Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ceccato, Chiara
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Kulachenko, Artem
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Barbier, C.
    BillerudKorsnäs, Grums, Värmland County, Sweden.
    Investigation of rolling contact between metal and rubber-covered cylinders governing the paper compaction process2019In: International Journal of Mechanical Sciences, ISSN 0020-7403, E-ISSN 1879-2162, Vol. 163, article id 105156Article in journal (Refereed)
    Abstract [en]

    With the goal of partial or complete replacement of plastic components with paper-based products, 3D paper structures have seen a growing interest in industrial applications: from packaging to more complex daily life objects. However, the extensibility of paper has become a key issue within this context and is the main factor determining the formability of these products and determining the depth of the achievable shapes. The most effective way to increase paper's stretch potential is by subjecting the moist paper web to a compaction process, which can be achieved through an extensible unit that is located in the drying section of a paper machine, where the network experiences in-plane compression in the machine direction (MD), under out-of-plane lateral constraints. The objective of this work is to clarify the mechanisms governing the compression process and to evaluate the influence of various parameters on the final material properties to optimize the industrial production of extensible paper. The system operation has been simulated realistically and shows that paper experiences a compressive state passing through the nip, with plastic strains in MD direction being of the same order of the applied speed difference, which was expected experimentally in optimal conditions of compaction. Starting from an initial reference case, a sensitivity study has been performed to identify and address the following factors that may affect the compression state: (a) friction coefficients; (b) indentation level; (c) speed difference; and (d) rubber properties. The analysis of the numerical results gives an insight into the mechanisms governing the compaction operations and allows a better comprehension of the features controlling the process outcome.

  • 2.
    Everitt, Carl-Magnus
    et al.
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).
    Alfredsson, Bo
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.).
    Öberg, Martin
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    An imprint method to produce surface asperities for EHL and RCF experiments2020Report (Other academic)
    Abstract [en]

    A method was developed for creating single well defined surface asperities using an imprint technique. The proposed method can be used to create asperities of different heights and widths in the micrometre range. The technique for creating single surface asperities is based on rolling a hard disc with indents against a soft disc. The contact pressure will cause plastic deformation forcing material into the indents to create the asperities. The height of the asperities can be controlled by adjusting the applied force. After initial reshaping during the run-in process, the asperities were strong enough to survive more than 35 million EHL contact cycles. The method should thus be of great interest for the researchers investigating rolling contact fatigue experimentally. The method could also aid the research of the run in process by enabling tracing the development of specific surface defects. Since the method can produce high and strong asperities it might also prove useful for investigations of exactly how asperities deform under sever contacts conditions.  

  • 3.
    Lind, Petter N.
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Olsson, Mårten
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Augmented Single Loop Single Vector Algorithm Using Nonlinear Approximations of Constraints in Reliability-Based Design Optimization2019In: Journal of mechanical design (1990), ISSN 1050-0472, E-ISSN 1528-9001, Vol. 141, no 10, article id 101403Article in journal (Refereed)
    Abstract [en]

    Reliability-based design optimization (RBDO) aims at minimizing a function of probabilistic design variables, given a maximum allowed probability of failure. The most efficient methods available for solving moderately nonlinear problems are single loop single vector (SLSV) algorithms that use a first-order approximation of the probability of failure in order to rewrite the inherently nested structure of the loop into a more efficient single loop algorithm. The research presented in this paper takes off from the fundamental idea of this algorithm. An augmented SLSV algorithm is proposed that increases the rate of convergence by making nonlinear approximations of the constraints. The nonlinear approximations are constructed in the following way: first, the SLSV experiments are performed. The gradient of the performance function is known, as well as an estimate of the most probable failure point (MPP). Then, one extra experiment, a probe point, per performance function is conducted at the first estimate of the MPP. The gradient of each performance function is not updated but the probe point facilitates the use of a natural cubic spline as an approximation of an augmented MPP estimate. The SLSV algorithm using probing (SLSVP) also incorporates a simple and effective move limit (ML) strategy that also minimizes the heuristics needed for initiating the optimization algorithm. The size of the forward finite difference design of experiment (DOE) is scaled proportionally with the change of the ML and so is the relative position of the MPP estimate at the current iteration. Benchmark comparisons against results taken from the literature show that the SLSVP algorithm is more efficient than other established RBDO algorithms and converge in situations where the SLSV algorithm fails.

  • 4.
    Liu, Hailong
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Ahlinder, Astrid
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Yassin, M. A.
    Finne Wistrand, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Gasser, T. Christian
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Computational and experimental characterization of 3D-printed PCL structures toward the design of soft biological tissue scaffolds2020In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 188, article id 108488Article in journal (Refereed)
    Abstract [en]

    Degradable porous polymeric structures are attractive candidates for biological tissue scaffolds, and adequate mechanical, transport, chemical and biological properties determine their functionality. Aside from the properties of polymer-based materials, the scaffold's meso-structure controls its elasticity at the organ length-scale. This study investigated the effect of the meso-structure on scaffolds' mechanical and transport properties using finite element analysis (FEA) and computational fluid dynamics (CFD). A number of poly (ε-caprolactone) (PCL) - based scaffolds were 3D printed, analyzed by microcomputed tomography (micro-CT) and mechanically tested. We found that the gradient (G) and gradient and staggered (GS) meso-structure designs led to a higher scaffold permeability, a more homogeneous flow inside the scaffold, and a lower wall shear stress (WSS) in comparison with the basic (B) meso-structure design. The GS design resulted in scaffold stiffness as low as 1.07/0.97 MPa under compression/tension, figures that are comparative with several soft tissues. Image processing of micro-CT data demonstrated that the imposed meso-structures could have been adequately realized through 3D printing, and experimental testing validated FEA analysis. Our results suggest that the properties of 3D-printed PCL-based scaffolds can be tuned via meso-structures toward soft tissue engineering applications. The biological function of designed scaffolds should be further explored in-situ studies.

  • 5. Mansour, Rami
    et al.
    Olsson, Mårten
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Second-order reliability method based on Edgeworth expansion with application to reliability-based design optimization2019In: Proceedings of the ASME Design Engineering Technical Conference, 2019Conference paper (Refereed)
    Abstract [en]

    In the Second-Order Reliability Method, the limit-state function is approximated by a hyper-parabola in standard normal and uncorrelated space. However, there is no exact closed form expression for the probability of failure based on a hyper-parabolic limit-state function and the existing approximate formulas in the literature have been shown to have major drawbacks. Furthermore, in applications such as Reliability-based Design Optimization, analytical expressions, not only for the probability of failure but also for probabilistic sensitivities, are highly desirable for efficiency reasons. In this paper, a novel Second-Order Reliability Method is presented. The proposed expression is a function of three statistical measures: the Cornell Reliability Index, the skewness and the Kurtosis of the hyper-parabola. These statistical measures are functions of the First-Order Reliability Index and the curvatures at the Most Probable Point. Furthermore, analytical sensitivities with respect to mean values of random variables and deterministic variables are presented. The sensitivities can be seen as the product of the sensitivities computed using the First-Order Reliability Method and a correction factor. The proposed expressions are studied and their applicability to Reliability-based Design Optimization is demonstrated.

  • 6.
    Mansour, Rami
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Zhu, Jinchao
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Edgren, Martin
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Barsoum, Zuheir
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    A probabilistic model of weld penetration depth based on process parameters2019In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 105, no 1-4, p. 499-514Article in journal (Refereed)
    Abstract [en]

    In welded structures using robotized metal active gas (MAG) welding, unwanted variation in penetration depth is typically observed. This is due to uncertainties in the process parameters which cannot be fully controlled. In this work, an analytical probabilistic model is developed to predict the probability of satisfying a target penetration, in the presence of these uncertainties. The proposed probabilistic model incorporates both aleatory process parameter uncertainties and epistemic measurement uncertainties. The latter is evaluated using a novel digital tool for weld penetration measurement. The applicability of the model is demonstrated on fillet welds based on an experimental investigation. The studied input process parameters are voltage, current, travel speed, and torch travel angle. The uncertainties in these parameters are modelled using adequate probability distributions and a statistical correlation based on the volt-ampere characteristic of the power source. Using the proposed probabilistic model, it is shown that a traditional deterministic approach in setting the input process parameters typically results in only a 50% probability of satisfying a target penetration level. It is also shown that, using the proposed expressions, process parameter set-ups satisfying a desired probability level can be simply identified. Furthermore, the contribution of the input uncertainties to the variation of weld penetration is quantified. This work paves the way to make effective use of the robotic welding, by targeting a specified probability of satisfying a desired weld penetration depth as well as predicting its variation.

  • 7.
    Marin, Gustav
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics. RISE Innventia.
    Nygårds, Mikael
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Östlund, Sören
    KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.).
    Stiffness and strength properties of five paperboards and their moisture dependency2019In: Proceedings of the 2019 International Paper Physics Conference / [ed] Doug Coffin, Tappi , 2019Conference paper (Refereed)
    Abstract [en]

    Five folding box boards made on the same paperboard machine have been analyzed. The paperboards were from the same product series but had different grammage (235, 255, 270, 315, 340 g/m2) and different bending stiffness. The paperboards are normally used to make packages, and since the bending stiffness and grammage varies the packages performance will be different. Finite element simulations can be used to predict these differences. However, the stiffness and strength properties then need to be known. For efficient determination of the three-dimensional properties in MD, CD and ZD, it is proposed that the whole paperboard should be characterized with the following tests: in-plane tension, ZD tension, shear strength profiles and two-point bending. The stiffness and strength properties have with the proposed setups been determined at different relative humidity (20, 50, 70 and 90 % RH), and the mechanical properties have been evaluated as function of moisture ratio.

    The results showed a linear relation between mechanical properties and moisture ratio for each paperboard. The data was then normalized with data for the standard climate (50 % RH) and investigated as a function of moisture ratio. The results indicated that the normalized mechanical properties for all paperboards coincided along one single line and could therefore be expressed as a linear function of moisture ratio and two constants.

    Consequently, the study indicates that it is possible to obtain the mechanical properties of a paperboard, by knowing the structural properties for the preferred level of RH and the mechanical property for the standard climate (50 % RH and 23 °C).

  • 8.
    Sedlak, Michal
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Alfredsson, Bo
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Efsing, Pål
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    A duplex oxide cohesive zone model to simulate intergranular stress corrosion crackingManuscript (preprint) (Other academic)
    Abstract [en]

    A finite element model with slip-oxidation is proposed for solving intergranular stress corrosion cracking (IGSCC) with duplex oxides. The purpose is to investigate the crack growth effect due to different rate, compositions and kinetics of the duplex oxide. The finite element model is based on a coupling between cohesive zone formulation, slip-oxidation model and a diffusion model. The cohesive zone formulation includes a degradation formulation which is linked to the slip-oxidation formulation. The environmental properties in the slip-oxidation were obtained from the diffusion modeled with Fick’s second law in onedimension. This was then coupled to the structural model by a segregated solution scheme. The mesh of the cohesive zone adapts to the oxide thickness of the duplex oxide during the crack growth. The duplex oxide has the mathematical form of a power law or a logarithmic form. The model showed matching results for all duplex oxide combinations in varying stress, but the inner logarithmical oxide gave higher crack growth rates than the power law. The power law with the thicker inner oxide showed good results for the change of stress intensity factor and gave the best results when the yield stress was varied. Grain misorientation effect was higher for the duplex oxides with thicker outer oxides

    The full text will be freely available from 2020-04-21 10:30
  • 9.
    Sedlak Mosesson, Michal
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Modelling of intergranular stress corrosion cracking mechanism2020Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    When assessing nuclear power plant life, stress corrosion cracking (SCC) plays an important role. Stress corrosion cracking in nuclear power plants is well recognized and heavily researched. Still due to its complicated nature it is not completely understood. There are many different damage mechanisms behind SCC. The focus in this thesis is on the slip-oxidation model. In the slip-oxidation model, the aggressive ions are diffused to the crack tip. In the crack tip the aggressive ions act as a catalyst to slow down the repassivation rate of the oxide film. At the crack tip the localized anodic dissolution occurred until an oxide film was produced to repassivate the corrosion process. Due to the constant stresses applied, the oxide film ruptured, and new virgin material was exposed to be dissolved and finally repassivated. This process is consequently repeated.   The first part of the work introduces a new formulation of a cohesive element with extended environmental degradation capability, which is essential to create the later SCC models. The new degradation method was evaluated against a Hydrogen Embrittlement (HE) experiment showing improved agreement with the experiment compared to the literature. The effect of different susceptibility zones at the crack tip was also investigated, showing that a uniform degradation throughout the susceptible zone is more influenced by the χ parameter than a triangular susceptible zone.  In the second part a phenomenological SCC model was created with the purpose to model primary water conditions in pressurized water reactors (PWR). It used the slip-oxidation model for considering SCC in boiling water reactors (BWR) under normal water chemistry (NWC).   The PWR model was implicit, coupled with a segregated solution scheme including a diffusion equation based on Fick’s second law and a cohesive zone description for the fracture mechanics part. The degradation was modelled with an anodic slip-dissolution equation that uses the effective cohesive traction and concentration as the main parameters. The model was evaluated against experiments on the effects of cold work on intergranular stress corrosion cracking (IGSCC). The model showed good agreements for both shifting amount of cold work illustrated by only changing the yield stress in the bulk material and for shifting the stress intensity factor. The model versatility was also shown by simulating IGSCC in Alloy600, also with good agreements.   The BWR model was multi-physical including a slip-oxidation, diffusion model and had adaptive oxide thickness developed into the cohesive element framework. The oxide thickness was derived from the slip-oxidation model and updated in every structural iteration to fully couple the fracture properties of the cohesive element. The cyclic physics of the slip oxidation model was replicated. The model results agreed with experiments in the literature for changes in the stress intensity factor, yield stress representing cold work and environmental factors such as conductivity and corrosion potential. The adaptive model was also expanded into a duplex oxide model with an inner and outer oxide. The model showed agreeing results with literature and the model was used to simulate different oxide growth kinetics

    The full text will be freely available from 2020-04-21 10:55
  • 10.
    Sedlak Mosesson, Michal
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Alfredsson, Bo
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Efsing, Pål
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Simulation of intergranular stress corrosion cracking by mesh adaptivity in a cohesive zone frameworkManuscript (preprint) (Other academic)
    Abstract [en]

    A finite element framework with mesh adaptivity was developed to simulate the oxide growth of the intergranular stress corrosion cracking (IGSCC). In particular, the environment of boiling water reactors (BWR) in combination with austenitic stainless steel and constant stress was studied. The model is interdisciplinary, it is a combination of a cohesive element fracture model, electrochemical slip-oxidation model and Fick’s second law as the diffusion model. The cyclic physics of the slip oxidation model was replicated. In the model, the thickness of the oxide was taken into consideration as the physical length of the cohesive element. The cyclic process was modelled with oxide film growth. Oxide rupture occurred due to degradation of the fracture energy. The degradation is a result of both external traction and diffusion of aggressive ions. The rate of degradation is defined by a variety of parameters as material properties, electrochemical properties and diffusivity. Next, the re-passivation will be initiated by the mesh adaptivity framework. The model was solved with a staggered solution scheme and the mesh adaptivity was set every Newton-Raphson trial. The model results agreed with experiments in the literature for changes in stress intensity factor, yield stress representing cold work and environmental factors such as conductivity and corrosion potential. The model also shows cost effective predicting, which is useful for larger simulation or optimization situations.

    The full text will be freely available from 2020-04-21 10:24
  • 11.
    Staf, Hjalmar
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Mechanical Modelling of Powder Compaction: Due to Corona is not possible to attend this defense in person, instead attend via this link: https://play.kth.se/media/t/0_mbkr2jhi​2020Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Cutting tool inserts, for instance used in steel machining, have the requirement to be toughand are therefore most often manufactured out of cemented carbides, using powdermetallurgy. Manufacturing components with powder metallurgy has its advantages in highproductivity and good net shape. The powder is spray dried and compacted to half itssintered volume. Because of friction between the powder and the pressing tool, the densityafter compaction is uneven, leading to uneven shrinkage during sintering. To get the rightshape after pressing and sintering, the pressing tool must often be compensated, which isboth expensive and time consuming. By doing computer simulations of the manufacturingprocess, the shape after sintering can be predicted and used to compensate the pressing toolbefore it is manufactured, thus saving both time and money. Also cracks and porosity in thepowder blank can be predicted with such simulations.

    This thesis studies mechanical modelling of powder compaction in general and compactionof cemented tungsten carbide powders in particular. Because of the amount of powdergranules in a typical geometry, the mechanical behavior is modelled with a continuumapproach, using the finite element method (FEM). Accuracy is important in the presentapplication and therefore a detailed elastic-plastic material model with a density dependentyield surface of Drucker-Prager CAP kind is used.

    For accurate material modelling it is important to include relevant features and to excludeunimportant physical effects. In Paper A sensitivity studies are therefore performed inorder to conclude which properties in the material model that have a significant influence onthe result. The studies show that anisotropy can be disregarded in the current application.

    In Paper B the effects from creep and compaction speed are studied. It is concluded thatcreep has no influence on the density after compaction, which also is confirmed by densitymeasurements using a neutron source in Paper D. The compaction speed on the other handinfluences the friction coefficient between powder and pressing tool, lower at increasedspeed. In Paper C frictional behavior is scrutinized experimentally with the aid of aninstrumented die. The friction coefficient is determined and analyzed, and it is shown that itdepends on the normal pressure.

    The sensitivity studies in Paper A show that measurements of the local density are neededin order to determine and verify material properties. Since the analyzed powder containstungsten (W), which has a high atomic number, a polychromatic beam of thermal neutronsis needed. In Paper D it is shown that the local density can be measured with 3D imagingand a thermal neutron source.

    From the results and conclusions in the above-mentioned papers, a material description forpowder compaction is suggested. This description is implemented in FEM in Paper E andapplied to reverse engineering in order to determine important material parameters.Experiments in a pressing machine with a pressing method that includes multiple unloadingsteps is used. The material description with the determined parameters is verified withdensity measurements using a neutron source.

  • 12.
    Staf, Hjalmar
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics. Sandvik Coromant, SE-126 80 Stockholm, Sweden.
    Olsson, Erik
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Solid Mechanics.
    Larsson, Per-Lennart
    KTH, Superseded Departments (pre-2005), Solid Mechanics.
    Mechanical Characterization of PowderMaterials: A General Approach Detailedfor Cemented Carbides2020In: Powder Technology, ISSN 0032-5910, E-ISSN 1873-328X, Vol. 364, p. 531-537Article in journal (Refereed)
    Abstract [en]

    Material parameter curves in an advanced material model describing compaction of spraydried cemented carbide powder are determined successfully based on a general approach formaterial characterization of powder materials. Pressing forces from a production machineand equivalent finite element (FE) calculations are used in inverse modelling. A pressingmethod that includes multiple unloading steps is used. The material model is of DruckerPrager CAP kind and friction between powder and pressing tool is modelled as a function ofnormal pressure. The results are verified with density gradient measurements using aneutron source. The method is proven to be robust and the results show good agreementbetween experiment and simulation. Effects that have not been captured numericallypreviously are captured due to the high accuracy of material characterization. The presentapproach is detailed for tungsten carbide powders but is valid for other powder materialswhen properly calibrated for constitutive and frictional effects in the same manner asoutlined here.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf