In emergency management and in military operations, command and control comprises the collection of functions, systems and staff personnel that one or several executives draw on to arrive at decisions and seeing that these decisions are carried out. The large amount of available information coupled with modern computers and computer networks brings along the potential for making well-informed and quick decisions. Hence, decision-making is a central aspect in command and control, emphasizing an obvious need for development of adequate decision-supporting tools to be used in command and control centers. However, command and control takes place in a versatile environment, including both humans and artifacts, making the design of useful computer tools both challenging and multi-faceted.
This thesis deals with preparatory action in command and control settings with a focus on the strategic properties of a situation, i.e., to aid commanders in their operational planning activities with the utmost goal of ensuring that strategic interaction occurs under the most favorable circumstances possible. The thesis highlights and investigates the common features of interaction by approaching them broadly using a gaming perspective, taking into account various forms of strategic interaction in command and control. This governing idea, the command and control gaming perspective, is considered an overall contribution of the thesis.
Taking the gaming perspective, it turns out that the area ought to be approached from several research directions. In particular, the persistent gap between theory and applications can be bridged by approaching the command and control gaming perspective using both an applied and a theoretical research direction. On the one hand, the area of game theory in conjunction with research findings stemming from artificial intelligence need to be modified to be of use in applied command and control settings. On the other hand, existing games and simulations need to be adapted further to take theoretical game models into account.
Results include the following points: (1) classification of information with proposed measurements for a piece of information's precision, fitness for purpose and expected benefit, (2) identification of decision help and decision analysis as the two main directions for development of computerized tools in support of command and control, (3) development and implementation of a rule based algorithm for map-based decision analysis, (4) construction of an open source generic simulation environment to support command and control microworld research, (5) development of a generic tool for prediction of forthcoming troop movements using an algorithm stemming from particle filtering, (6) a non-linear multi-attribute utility function intended to take prevailing cognitive decision-making models into account, and (7) a framework based on game theory and influence diagrams to be used for command and control situation awareness enhancements. Field evaluations in cooperation with military commanders as well as game-theoretic computer experiments are presented in support of the results.