yield. The devices exhibit a negative threshold voltage of -0.18 V and 60% higher mobility than the SOI pFET reference devices.

  • 4.
    Abedin, Ahmad
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.
    Zurauskaite, Laura
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.
    Asadollahi, Ali
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.
    Garidis, Konstantinos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.
    Jayakumar, Ganesh
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.
    Malm, B. Gunnar
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.
    Hellström, Per-Erik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.
    Östling, Mikael
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.
    GOI fabrication for monolithic 3D integration2018In: 2017 IEEE SOI-3D-Subthreshold Microelectronics Unified Conference, S3S 2017, Institute of Electrical and Electronics Engineers (IEEE), 2018, Vol. 2018, p. 1-3Conference paper (Refereed)
    Abstract [en]

    A low temperature (Tmax=350 °C) process for Ge on insulator (GOI) substrate fabrication with thicknesses of less than 25 nm is reported in this work. The process is based on a single step epitaxial growth of a Ge/SiGe/Ge stack on Si, room temperature wafer bonding, and an etch-back process using Si0.5Ge0.5 as an etch-stop layer. Using this technique, GOI substrates with surface roughness below 0.5 nm, thickness nonuniformity of less than 3 nm, and residual p-type doping of less than 1016 cm-3 are achieved. Ge pFETs are fabricated (Tmax=600 °C) on the GOI wafer with 70% yield. The devices exhibit a negative threshold voltage of-0.18 V and 60% higher mobility than the SOI pFET reference devices.

  • 5.
    Acquaviva, Alessandro
    et al.
    Chalmers Univ Technol, Div Elect Power Engn, S-41296 Gothenburg, Sweden..
    Wallmark, Oskar
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Grunditz, Emma Arfa
    Chalmers Univ Technol, Div Elect Power Engn, S-41296 Gothenburg, Sweden..
    Lundmark, Sonja Tidblad
    Chalmers Univ Technol, Div Elect Power Engn, S-41296 Gothenburg, Sweden..
    Thiringer, Torbjorn
    Chalmers Univ Technol, Div Elect Power Engn, S-41296 Gothenburg, Sweden..
    Computationally Efficient Modeling of Electrical Machines With Cooling Jacket2019In: IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, ISSN 2332-7782, Vol. 5, no 3, p. 618-629Article in journal (Refereed)
    Abstract [en]

    Modeling of electrical machines is a multiphysics problem. Depending on the phenomena of interest and the computational time constraint, this can be done at different levels of detail. In this article, the main approaches to model the thermal behavior of electrical machines with a liquid cooled casing around the stator (often referred to as cooling jacket) are analyzed and a novel approach is presented. The proposed method aims at creating computationally efficient 3-D multiphysics models of electrical machines with liquid cooled jacket. This model is based on the assumption of a fully developed flow in the cooling jacket which allows to scale the computational fluid dynamics (CFD) simulation to 1-D. The slot with a two layer concentrated winding and potting material is modeled using a composite material comprising of both the conductors and slot filler. Similarly, a unified material is used to model the end-windings. Experimental results on a traction machine for vehicle applications are presented showing good agreement with the simulations. Also, a comparison with a 3-D CFD is presented to verify the pressure drop in the pipe bend. Finally, the model is used to simulate a dynamic load cycle, which would be computationally extremely demanding with combined 3-D CFD and thermal FEA of the machine and its cooling.

  • 6. Aguilera, M.
    et al.
    Vanfretti, L.
    Gómez, Francisco José
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Experiences in power system multi-domain modeling and simulation with modelica & FMI: The case of gas power turbines and power systems2018In: 2018 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems, MSCPES 2018 - Held as part of CPS Week, Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 1-6, article id 8405397Conference paper (Refereed)
    Abstract [en]

    The turbine-governor models that are currently used in studies of power systems include over-simplifications of turbomachinery elements. Due to the growing need to support intermittent energy resources with other energy sources like gas turbines, more detailed models including an explicit representation of the physical dynamics are attractive. In this paper, the advantages of the Modelica language and the FMI standard are considered to carry out modeling and multi-domain simulation of gas turbines with power grids, which can be used to evaluate scenarios of power variability. The work gathers preliminary results of the potential that FMUs offer to promote the exchange of turbine models by manufacturers and to conduct multi-domain simulations in several tools.

  • 7.
    Aho-Mantila, L.
    et al.
    VTT Tech Res Ctr Finland, POB 1000, FI-02044 Espoo, Finland.;VTT Tech Res Ctr Finland, FIN-02044 Espoo, Finland..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    et al.,
    Assessment of SOLPS5.0 divertor solutions with drifts and currents against L-mode experiments in ASDEX Upgrade and JET2017In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, no 3, article id 035003Article in journal (Refereed)
    Abstract [en]

    The divertor solutions obtained with the plasma edge modelling tool SOLPS5.0 are discussed. The code results are benchmarked against carefully analysed L-mode discharges at various density levels with and without impurity seeding in the full-metal tokamaks ASDEX Upgrade and JET. The role of the cross-field drifts and currents in the solutions is analysed in detail, and the improvements achieved by fully activating the drift and current terms in view of matching the experimental signals are addressed. The persisting discrepancies are also discussed.

  • 8.
    Albertsson, Dagur Ingi
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    Zahedinejad, Mohammad
    Department of Physics, University of Gothenburg.
    Åkerman, Johan
    KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics. Department of Physics, University of Gothenburg.
    Rodriguez, Saul
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    Rusu, Ana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    Compact Macrospin-Based Model of Three-Terminal Spin-Hall Nano Oscillators2019In: IEEE transactions on magnetics, ISSN 0018-9464, E-ISSN 1941-0069, Vol. 55, no 10, article id 4003808Article in journal (Refereed)
    Abstract [en]

    Emerging spin-torque nano oscillators (STNOs) and spin-Hall nano oscillators (SHNOs) are potential candidates for microwave applications. Recent advances in three-terminal magnetic tunnel junction (MTJ)-based SHNOs opened the possibility to develop more reliable and well-controlled oscillators, thanks to individual spin Hall-driven precession excitation and read-out paths. To develop hybrid systems by integrating three-terminal SHNOs and CMOS circuits, an electrical model able to capture the analog characteristics of three-terminal SHNOs is needed. This model needs to be compatible with current electric design automation (EDA) tools. This work presents a comprehensive macrospin-based model of three-terminal SHNOs able to describe the dc operating point, frequency modulation, phase noise, and output power. Moreover, the effect of voltage-controlled magnetic anisotropy (VCMA) is included. The model shows good agreement with experimental measurements and could be used in developing hybrid three-terminal SHNO/CMOS systems.

    Download full text (pdf)
    fulltext
  • 9.
    Ali, Muhammad Taha
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems. KTH Royal Institute of Technology.
    Analysis of Sub-Synchronous Oscillations in Wind Power Plants2020Doctoral thesis, monograph (Other academic)
    Abstract [en]

    The modern power system is moving towards the high integration of renewable energy sources at a fast pace. The integration of wind power in the power system raises many challenges along with the benefits. One of the recent challenges is the sub-synchronous oscillation (SSO) that occurs in doubly-fed induction generator (DFIG) based wind farms. This oscillation is caused by sub-synchronous control interaction (SSCI). The SSCI condition occurs when the DFIG-based wind farm is radially connected to a series compensated transmission line. The aim of this thesis is to investigate and study the circumstances and causes of SSCI, and to develop the techniques that could mitigate this condition from the system. A mathematical model of DFIG-based power system is designed and an eigenvalue analysis is performed. The eigenvalue analysis shows that out of many factors, the level of series compensation play major role in inflicting SSCI in the system. The eigenvalue sensitivity analysis is performed on all the controller parameters of DFIG converters. It is shown that the proportional parameter of the rotor-side converter (RSC) is the most sensitive parameters and the stability of the system is highly dependent on its value. Moreover, the participation factors of the system are also computed to understand the phenomenon better. SSCI is also explained through the internal impedance of induction generator, as seen from the stator terminal. It is shown that the presence of RSC controller enables the occurrence of SSCI, by increasing the negative resistance of the rotor, and its proportional parameters adds up to the negative resistance.

    Two mitigation techniques are presented in this thesis. In the first technique a power oscillation damper (POD) is designed and tuned. The proper placement of a tuned POD in the DFIG converter can eliminate the SSCI from the system using a local signal. In the second technique, the boomerang effect of the most sensitive control parameter is presented and it is proposed that the proper selection of control parameters can eliminate the risk of SSCI from the system, even for higher series compensation levels. Along with linearized and non-linear simulations, the sensitivity analysis and the mitigation of SSCI through proper selection of control parameters is validated experimentally using an actual 7.5 kW DFIG system. The analysis of SSCI is also carried out in a multi-machine two-area system and the mitigation techniques are successfully implemented. The influence of synchronous generator on SSCI is also studied, and the mitigation of SSCI using PSS in the synchronous generator is presented. It is shown that by implementing all the mitigation techniques simultaneously, the multi-machine systems can be made immune to SSCI for any realistic level of series compensation.

    Download full text (pdf)
    Analysis of Sub-Synchronous Oscillations in Wind Power Plants
  • 10.
    Ali, Muhammad Taha
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems. National University of Science and Technology Islamabad, Pakistan.
    Anwar, Ali
    Tayyab, Umais
    Iqbal, Yasir
    Tauqeer, Tauseef
    Nasir, Usman
    Design of High Efficiency Wireless Power Transmission System at Low Resonant Frequency2014Conference paper (Refereed)
    Abstract [en]

    This paper presents a novel design of a wireless power transmission system which transfers an appreciable amount of electrical power wirelessly using low resonant frequency, with an excellent efficiency, and has a very low cost implementation. The designs of induction coils at both source and receiver sides are also presented in this paper. The mechanism for power transmission is through electro-magnetic induction. Also an immense knowledge of electronics was applied in order to design the source and receiver between which this transfer took place. In order to realize this method an AC-AC converter, and AC-DC rectifier were used at source and receiver sides respectively along with the resonant circuits. The work was carried out by the experimental setup and results demonstrate that proposed system design can successfully transfer the amount of power that can be used in many practical applications.

  • 11.
    Ali, Muhammad Taha
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Ghandhari, Mehrdad
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Harnefors, Lennart
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Optimal tuning and placement of POD for SSCI mitigation in DFIG-based power system2019In: 2019 IEEE Milan PowerTech, PowerTech 2019, Institute of Electrical and Electronics Engineers (IEEE), 2019, article id 8810891Conference paper (Refereed)
    Abstract [en]

    The phenomenon of sub-synchronous control interaction (SSCI) in doubly-fed induction generators (DFIGs) is investigated and the optimal tuning and placement of a power oscillation damper (POD) for its mitigation is proposed in this paper. The effect of the POD on the DFIG system is studied by placing it at all the summation junctions of rotor-side converter (RSC) and grid-side converter (GSC) controllers, turn by turn. Five local signals are examined as different input signals to the POD out of which three local signals gave promising results. These signals include the DFIG's active power, the magnitude of the DFIG's apparent power, and the magnitude of the current through the transmission line. Residues are calculated for each POD placement and for each input to the POD. The calculated residues are studied along with the root-locus plots to see the effect of the POD on the mitigation of SSCI and the stability of the DFIG-based system.

  • 12.
    Aljure, Mauricio
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Becerra Garcia, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering.
    Karlsson, Mattias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Erratum to: Aljure, M.; Becerra, M.; Karlsson, E.M. Streamer inception from ultra-sharp needles in mineral oil based nanofluids2018In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 11, no 11, article id 2900Article in journal (Refereed)
    Abstract [en]

    The authors wish to make the following corrections to their paper [1]: i. On pages 13 and 14, the numbering of references from 17 to 30 is incorrect. References 17 to 30 should be renumbered from the original order below: 17. Liu, Z.; Liu, Q.; Wang, Z.D.; Jarman, P.; Krause, C.; Smith, P.W.R.; Gyore, A. Partial discharge behaviour of transformer liquids and the influence of moisture content. In Proceedings of the 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL), Bled, Slovenia, 29 June–3 July 2014. 18. Yamashita, H.; Yamazawa, K.; Wang, Y.S. The effect of tip curvature on the prebreakdown streamer structure in cyclohexane. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 396–401. 19. Dumitrescu, L.; Lesaint, O.; Bonifaci, N.; Denat, A.; Notingher, P. Study of streamer inception in cyclohexane with a sensitive charge measurement technique under impulse voltage. J. Electrostat. 2001, 53, 135–146. 20. Pourrahimi, A.M.; Hoang, T.A.; Liu, D.; Pallon, L.K.H.; Gubanski, S.; Olsson, R.T.; Gedde, U.W.; Hedenqvist, M.S. Highly efficient interfaces in nanocomposites based on polyethylene and ZnO nano/hierarchical particles: A novel approach toward ultralow electrical conductivity insulations. Adv. Mater. 2016, 28, 8651–8657. 21. Li, J.; Du, B.; Wang, F.; Yao, W.; Yao, S. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids. Phys. Lett. A 2016, 380, 604–608. 22. Aljure, M.; Becerra, M.; Pallon, L.K.H. Electrical conduction currents of a mineral oil-based nanofluid in needle-plane configuration. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 687–690. 23. Primo, V.A.; Garcia, B.; Albarracin, R. Improvement of transformer liquid insulation using nanodielectric fluids: A review. IEEE Electr. Insul. Mag. 2018, 34, 13–26. 24. Jin, H.; Andritsch, T.; Morshuis, P.H.F.; Smit, J.J. AC breakdown voltage and viscosity of mineral oil based SiO2 nanofluids. In Proceedings of the 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada, 14–17 October 2012; pp. 902–905. 25. Jin, H.; Morshuis, P.; Mor, A.R.; Smit, J.J.; Andritsch, T. Partial discharge behavior of mineral oil based nanofluids. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2747–2753. 26. Du, Y.; Lv, Y.; Li, C.; Chen, M.; Zhong, Y.; Zhou, J.; Li, X.; Zhou, Y. Effect of semiconductive nanoparticles on insulating performances of transformer oil. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 770–776. 27. Dung, N.V.; Høidalen, H.K.; Linhjell, D.; Lundgaard, L.E.; Unge, M. Effects of reduced pressure and additives on streamers in white oil in long point-plane gap. J. Phys. D Appl. Phys. 2013, 46, 255501. 28. McCool, J.I. Using the Weibull Distribution; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. 29. Lesaint, O.L.; Top, T.V. Streamer initiation in mineral oil. part I: Electrode surface effect under impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 84–91. 30. Becerra, M.; Frid, H.; Vázquez, P.A. Self-consistent modeling of laminar electrohydrodynamic plumes from ultra-sharp needles in cyclohexane. Phys. Fluids 2017, 29, 123605. to the following, corrected numbering: 17. Dumitrescu, L.; Lesaint, O.; Bonifaci, N.; Denat, A.; Notingher, P. Study of streamer inception in cyclohexane with a sensitive charge measurement technique under impulse voltage. J. Electrostat. 2001, 53, 135–146. 18. Liu, Z.; Liu, Q.; Wang, Z.D.; Jarman, P.; Krause, C.; Smith, P.W.R.; Gyore, A. Partial discharge behaviour of transformer liquids and the influence of moisture content. In Proceedings of the 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL), Bled, Slovenia, 29 June–3 July 2014. 19. Yamashita, H.; Yamazawa, K.; Wang, Y.S. The effect of tip curvature on the prebreakdown streamer structure in cyclohexane. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 396–401. 20. Becerra, M.; Frid, H.; Vázquez, P.A. Self-consistent modeling of laminar electrohydrodynamic plumes from ultra-sharp needles in cyclohexane. Phys. Fluids 2017, 29, 123605. 21. Pourrahimi, A.M.; Hoang, T.A.; Liu, D.; Pallon, L.K.H.; Gubanski, S.; Olsson, R.T.; Gedde, U.W.; Hedenqvist, M.S. Highly efficient interfaces in nanocomposites based on polyethylene and ZnO nano/hierarchical particles: A novel approach toward ultralow electrical conductivity insulations. Adv. Mater. 2016, 28, 8651–8657. 22. Li, J.; Du, B.; Wang, F.; Yao, W.; Yao, S. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids. Phys. Lett. A 2016, 380, 604–608. 23. Aljure, M.; Becerra, M.; Pallon, L.K.H. Electrical conduction currents of a mineral oil-based nanofluid in needle-plane configuration. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Toronto, ON, Canada, 16–19 October 2016; pp. 687–690. 24. Primo, V.A.; Garcia, B.; Albarracin, R. Improvement of transformer liquid insulation using nanodielectric fluids: A review. IEEE Electr. Insul. Mag. 2018, 34, 13–26. 25. Jin, H.; Andritsch, T.; Morshuis, P.H.F.; Smit, J.J. AC breakdown voltage and viscosity of mineral oil based SiO2 nanofluids. In Proceedings of the 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada, 14–17 October 2012; pp. 902–905. 26. Jin, H.; Morshuis, P.; Mor, A.R.; Smit, J.J.; Andritsch, T. Partial discharge behavior of mineral oil based nanofluids. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 2747–2753. 27. Du, Y.; Lv, Y.; Li, C.; Chen, M.; Zhong, Y.; Zhou, J.; Li, X.; Zhou, Y. Effect of semiconductive nanoparticles on insulating performances of transformer oil. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 770–776. 28. Dung, N.V.; Høidalen, H.K.; Linhjell, D.; Lundgaard, L.E.; Unge, M. Effects of reduced pressure and additives on streamers in white oil in long point-plane gap. J. Phys. D Appl. Phys. 2013, 46, 255501. 29. McCool, J.I. Using the Weibull Distribution; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. 30. Lesaint, O.L.; Top, T.V. Streamer initiation in mineral oil. part I: Electrode surface effect under impulse voltage. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 84–91. ii. On the last paragraph of page 9, the last sentence should be changed from: However, the results in [11] also show the consistent increase in the initiation voltage of prebreakdown phenomena in both polarities, as reported in Figure 11. to the following, corrected version: However, the results in [26] also show the consistent increase in the initiation voltage of prebreakdown phenomena in both polarities, as reported in Figure 11. iii. On the last paragraph of page 10, the third sentence should be changed from: Even though the existing hypotheses of the dielectric effect of NPs [8–10] were proposed for blunter electrodes (where charge generation before streamer initiation is less important [30]), they should still apply under the experimental conditions here reported. to the following, corrected version: Even though the existing hypotheses of the dielectric effect of NPs [5,6,16] were proposed for blunter electrodes (where charge generation before streamer initiation is less important [30]), they should still apply under the experimental conditions here reported. The authors would like to apologize for any inconvenience caused to the readers by these changes. The changes do not affect the scientific results. The manuscript will be updated and the original will remain online on the article webpage, with a reference to this Correction.

  • 13.
    Aljure, Mauricio
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Becerra Garcia, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering. ABB Corp Res, Vasteras, Sweden..
    Karlsson, Mattias E.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    On the injection and generation of charge carriers in mineral oil under high electric fields2019In: JOURNAL OF PHYSICS COMMUNICATIONS, ISSN 2399-6528, Vol. 3, no 3, article id UNSP 035019Article in journal (Refereed)
    Abstract [en]

    Charge injection and generation mechanisms under intense electric fields (up to 10(9)Vm(-1)) in mineral oil are assessed experimentally and numerically. For this, current-voltage characteristics under positive and negative polarities are measured in a needle-plane configuration using sharp needles (with tip radius R-tip <= 1.1 mu m). In addition, a state of the art electro-hydrodynamic (EHD) model is implemented to calculate the contribution of the different mechanisms on the high-field conduction currents in the liquid. In order to evaluate exclusively the contribution of field emission, experiments are also performed in vacuum. It is found that neither field emission nor field ionisation can explain the conduction currents measured in mineral oil. It is proposed that field molecular ionisation, as described by Zener tunnelling model for solids, and electron impact ionisation are the processes dominating the generation of excess electron-ion pairs in mineral oil under positive and negative polarity, respectively. It is also shown that Zener molecular ionisation alone grossly overestimates the measured currents when parameters previously suggested in the literature for mineral oil are used. Preliminary model parameters for these mechanisms that best fit the conduction currents measured in mineral oil are presented and discussed.

  • 14.
    Alm, Love
    et al.
    Swedish Inst Space Phys, Uppsala, Sweden..
    Andre, Mats
    Swedish Inst Space Phys, Uppsala, Sweden..
    Graham, Daniel B.
    Swedish Inst Space Phys, Uppsala, Sweden..
    Khotvaintsev, Yuri, V
    Swedish Inst Space Phys, Uppsala, Sweden..
    Vaivads, Andris
    KTH, School of Electrical Engineering and Computer Science (EECS), Space and Plasma Physics.
    Chappell, Charles R.
    Vanderbilt Univ, Dept Phys & Astron, Vanderbilt Dyer Observ, Nashville, TN 37235 USA..
    Dargent, Jeremy
    Univ Pisa, Phys Dept Enrico Fermi, Pisa, Italy..
    Fuselier, Stephen A.
    Southwest Res Inst, San Antonio, TX USA.;Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX USA..
    Haaland, Stein
    Max Planck Inst Solar Syst Res, Gottingen, Germany.;Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway..
    Lavraud, Benoit
    Univ Toulouse, Inst Rech Astrophys & Planetol, CNRS, UPS,CNES, Toulouse, France..
    Li, Wenya
    Chinese Acad Sci, Natl Space Sci Ctr, State Key Lab Space Weather, Beijing, Peoples R China..
    Tenfjord, Paul
    Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway..
    Toledo-Redondo, Sergio
    Univ Toulouse, Inst Rech Astrophys & Planetol, CNRS, UPS,CNES, Toulouse, France..
    Vines, Sarah K.
    Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA..
    MMS Observations of Multiscale Hall Physics in the Magnetotail2019In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007Article in journal (Refereed)
    Abstract [en]

    We present Magnetospheric Multiscale mission (MMS) observations of Hall physics in the magnetotail, which compared to dayside Hall physics is a relatively unexplored topic. The plasma consists of electrons, moderately cold ions (T similar to 1.5 keV) and hot ions (T similar to 20 keV). MMS can differentiate between the cold ion demagnetization region and hot ion demagnetization regions, which suggests that MMS was observing multiscale Hall physics. The observed Hall electric field is compared with a generalized Ohm's law, accounting for multiple ion populations. The cold ion population, despite its relatively high initial temperature, has a significant impact on the Hall electric field. These results show that multiscale Hall physics is relevant over a much larger temperature range than previously observed and is relevant for the whole magnetosphere as well as for other astrophysical plasma.

  • 15.
    Amano, T.
    et al.
    Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan..
    Katou, T.
    Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan..
    Kitamura, N.
    Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan..
    Oka, M.
    Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA..
    Matsumoto, Y.
    Chiba Univ, Dept Phys, Chiba 2638522, Japan..
    Hoshino, M.
    Univ Tokyo, Dept Earth & Planetary Sci, Tokyo 1130033, Japan..
    Saito, Y.
    Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan..
    Yokota, S.
    Osaka Univ, Dept Earth & Space Sci, Toyonaka, Osaka 5600043, Japan..
    Giles, B. L.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Paterson, W. R.
    NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA..
    Russell, C. T.
    Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA..
    Le Contel, O.
    Univ Paris Sud, Sorbonne Univ, CNRS, Lab Phys Plasmas,Ecole Polytech,Obs Paris, F-75252 Paris, France..
    Ergun, R. E.
    Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA..
    Lindqvist, Per-Arne
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Turner, D. L.
    Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA..
    Fennell, J. F.
    Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA..
    Blake, J. B.
    Aerosp Corp, Space Sci Dept, El Segundo, CA 90245 USA..
    Observational Evidence for Stochastic Shock Drift Acceleration of Electrons at the Earth's Bow Shock2020In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 124, no 6, article id 065101Article in journal (Refereed)
    Abstract [en]

    The first-order Fermi acceleration of electrons requires an injection of electrons into a mildly relativistic energy range. However, the mechanism of injection has remained a puzzle both in theory and observation. We present direct evidence for a novel stochastic shock drift acceleration theory for the injection obtained with Magnetospheric Multiscale observations at the Earth's bow shock. The theoretical model can explain electron acceleration to mildly relativistic energies at high-speed astrophysical shocks, which may provide a solution to the long-standing issue of electron injection.

  • 16.
    Andersson, Kjell
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Hagnestål, Anders
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Sellgren, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    A Flexible Chain Proposal for Winch-Based Point Absorbers2019In: Journal of mechanical design (1990), ISSN 1050-0472, E-ISSN 1528-9001, Vol. 141, no 10, article id 102301Article in journal (Refereed)
    Abstract [en]

    Ocean wave power is a promising renewable energy source. It has, however, been difficult to find a cost-effective solution to convert wave energy into electricity. The harsh marine environment and the fact that wave power is delivered with large forces at low speed make design of durable mechanical structures and efficient energy conversion challenging. The dimensioning forces strongly depend on the wave power concept, the wave energy converter (WEC) implementation, and the actual power take-off (PTO) system. A WEC with a winch as a power take-off system, i.e., a winch-based point absorber (WBPA), could potentially enable a low levelized cost of energy (LCOE) if a low-cost, durable and efficient winch that can deal with peak loads can be developed. A key challenge for realizing such a winch is to find a force transmitting solution that can deal with these peak loads and that can handle up to 80 million cycles during its life. In this article, we propose a design solution for a force transmitting chain with elastomer bearings connecting the links of the chain. With this solution no sliding is present, and the angular motion is realized as elastic shear deformations in the elastomer bearings when the chain is wound onto the winch drum. The elastomer bearings were designed for low shear stiffness and high compression stiffness, and the links were designed primarily to minimize the number of joints in the chain. Thereby, the maximum allowed relative angle between the links when rolled up over the drum should be as large as possible within practical limits. Finite element-based topological optimization was performed with the aim to increase the link strength to weight ratio. A test rig for a first proof of concept testing has been developed, and preliminary test results indicate that this chain concept with elastomer bearings can be a potential solution for a durable chain and should be analyzed and tested further for fatigue and sea operations.

  • 17. Angioni, C.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    et al.,
    The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas2015In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 22, no 5, article id 055902Article in journal (Refereed)
    Abstract [en]

    Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.

  • 18.
    Angioni, C.
    et al.
    Max Planck Inst Plasma Phys, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bergsåker, Henrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, S.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, P
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Stefániková, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zhou, Y
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al,
    Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality2018In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 25, no 8, article id 082517Article in journal (Refereed)
    Abstract [en]

    The impact of the change of the mass of hydrogen isotopes on the turbulent particle flux is studied. The trapped electron component of the turbulent particle convection induced by collisionality, which is outward in ion temperature gradient turbulence, increases with decreasing thermal velocity of the isotope. Thereby, the lighter is the isotope, the stronger is the turbulent pinch, and the larger is the predicted density gradient at the null of the particle flux. The passing particle component of the flux increases with decreasing mass of the isotope and can also affect the predicted density gradient. This effect is however subdominant for usual core plasma parameters. The analytical results are confirmed by means of both quasi-linear and nonlinear gyrokinetic simulations, and an estimate of the difference in local density gradient produced by this effect as a function of collisionality has been obtained for typical plasma parameters at mid-radius. Analysis of currently available experimental data from the JET and the ASDEX Upgrade tokamaks does not show any clear and general evidence of inconsistency with this theoretically predicted effect outside the errorbars and also allows the identification of cases providing weak evidence of qualitative consistency.

  • 19.
    Appel, L. C.
    et al.
    Culham Sci Ctr, CCFE, Abingdon 0X14 3DB, Oxon, England..
    Appel, L.
    CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Equilibrium reconstruction in an iron core tokamak using a deterministic magnetisation model2018In: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 223, p. 1-17Article in journal (Refereed)
    Abstract [en]

    In many tokamaks ferromagnetic material, usually referred to as an iron-core, is present in order to improve the magnetic coupling between the solenoid and the plasma. The presence of the iron core in proximity to the plasma changes the magnetic topology with consequent effects on the magnetic field structure and the plasma boundary. This paper considers the problem of obtaining the free-boundary plasma equilibrium solution in the presence of ferromagnetic material based on measured constraints. The current approach employs, a model described by O'Brien et al. (1992) in which the magnetisation currents at the iron-air boundary are represented by a set of free parameters and appropriate boundary conditions are enforced via a set of quasi-measurements on the material boundary. This can lead to the possibility of overfitting the data and hiding underlying issues with the measured signals. Although the model typically achieves good fits to measured magnetic signals there are significant discrepancies in the inferred magnetic topology compared with other plasma diagnostic measurements that are independent of the magnetic field. An alternative approach for equilibrium reconstruction in iron-core tokamaks, termed the deterministic magnetisation model is developed and implemented in EFIT++. The iron is represented by a boundary current with the gradients in the magnetisation dipole state generating macroscopic internal magnetisation currents. A model for the boundary magnetisation currents at the iron-air interface is developed using B-Splines enabling continuity to arbitrary order; internal magnetisation currents are allocated to triangulated regions within the iron, and a method to enable adaptive refinement is implemented. The deterministic model has been validated by comparing it with a synthetic 2-D electromagnetic model of JET. It is established that the maximum field discrepancy is less than 1.5 mT throughout the vacuum region enclosing the plasma. The discrepancies of simulated magnetic probe signals are accurate to within 1% for signals with absolute magnitude greater than 100 mT; in all other cases agreement is to within 1 mT. The effect of neglecting the internal magnetisation currents increases the maximum discrepancy in the vacuum region to >20 mT, resulting in errors of 5%-10% in the simulated probe signals. The fact that the previous model neglects the internal magnetisation currents (and also has additional free parameters when fitting the measured data) makes it unsuitable for analysing data in the absence of plasma current. The discrepancy of the poloidal magnetic flux within the vacuum vessel is to within 0.1 Wb. Finally the deterministic model is applied to an equilibrium force-balance solution of a JET discharge using experimental data. It is shown that the discrepancies of the outboard separatrix position, and the outer strike-point position inferred from Thomson Scattering and Infrared camera data are much improved beyond the routine equilibrium reconstruction, whereas the discrepancy of the inner strike-point position is similar.

  • 20.
    Arbina, I. L.
    et al.
    Barcelona Supercomputer Center (BSC), Barcelona, Spain.
    Mantsinen, M. J.
    Barcelona Supercomputer Center (BSC), Barcelona, Spain.
    Sáez, X.
    Barcelona Supercomputer Center (BSC), Barcelona, Spain.
    Gallart, D.
    Barcelona Supercomputer Center (BSC), Barcelona, Spain.
    Gutiérrez, A.
    Barcelona Supercomputer Center (BSC), Barcelona, Spain.
    Taylor, D.
    Jonsson, Thomas
    KTH, Superseded Departments (pre-2005), Alfvén Laboratory. KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Pinches, S. D.
    TER Organization, Route de Vinon-sur-Verdon, CS 90 046, St Paul-lez-Durance Cedex, 13067, France.
    Schneider, M.
    TER Organization, Route de Vinon-sur-Verdon, CS 90 046, St Paul-lez-Durance Cedex, 13067, France.
    First applications of the ICRF modelling code PION in the ITER Integrated Modelling and Analysis Suite2019In: Proceedings of the 46th EPS Conference on Plasma Physics, 2019Conference paper (Refereed)
  • 21.
    Ariza Rocha, Oscar David
    et al.
    ABB Corporate Research, Västerås, Sweden. E.ON. Energidistribution AB, Malmö, Sweden.
    Morozovska, Kateryna
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    Laneryd, Tor
    ABB Corporate Research.
    Ivarsson, Ola
    E.ON. Energidistribution AB, .
    Ahlrot, Claes
    E.ON. Energidistribution AB, .
    Hilber, Patrik
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
    Dynamic rating assists cost-effective expansion of wind farms byutilizing hidden capacity of transformersManuscript (preprint) (Other academic)
    Abstract [en]

    Dynamic rating of power transmission devices is a technology that allows better equipment utilization through real-time information about the system state. Dynamic rating of transformers is a fairly new technology if compared to dynamic rating of power lines, and has high potential for significantly improving component utilization while lowering investment costs on installing new transformers.

    Dynamic transformer rating increases the rating of the transformer considering load and temperature variations without affecting safe operation. Dynamic rating is highly suitable for being used in conjunction with renewable energy generation, specifically wind power. The following work investigates how to utilize existing transformers, which are under exploitation at wind farms, for expanding wind generation capacity. Also, this paper shows improvements that dynamic rating can bring to both power grid operators and wind farm owners by exploring the economic benefits of expanding wind parks while using dynamic rating. Connecting additional wind turbines with the same transformer at sites with high wind capacity after the wind park is already in exploitation can assist in lowering electricity price and provide a possibility of less risky investment in wind power.

    Five transformer locations and nine units are studied for finding the potential of dynamic transformer rating for network expansion applications. The analysis shows that the optimal expansion of wind power from a generator perspective is around 30 % to 50 %, although, it can be limited further by network restrictions. A possibility to use a large device, suchas power transformer, closer to its full potential can provide material and cost savings for building new devices and decrease investment costs on manufacturing, transportation and installation of new units. Dynamic rating of power transformers can also increase the socio-economic benefits of renewable energy by lowering electricity price from renewables and incentivize an increased share of green power in electricity markets.

    The full text will be freely available from 2021-01-31 22:22
  • 22.
    Ashikawa, N.
    et al.
    National Institute for Fusion Science, Toki, 509-5292 Japan.
    Torikai, Y.
    Ibaraki University Mito, 310-8512 Japan.
    Asakura, N.
    National Institute for Quantum and Radiological Science and Technology, Rokkasho, 039-3212 Japan.
    Otsuka, T.
    Kindai University, Higashi-Osaka, 577-8502, Japan.
    Widdowson, A.
    CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK.
    Rubel, Marek
    KTH, Superseded Departments (pre-2005), Alfvén Laboratory. KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Oyaizu, M.
    Hara, M.
    University of Toyama, Toyama, Japan.
    Masuzaki, S.
    Isobe, K.
    National Institute for Quantum and Radiological Science and Technology, Rokkasho, 039-3212 Japan.
    Hatano, Y.
    University of Toyama, Toyama, Japan.
    Heinola, K.
    University of Helsinki, Helsinki, Finland.
    Baron-Wiechec, A.
    CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK.
    Jachmich, S.
    CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK.
    Hayashi, T.
    National Institute for Quantum and Radiological Science and Technology, Rokkasho, 039-3212 Japan.
    Determination of retained tritium from ILW dust particles in JET2020In: Nuclear Materials and Energy, Vol. 22, article id 100673Article in journal (Refereed)
    Abstract [en]

    Quantitative tritium inventory in dust particles from campaigns in the JET tokamak with the carbon wall (2007–2009) and the ITER-like wall (ILW 2011–2012) were determined by the liquid scintillation counter and the full combustion method. A feature of this full combustion method is that dust particles were covered by a tin (Sn) which reached 2100 K during combustion under oxygen flow. The specific tritium inventory for samples from JET with carbon and with metal walls was measured and found to be similar. However, the total tritium inventory in dust particles from the ILW experiment was significantly smaller in comparison to the carbon wall due to the lower amount of dust particles generated in the presence of metal walls.

  • 23.
    Aslanyan, V
    et al.
    MIT PSFC, 175 Albany St, Cambridge, MA 02139 USA..
    Aslanyan, V.
    MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    Gyrokinetic simulations of toroidal Alfven eigenmodes excited by energetic ions and external antennas on the Joint European Torus2019In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 59, no 2, article id 026008Article in journal (Refereed)
    Abstract [en]

    The gyrokinetic toroidal code (GTC) has been used to study toroidal Alfven eigenmodes (TAEs) in high-performance plasmas. Experiments performed at the Joint European Torus (JET), where TAEs were driven by energetic particles arising from neutral beams, ion cyclotron resonant heating, and resonantly excited by dedicated external antennas, have been simulated. Modes driven by populations of energetic particles are observed, matching the TAE frequency seen with magnetic probes in JET experiments. A synthetic antenna, composed of one toroidal and two neighboring poloidal harmonics has been used to probe the modes' damping rates and quantify mechanisms for this damping in GTC simulations. This method was also applied to frequency and damping rate measurements of stable TAEs made by the Alfven eigenmode active diagnostic in these discharges.

  • 24.
    Astapov, Victor
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems. Tallinn Univ Technol, Sch Engn, Tallinn, Estonia.
    Divshali, Poria Hasanpor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Söder, Lennart
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    The Potential of Distribution Grid as an Alternative Source for Reactive Power Control in Transmission Grid2018In: PROCEEDINGS OF THE 2018 19TH INTERNATIONAL SCIENTIFIC CONFERENCE ON ELECTRIC POWER ENGINEERING (EPE), Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 64-69Conference paper (Refereed)
    Abstract [en]

    Nowadays, the global trend in the energy sector is the spreading use of renewable energy, especially wind generators and solar panels. The high concentration of such sources in distribution grid increases the voltage in case of small load demands and high production which effects the voltage at connection point and, in turn, in transmission grid. To regulate voltage and control reactive power, system operators install costly equipment in transmission grids. This paper considers alternative way of voltage and reactive power managing and discovers possibilities of PV converters in MV and LV grids with different type of control to solve this problem.

  • 25.
    Augustin, Tim
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems. KTH Stockholm.
    Becerra, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering.
    Magnusson, Jesper
    ABB Corporate Research, Västerås.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Parekh, Mrunal
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering.
    System Design of Fast Actuator for Vacuum Interrupter in DC Applications2018In: 2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Institute of Electrical and Electronics Engineers (IEEE), 2018, Vol. 2, p. 527-530Conference paper (Refereed)
    Abstract [en]

    One of the major challenges of DC circuit breakers is the required fast mechanical actuator. In this paper, a Thomson coil actuator system for a vacuum interrupter is designed. Active damping is used to decelerate the moving contacts. Challenges are discussed, especially concerning the power supply needed for the Thomson coil actuator. The design philosophy is explained and FEM simulation results are presented. The results indicate that a wide range of combinations of drive circuit capacitance and voltage fulfill the requirements for armature acceleration. However, active damping requires a very careful selection of drive circuit voltage and timing of applied damping.

  • 26.
    Augustin, Tim
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems. KTH Stockholm.
    Becerra, Marley
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Advanced Test Circuit for DC Circuit Breakers2018In: 20th European Conference on Power Electronics and Applications (EPE'18 ECCE EUROPE), 2018Conference paper (Refereed)
    Abstract [en]

    In future HVDC systems, many DC circuit breakers (DCCBs) will be required. In this paper, an advanced test circuit for DCCBs is described. A DC source is combined with a capacitor bank. In contrast to other test circuits, the proposed test circuit allows to replicate constant DC and temporary faults. In addition to conventional faults, this enables testing of auto-reclosing, proactive commutation, and complex test sequences combining all of these modes. The test circuit is easy to setup and also suitable for smaller research facilities. Experimental results from a down-scaled mock-up are included to demonstrate the capabilities of the test circuit.

  • 27.
    Avula, Ramana R.
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Information Science and Engineering.
    Oechtering, Tobias J.
    KTH, School of Electrical Engineering and Computer Science (EECS), Information Science and Engineering.
    Månsson, Daniel
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering.
    Privacy-preserving smart meter control strategy including energy storage losses2018In: Proceedings - 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2018, Institute of Electrical and Electronics Engineers (IEEE), 2018, article id 8571537Conference paper (Refereed)
    Abstract [en]

    Privacy-preserving smart meter control strategies proposed in the literature so far make some ideal assumptions such as instantaneous control without delay, lossless energy storage systems etc. In this paper, we present a one-step-ahead predictive control strategy using Bayesian risk to measure and control privacy leakage with an energy storage system. The controller estimates energy state using a three-circuit energy storage model to account for steady-state energy losses. With numerical experiments, the controller is evaluated with real household consumption data using a state-of-the-art adversarial algorithm. Results show that the state estimation of the energy storage system significantly affects the controller's performance. The results also show that the privacy leakage can be effectively reduced using an energy storage system but at the expense of energy loss.

    Download full text (pdf)
    fulltext
  • 28.
    Baiocchi, B.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..
    Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid2015In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 57, no 3, article id 035003Article in journal (Refereed)
    Abstract [en]

    The physical transport processes at the basis of JET typical inductive H-mode scenarios and advanced hybrid regimes, with improved thermal confinement, are analyzed by means of some of the newest and more sophisticated quasi-linear transport models: trapped gyro Landau fluid (TGLF) and QuaLiKiz. The temporal evolution of JET pulses is modelled by CRONOS where the turbulent transport is modelled by either QuaLiKiz or TGLF. Both are first principle models with a more comprehensive physics than the models previously developed and therefore allow the analysis of the physics at the basis of the investigated scenarios. For H-modes, ion temperature gradient (ITG) modes are found to be dominant and the transport models are able to properly reproduce temperature profiles in self-consistent simulations. However, for hybrid regimes, in addition to ITG trapped electron modes (TEM) are also found to be important and different physical mechanisms for turbulence reduction play a decisive role. Whereas E x B flow shear and plasma geometry have a limited impact on turbulence, the presence of a large population of fast ions, quite important in low density regimes, can stabilize core turbulence mainly when the electromagnetic effects are taken into account. The TGLF transport model properly captures these mechanisms and correctly reproduces temperatures.

  • 29.
    Baiocchi, B.
    et al.
    CEA, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France. EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.;IRFM, CEA, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    --.
    et al.,
    Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 12, article id 123001Article in journal (Refereed)
    Abstract [en]

    The density evolution during the transient phase just after the L-H transition is investigated using theoretical transport models. Cases characterized by core densities which evolve in longer timescales than the edge densities, leading to hollow density profiles (R/L-n = -R del n/n < 0) are modelled. This density evolution is particularly interesting because it has been shown to be beneficial in the view of the access to burning plasma conditions in ITER (Loarte et al 2013 Nucl. Fusion 53 083031). Self-consistent simulations of the JET discharge 79676 of the density-only, and of the density and the temperatures are carried out using a quasilinear gyrokinetic code, QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501), coupled with a transport code CRONOS (Artaud et al 2010 Nucl. Fusion 50 043001). The slow evolution of the hollow density, associated with the self-consistently calculated hollow NBI particle deposition, is well reproduced in the plasma core. Indeed, QuaLiKiz is shown to reproduce nonlinear gyrokinetic heat and particle fluxes well for both positive and negative R/L-n. That gives a theoretical and general basis for the persistence of the hollowness, laying the groundwork for the extrapolation to ITER.

  • 30. Bakas, P.
    et al.
    Ilves, K.
    Norrga, Staffan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Harnefors, L.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Hybrid alternate-common-arm converter with director thyristors - Impact of commutation time on the active-power capability2019In: 2019 21st European Conference on Power Electronics and Applications, EPE 2019 ECCE Europe, Institute of Electrical and Electronics Engineers Inc. , 2019Conference paper (Refereed)
    Abstract [en]

    This paper investigates the impact of the thyristor commutation time on the peak currents and the active-power capability of the hybrid alternate-common-arm converter (HACC). This converter employs director thyristors for the alternate connection of a common arm in parallel to the main arms. The parallel connection enables current sharing among the arms, which allows the HACC to transfer higher output power without increasing the peak arm current. It is shown that the active-power capability of the HACC is doubled for a certain current-sharing factor, which, however, is altered by the thyristor commutation time. Therefore, the impact of the commutation time on the active-power capability of the HACC is investigated theoretically. Finally, this analysis is verified by simulation results.

  • 31.
    Bakas, Panagiotis
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Ilves, Kalle
    ABB Corporate Research.
    Okazaki, Yuhei
    ABB Corporate Research.
    Harnefors, Lennart
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems. ABB Corporate Research.
    Norrga, Staffan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Hybrid alternate-common-arm converter with high power capability: Potential and limitations2020In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107Article in journal (Refereed)
    Abstract [en]

    This paper studies a new hybrid converter thatutilizes thyristors and full-bridge (FB) arms for achieving higherpower capability than the full-bridge (FB) modular multilevel converter (MMC) with reduced semiconductor requirements. The study covers the theoretical analysis of the energy balancing,the dimensioning principles, the maximum power capability, and the limitations imposed by the discontinuous operation of theconverter. Based on the analysis of these aspects, the theoretical analysis is concluded by identifying the design constraints that need to be fulfilled for achieving the maximum power capabilityof the converter. It is concluded that the maximum power capability can be achieved for a certain range of modulation indices and is limited by both the commutation time of the thyristors andthe power angle. Finally, simulation and experimental results that confirm the theoretical analysis and the feasibility of the studied converter are presented and discussed.

  • 32. Bakas, Panagiotis
    et al.
    Okazaki, Y.
    Ilves, K.
    Norrga, Staffan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Harnefors, L.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
    Design considerations and comparison of hybrid line-commutated and cascaded full-bridge converters with reactive-power compensation and active filtering capabilities2019In: 2019 21st European Conference on Power Electronics and Applications, EPE 2019 ECCE Europe, Institute of Electrical and Electronics Engineers Inc. , 2019Conference paper (Refereed)
    Abstract [en]

    This paper compares two hybrid topologies that combine the line-commutated converter (LCC) with cascaded full-bridge (FB) converters. The latter are utilized for compensating the reactive power and filtering the current harmonics of the LCC. The method that was developed for dimensioning these hybrid topologies is presented in detail. This method is utilized for calculating the arm voltage and current waveforms, which are used to estimate other important quantities, such as conduction losses and energy variations. Finally, the studied converters are compared in terms of voltage/current ratings, semiconductor requirements, conduction losses, and energy variations.

  • 33.
    Bao, Fanglin
    et al.
    South China Normal Univ, Ctr Opt & Electromagnet Res, Guangdong Prov Key Lab Opt Informat Mat & Technol, South China Acad Adv Optoelect, Guangzhou 510006, Guangdong, Peoples R China..
    Shi, Kezhang
    Zhejiang Univ, Natl Engn Res Ctr Opt Instrumentat, State Key Lab Modern Opt Instrumentat, Ctr Opt & Electromagnet Res,JORCEP,Coll Opt Sci &, Hangzhou 310058, Zhejiang, Peoples R China..
    Cao, Guanjun
    South China Normal Univ, Ctr Opt & Electromagnet Res, Guangdong Prov Key Lab Opt Informat Mat & Technol, South China Acad Adv Optoelect, Guangzhou 510006, Guangdong, Peoples R China..
    Evans, Julian S.
    Zhejiang Univ, Natl Engn Res Ctr Opt Instrumentat, State Key Lab Modern Opt Instrumentat, Ctr Opt & Electromagnet Res,JORCEP,Coll Opt Sci &, Hangzhou 310058, Zhejiang, Peoples R China..
    He, Sailing
    KTH, School of Electrical Engineering and Computer Science (EECS), Electromagnetic Engineering. South China Normal Univ, Ctr Opt & Electromagnet Res, Guangdong Prov Key Lab Opt Informat Mat & Technol, South China Acad Adv Optoelect, Guangzhou 510006, Guangdong, Peoples R China.;Zhejiang Univ, Natl Engn Res Ctr Opt Instrumentat, State Key Lab Modern Opt Instrumentat, Ctr Opt & Electromagnet Res,JORCEP,Coll Opt Sci &, Hangzhou 310058, Zhejiang, Peoples R China.
    Inhomogeneity-Induced Casimir Transport of Nanoparticles2018In: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, no 13, article id 130401Article in journal (Refereed)
    Abstract [en]

    We propose a scheme for transporting nanoparticles immersed in a fluid, relying on quantum vacuum fluctuations. The mechanism lies in the inhomogeneity-induced lateral Casimir force between a nanoparticle and a gradient metasurface and the relaxation of the conventional Dzyaloshinskii-Lifshitz-Pitaevskii constraint, which allows quantum levitation for a broader class of material configurations. The velocity for a nanosphere levitated above a grating is calculated and can be up to a few microns per minute. The Born approximation gives general expressions for the Casimir energy which reveal size-selective transport. For any given metasurface, a certain particle-metasurface separation exists where the transport velocity peaks, forming a "Casimir passage." The sign and strength of the Casimir interactions can be tuned by the shapes of liquid-air menisci, potentially allowing real-time control of an otherwise passive force, and enabling interesting on-off or directional switching of the transport process.

  • 34.
    Baron-Wiechec, A.
    et al.
    UK Atom Energy Author, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Thermal desorption spectrometry of beryllium plasma facing tiles exposed in the JET tokamak2018In: Fusion engineering and design, ISSN 0920-3796, E-ISSN 1873-7196, Vol. 133, p. 135-141Article in journal (Refereed)
    Abstract [en]

    The phenomena of retention and de-trapping of deuterium (D) and tritium (T) in plasma facing components (PFC) and supporting structures must be understood in order to limit or control total T inventory in larger future fusion devices such as ITER, DEMO and commercial machines. The goal of this paper is to present details of the thermal desorption spectrometry (TDS) system applied in total fuel retention assessment of PFC at the Joint European Torus (JET). Examples of TDS results from beryllium (Be) wall tile samples exposed to JET plasma in PFC configuration mirroring the planned ITER PFC is shown for the first time. The method for quantifying D by comparison of results from a sample of known D content was confirmed acceptable. The D inventory calculations obtained from Ion Beam Analysis (IBA) and TDS agree well within an error associated with the extrapolation from very few data points to a large surface area.

  • 35.
    Basiuk, V.
    et al.
    CEA Cadarache, IRFM, F-13108 St Paul Les Durance, France.;CEA, IRFM, F-13108 St Paul Les Durance, France..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients2017In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 59, no 12, article id 125012Article in journal (Refereed)
    Abstract [en]

    The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.

  • 36. Batistoni, P.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Jonsson, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Atomic and Molecular Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Benchmark experiments on neutron streaming through JET Torus Hall penetrations2015In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 55, no 5, article id 053028Article in journal (Refereed)
    Abstract [en]

    Neutronics experiments are performed at JET for validating in a real fusion environment the neutronics codes and nuclear data applied in ITER nuclear analyses. In particular, the neutron fluence through the penetrations of the JET torus hall is measured and compared with calculations to assess the capability of state-of-art numerical tools to correctly predict the radiation streaming in the ITER biological shield penetrations up to large distances from the neutron source, in large and complex geometries. Neutron streaming experiments started in 2012 when several hundreds of very sensitive thermo-luminescence detectors (TLDs), enriched to different levels in (LiF)-Li-6/(LiF)-Li-7, were used to measure the neutron and gamma dose separately. Lessons learnt from this first experiment led to significant improvements in the experimental arrangements to reduce the effects due to directional neutron source and self-shielding of TLDs. Here we report the results of measurements performed during the 2013-2014 JET campaign. Data from new positions, at further locations in the South West labyrinth and down to the Torus Hall basement through the air duct chimney, were obtained up to about a 40m distance from the plasma neutron source. In order to avoid interference between TLDs due to self-shielding effects, only TLDs containing natural Lithium and 99.97% Li-7 were used. All TLDs were located in the centre of large polyethylene (PE) moderators, with Li-nat and Li-7 crystals evenly arranged within two PE containers, one in horizontal and the other in vertical orientation, to investigate the shadowing effect in the directional neutron field. All TLDs were calibrated in the quantities of air kerma and neutron fluence. This improved experimental arrangement led to reduced statistical spread in the experimental data. The Monte Carlo N-Particle (MCNP) code was used to calculate the air kerma due to neutrons and the neutron fluence at detector positions, using a JET model validated up to the magnetic limbs. JET biological shield and penetrations, the PE moderators and TLDs were modelled in detail. Different tallying methods were used in the calculations, which are routinely used in ITER nuclear analyses: the mesh tally and the track length estimator with multiple steps calculations using the surface source write/read capability available in MCNP. In both cases, the calculated neutron fluence (C) was compared to the measured fluence (E) and hence C/E comparisons have been obtained and are discussed. These results provide a validation of neutronics numerical tools, codes and nuclear data, used for ITER design.

  • 37.
    Batistoni, P.
    et al.
    Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.;ENEA, Dept Fus & Nucl Safety Technol, I-00044 Rome, Italy.;ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    14 MeV calibration of JET neutron detectors-phase 1: calibration and characterization of the neutron source2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 2, article id UNSP 026012Article in journal (Refereed)
    Abstract [en]

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is +/- 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4 pi sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within +/- 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.

  • 38. Batistoni, P.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    14 MeV calibration of JET neutron detectors-phase 2: in-vessel calibration2018In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 58, no 10, article id 106016Article in journal (Refereed)
    Abstract [en]

    A new DT campaign (DTE2) is planned at JET in 2020 to minimize the risks of ITER operations. In view of DT operations, a calibration of the JET neutron monitors at 14 MeV neutron energy has been performed using a well calibrated 14 MeV neutron generator (NG) deployed, together with its power supply and control unit, inside the vacuum vessel by the JET remote handling system. The NG was equipped with two calibrated diamond detectors, which continuously monitored its neutron emission rate during the calibration, and activation foils which provided the time integrated yield. Cables embedded in the remote handling boom were used to power the neutron generator, the active detectors and pre-amplifier, and to transport the detectors' signal. The monitoring activation foils were retrieved at the end of each day for decay gamma-ray counting, and replaced by fresh ones. About 76 hours of irradiation, in 9 days, were needed with the neutron generator in 73 different poloidal and toroidal positions in order to calibrate the two neutron yield measuring systems available at JET, the U-235 fission chambers (KN1) and the inner activation system (KN2). The NG neutron emission rates provided by the monitoring detectors were in agreement within 3%. Neutronics calculations have been performed using MCNP code and a detailed model of JET to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the NG neutrons, and taking into account the anisotropy of the neutron generator and all the calibration circumstances. These calculations have made use of a very detailed and validated geometrical description of the neutron generator and of the modified. MNCP neutron source subroutine producing neutron energy-angle distribution for the neutrons emitted by the NG. The KN1 calibration factor for a DT plasma has been determined with +/- 4.2%' experimental uncertainty. Corrections due to NG and remote handling effects and the plasma volume effect have been calculated by simulation modelling. The related additional uncertainties are difficult to estimate, however the results of the previous calibration in 2013 have demonstrated that such uncertainties due to modelling are globally <= +/- 3%. It has been found that the difference between KN1 response to DD neutrons and that to DT neutrons is within the uncertainties in the derived responses. KN2 has been calibrated using the Nb-93(n,2n)Nb-92m and Al-27(n,a)Na-24 activation reactions (energy thresholds 10 MeV and 5 MeV respectively). The total uncertainty on the calibration factors is +/- 6% for Nb-93(n,2n)Nb-92m and +/- 8% Al-27(n,a)Na-24 (1 sigma). The calibration factors of the two independent systems KN1 and KN2 will be validated during DT operations. The experience gained and the lessons learnt are presented and discussed in particular with regard to the 14 MeV neutron calibrations in ITER.

  • 39.
    Batistoni, P.
    et al.
    ENEA, Dept Fus & Technol Nucl Safety & Secur, I-00044 Rome, Italy.;ENEA, Dept Fus & Technol Nucl Safety & Secur, I-00123 Rome, Italy.;ENEA C R Frascati, Unit Tecn Fus, Via E Fermi 45, I-00044 Rome, Italy..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Overview of neutron measurements in jet fusion device2018In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 180, no 1-4, p. 102-108Article in journal (Refereed)
    Abstract [en]

    The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation.

  • 40.
    Batistoni, Paola
    et al.
    ENEA, Dept Fus & Technol Nucl Safety & Secur, I-00044 Frascati, Rome, Italy..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics. KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden..
    Zychor, I.
    Natl Ctr Nucl Res, PL-05400 Otwock, Poland..
    et al.,
    Calibration of neutron detectors on the Joint European Torus2017In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 88, no 10, article id 103505Article in journal (Refereed)
    Abstract [en]

    The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a Cf-252 source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) Cf-252 source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.

  • 41. Beal, J.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Deposition in the inner and outer corners of the JET divertor with carbon wall and metallic ITER-like wall2016In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T167, article id 014052Article in journal (Refereed)
    Abstract [en]

    Rotating collectors and quartz microbalances (QMBs) are used in JET to provide time-dependent measurements of erosion and deposition. Rotation of collector discs behind apertures allows recording of the long term evolution of deposition. QMBs measure mass change via the frequency deviations of vibrating quartz crystals. These diagnostics are used to investigate erosion/deposition during JET-C carbon operation and JET-ILW (ITER-like wall) beryllium/tungsten operation. A simple geometrical model utilising experimental data is used to model the time-dependent collector deposition profiles, demonstrating good qualitative agreement with experimental results. Overall, the JET-ILW collector deposition is reduced by an order of magnitude relative to JET-C, with beryllium replacing carbon as the dominant deposit. However, contrary to JET-C, in JET-ILW there is more deposition on the outer collector than the inner. This reversal of deposition asymmetry is investigated using an analysis of QMB data and is attributed to the different chemical properties of carbon and beryllium.

  • 42.
    Becker, Matthias
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Electronic and embedded systems.
    Lu, Zhonghai
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Electronic and embedded systems.
    Chen, DeJiu
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.). KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
    Towards QoS-Aware Service-Oriented Communication in E/E Automotive Architectures2018In: Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society (IECON), Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 4096-4101, article id 8591521Conference paper (Refereed)
    Abstract [en]

    With the raise of increasingly advanced driving assistance systems in modern cars, execution platforms that build on the principle of service-oriented architectures are being proposed. Alongside, service oriented communication is used to provide the required adaptive communication infrastructure on top of automotive Ethernet networks. A middleware is proposed that enables QoS aware service-oriented communication between software components, where the prescribed behavior of each software component is defined by Assume/Guarantee (A-G) contracts. To enable the use of COTS components, that are often not sufficiently verified for the use in automotive systems, the middleware monitors the communication behavior of components and verifies it against the components A/G contract. A violation of the allowed communication behavior then triggers adaption processes in the system while the impact on other communication is minimized. The applicability of the approach is demonstrated by a case study that utilizes a prototype implementation of the proposed approach.

  • 43.
    Becker, Matthias
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Electronic and embedded systems.
    Mubeen, Saad
    Mälardalen University.
    Timing Analysis Driven Design-Space Exploration of Cause-Effect Chains in Automotive Systems2018In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 2018Conference paper (Refereed)
    Abstract [en]

    Model-based development and component-based software engineering have emerged as a promising approach to deal with enormous software complexity in automotive systems. This approach supports the development of software architectures by interconnecting (and reusing) software components (SWCs) at various abstraction levels. Automotive software architectures are often modeled with chains of SWCs, also called cause-effect chains that are constrained by timing requirements. Based on the variations in activation patterns of SWCs, a single model of a cause-effect chain at a higher abstraction level can conform to several valid refined models of the chain at a lower abstraction level, which is closer to the system implementation. As a consequence, the total number of valid implementation-level models generated by the existing techniques increases exponentially, thereby significantly increasing the runtime of the timing analysis engines and liming the scalability of the existing techniques. This paper computes an upper bound on the activation pattern combinations that may result from a system of cause-effect chains in a given high-level model of the software architecture. An efficient algorithm is presented that traverses only a reduced number of possible combinations of the cause-effect chains, resulting in the timing analysis of a significantly lower number of implementation-level models of the software architecture. A proof of concept is provided by conducting a case study that shows significant reduction in the runtime of timing analysis engines, i.e., the timing behavior of the considered system is verified by performing the timing analysis of only 27% of all possible combinations of the cause-effect chains.

  • 44.
    Becker, T. M.
    et al.
    Southwest Res Inst, San Antonio, TX 78228 USA..
    Retherford, K. D.
    Southwest Res Inst, San Antonio, TX 78228 USA..
    Roth, Lorenz
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics.
    Hendrix, A. R.
    Planetary Sci Inst, Tucson, AZ USA..
    McGrath, M. A.
    SETI Inst, Mountain View, CA USA..
    Saur, J.
    Univ Cologne, Inst Geophys & Meteorol, Cologne, Germany..
    The Far-UV Albedo of Europa From HST Observations2018In: Journal of Geophysical Research - Planets, ISSN 2169-9097, E-ISSN 2169-9100, Vol. 123, no 5, p. 1327-1342Article in journal (Refereed)
    Abstract [en]

    We present an analysis of Europa's far-UV spectral albedo using observations during the 1999-2015 time period made by the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. Disk-integrated observations show that the far-UV spectrum in the similar to 130 to 170-nm range is relatively flat or slightly blue (increasing albedo with decreasing wavelength) for the studied hemispheres: the leading, trailing, and anti-Jovian hemispheres. At Lyman- (121.6nm), the albedo of the trailing hemisphere continues the blue trend, but it reddens for the leading hemisphere. Also at this wavelength, the albedo of the leading hemisphere, which is higher than the trailing hemisphere at near-UV and visible wavelengths, is lower than the trailing hemisphere, exhibiting spectral inversion. We find no evidence of a sharp water-ice absorption edge at 165nm on any hemisphere of Europa, which is intriguing since such an absorption feature has been observed on the icy Saturnian satellites. Plain Language Summary We used observations spanning from 1999 to 2015 obtained by the Space Telescope Imaging Spectrograph on the Hubble Space Telescope to study the surface reflectance of Europa at far-ultraviolet (UV) wavelengths. We find that Europa has a low reflectance in the UV and that there is little variation in the surface brightness at most of the UV wavelengths. When observed at visible wavelengths, one of Europa's hemispheres is brighter than the other, but at the UV wavelength of 121.6nm, the hemisphere brightness is reversed. We also find that Europa looks different from the icy moons of Saturn at far-UV wavelengths.

  • 45.
    Bergsåker, Henric
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Ratynskaia, Svetlana
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Stefanikova, Estera
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Emmi
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tolias, Panagiotis
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olivares, Pablo Vallejos
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zhou, Yushun
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Assessment of the strength of kinetic effects of parallel electron transport in the SOL and divertor of JET high radiative H-mode plasmas using EDGE2D-EIRENE and KIPP codes2018In: Plasma Physics and Controlled Fusion, ISSN 0741-3335, E-ISSN 1361-6587, Vol. 60, no 11, article id 115011Article in journal (Refereed)
    Abstract [en]

    The kinetic code for plasma periphery (KIPP) was used to assess the importance of the kinetic effects of parallel electron transport in the scrape-off layer (SOL) and divertor of JET high radiative H-mode inter-ELM plasma conditions with the ITER-like wall and strong nitrogen (N-2) injection. Plasma parameter profiles along a magnetic field from one of the EDGE2D-EIRENE simulation cases were used as an input for KIPP runs. Profiles were maintained by particle and power sources. KIPP generated electron distribution functions, f(e), parallel power fluxes, electron-ion thermoforces, Debye sheath potential drops and electron sheath transmission factors at divertor targets. For heat fluxes in the main SOL, KIPP results showed deviations from classical (e.g. Braginskii) fluxes by factors typically of similar to 1.5, sometimes up to 2, with the flux limiting for more upstream positions and flux enhancement near entrances to the divertor. In the divertor, at the same time, for radial positions closer to the separatrix, very large heat flux enhancement factors of up to ten or even higher, indicative of a strong nonlocal heat transport, were found at the outer target, with heat power flux density exhibiting bump-on-tail features at high energies. Under such extreme conditions, however, contributions of conductive power fluxes to total power fluxes were strongly reduced, with convective power fluxes becoming comparable, or sometimes exceeding, conductive power fluxes. Electron-ion thermoforce, on the other hand, which is known to be determined mostly by thermal and subthermal electrons, was found to be in good agreement with Braginskii formulas, including the Z(eff) dependence. Overall, KIPP results indicate, at least for the plasma conditions used in this modelling, a sizable, but not dominant, effect of kinetics on parallel electron transport.

  • 46. Bernardo, J.
    et al.
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Garcia-Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Jonsson, Thomas
    KTH, Superseded Departments (pre-2005), Alfvén Laboratory. KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics.
    Rubel, Marek
    KTH, Superseded Departments (pre-2005), Alfvén Laboratory. KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Space and Plasma Physics. KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Zychor, I.
    et al.,
    Ion temperature and toroidal rotation in JET's low torque plasmas2016In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, no 11, article id 11E557Article in journal (Refereed)
    Abstract [en]

    This paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature T-i and the toroidal velocity v(phi) from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of Ti and v(phi) particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.

  • 47.
    Bernert, M.
    et al.
    Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany.;Max Planck Inst Plasma Phys, D-85748 Garching, Germany..
    Bergsåker, Henric
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Bykov, Igor
    KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Fusion Plasma Physics.
    Elevant, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Frassinetti, Lorenzo
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Garcia Carrasco, Alvaro
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Hellsten, Torbjörn
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ivanova, Darya
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Johnson, Thomas
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Menmuir, Sheena
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Petersson, Per
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Rachlew, Elisabeth
    KTH, School of Engineering Sciences (SCI), Physics, Atomic and Molecular Physics.
    Rubel, Marek
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Ström, Petter
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Tholerus, Simon
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Weckmann, Armin
    KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
    Zychor, I.
    Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland..