Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Wei, Jianzheng
    et al.
    Harbin Inst Technol, Natl Key Lab Sci & Technol Composites Special Env, Harbin 150080, Peoples R China..
    Yu, Jianxin
    Harbin Inst Technol, Natl Key Lab Sci & Technol Composites Special Env, Harbin 150080, Peoples R China..
    Tan, Huifeng
    Harbin Inst Technol, Natl Key Lab Sci & Technol Composites Special Env, Harbin 150080, Peoples R China..
    Wang, Weizhi
    China Aerosp Sci & Technol Corp, Beijing Inst Space Mech & Elect, Beijing 100094, Peoples R China..
    Eriksson, Anders
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Structural Mechanics.
    Design and testing of inflatable gravity-gradient booms in space2020In: CEAS Space Journal, ISSN 1868-2502, E-ISSN 1868-2510, Vol. 12, no 1, p. 33-41Article in journal (Refereed)
    Abstract [en]

    Inflatable space structures have many advantages such as small size, high reliability, and low cost. Aiming at a gravity-gradient boom for an XY-1 satellite, New Technology Verifying Satellite-1, a slender inflatable boom with low magnetic is presented. First of all, an inflatable boom with six self-supporting thin shells made of carbon and Vectran fiber composite materials on the inner wall was designed for eliminating a magnetic dipole moment and increasing structural stiffness. A precise stowage was designed for a tip mass surrounded by a pair of lightweight honeycomb blocks added on the top of the boom. The stowed boom was tested by sine sweep vibrations with three directions on the ground to verify the reasonable design. The XY-1 satellite which carried the inflatable boom was launched into low orbit. After being stowed state in space for at least 6 months, the inflatable boom orderly unfolded a 2.0 kg tip mass to 3.0 m away in May, 2013. The inflatable boom was successfully deployed from a series of photographs received on the satellite. The results show that this kind of lightweight inflatable boom with self-supporting thin shells can orderly unfold and fulfil the function of gravity-gradient in space for a long time.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf