Ändra sökning
Avgränsa sökresultatet
1 - 20 av 20
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bäbler, Matthäus
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemiteknik, Energiprocesser.
    Biferale, Luca
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Feudel, Ulrike
    Guseva, Ksenia
    Lanotte, Alessandra S.
    Marchioli, Cristian
    Picano, Francesco
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre. University of Padua, Italy.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Soldati, Alfredo
    Toschi, Federico
    Numerical simulations of aggregate breakup in bounded and unbounded turbulent flows2015Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 766Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Breakup of small aggregates in fully developed turbulence is studied by means of direct numerical simulations in a series of typical bounded and unbounded flow configurations, such as a turbulent channel flow, a developing boundary layer and homogeneous isotropic turbulence. The simplest criterion for breakup is adopted, whereby aggregate breakup occurs when the local hydrodynamic stress sigma similar to epsilon(1/2), with epsilon being the energy dissipation at the position of the aggregate, overcomes a given threshold sigma(cr), which is characteristic for a given type of aggregate. Results show that the breakup rate decreases with increasing threshold. For small thresholds, it develops a scaling behaviour among the different flows. For high thresholds, the breakup rates show strong differences between the different flow configurations, highlighting the importance of non-universal mean-flow properties. To further assess the effects of flow inhomogeneity and turbulent fluctuations, the results are compared with those obtained in a smooth stochastic flow. Furthermore, we discuss the limitations and applicability of a set of independent proxies.

  • 2. Collotta, M.
    et al.
    De Marchis, M.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Preface of the "symposium on Advanced Engineering Systems and Computer Applications: Theory and Practice"2016Ingår i: AIP Conference Proceedings, ISSN 0094-243X, E-ISSN 1551-7616, Vol. 1790, artikel-id 090001Artikel i tidskrift (Refereegranskat)
  • 3. Croze, Ottavio A.
    et al.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Ahmed, Mansoor
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Bees, Martin A.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors2013Ingår i: Journal of the Royal Society Interface, ISSN 1742-5689, E-ISSN 1742-5662, Vol. 10, nr 81, s. 20121041-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Peclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Peclet number. The cell effective axial diffusivity increases and decreases with Peclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.

  • 4.
    Fornari, Walter
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Picano, Francesco
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Reduced particle settling speed in turbulence2016Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 808, s. 153-167Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the settling of finite-size rigid spheres in sustained homogeneous isotropic turbulence (1111) by direct numerical simulations using an immersed boundary method to account for the dispersed solid phase. We study semi-dilute suspensions at different Galileo numbers, Ga. The Galileo number is the ratio between buoyancy and viscous forces, and is here varied via the solid-to-fluid density ratio rho(p)/rho(f), The focus is on particles that are slightly heavier than the fluid. We find that in HIT, the mean settling speed is less than that in quiescent fluid; in particular, it reduces by 6 %-60 % with respect to the terminal velocity of an isolated sphere in quiescent fluid as the ratio between the latter and the turbulent velocity fluctuations it is decreased. Analysing the fluid particle relative motion, we find that the mean settling speed is progressively reduced while reducing rho(p)/rho(f) due to the increase of the vertical drag induced by the particle cross-flow velocity. Unsteady effects contribute to the mean overall drag by about 6%-10%. The probability density functions of particle velocities and accelerations reveal that these are closely related to the features of the turbulent flow. The particle mean-square displacement in the settling direction is found to be similar for all Ga if time is scaled by (2a)/u' (where 2a is the particle diameter and a is the turbulence velocity root mean square).

  • 5. Gualtieri, P.
    et al.
    Picano, Francesco
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Casciola, C. M.
    Clustering and turbulence modulation in particle-laden shear flows2013Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 715, s. 134-162Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Turbulent fluctuations induce the common phenomenon known as clustering in the spatial arrangement of small inertial particles transported by the fluid. Particles spread non-uniformly, and form clusters where their local concentration is much higher than in nearby rarefaction regions. The underlying physics has been exhaustively analysed in the so-called one-way coupling regime, i.e. negligible back-reaction of the particles on the fluid, where the mean flow anisotropy induces preferential orientation of the clusters. Turbulent transport in suspensions with significant mass in the disperse phase, i.e. particles back-reacting in the carrier phase (the two-way coupling regime), has instead been much less investigated and is still poorly understood. The issue is discussed here by addressing direct numerical simulations of particle-laden homogeneous shear flows in the two-way coupling regime. Consistent with previous findings, we observe an overall depletion of the turbulent fluctuations for particles with response time of the order of the Kolmogorov time scale. The depletion occurs in the energy-containing range, while augmentation is observed in the small-scale range down to the dissipative scales. Increasing the mass load results in substantial broadening of the energy cospectrum, thereby extending the range of scales driven by anisotropic production mechanisms. As discussed throughout the paper, this is due to the clusters which form the spatial support of the back-reaction field and give rise to a highly anisotropic forcing, active down to the smallest scales. A certain impact on two-phase flow turbulence modelling is expected from the above conclusions, since the frequently assumed small-scale isotropy is poorly recovered when the coupling between the phases becomes significant.

  • 6.
    Klinkenberg, Joy
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    de Lange, H. C.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Numerical Simulations of laminar-turbulent transition in particle-laden channel flow2011Rapport (Övrigt vetenskapligt)
    Abstract [en]

    Direct Numerical Simulation of a particle-laden channel flow is performed, with particles assumed solid, spherical and heavy. Two-way coupling between fluidand particles is modeled with Stokes drag. The equations describing the fluid flow are solved with an Eulerian mesh and those describing particles are solved in a Lagrangian frame. The numerical code is validated with results from linear optimal growth from previous studies; the optimal growth of streamwise vortices resulting in streamwise streaks is still the most efficient mechanism for disturbance amplification at subcritical conditions as for the case of a single phase fluid.

    We consider transition initiated by two initial disturbances well-known in literature, streamwise vortices and oblique waves. The threshold energy for transition is computed for both cases. It is observed that streamwise vortices in combination with an oblique wave as additional initial disturbance, result ina small increase of threshold energy compared to a clean fluid. In addition, the time at which transition occurs clearly increases for disturbances of equal initial energy. The threshold energy in the case of the so-called oblique scenario, increases by a factor about 4 in the presence of particles. The results are explained by considering the reduced amplification of oblique modes in the presence of particles.

    The results from these two classical scenarios indicate that, although stability analysis shows hardly any effect on optimal growth, particles do influence secondary instabilities and streak breakdown, thus the non-linear stages of transition, in two different ways. The presence of particles introduced threedimensional, streamwise-dependent modulations, especially at low concentrations, that may trigger and enhance secondary instabilities of streamwiseindependent streaks. On the other hand, particles decrease the amplitude ofoblique modes thus delaying transition initiated by their nonlinear interactions as in the oblique scenario.

  • 7.
    Klinkenberg, Joy
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    de Lange, H. C.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Numerical study of laminar-turbulent transition in particle-laden channel flow2013Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 87, nr 4, s. 043011-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present direct numerical simulations of subcritical transition to turbulence in a particle-laden channel flow, with particles assumed rigid, spherical, and heavier than the fluid. The equations describing the fluid flow are solved with an Eulerian mesh, whereas those describing the particle dynamics are solved by Lagrangian tracking. Two-way coupling between fluid and particles is modeled with Stokes drag. The numerical code is first validated against previous results from linear stability: the nonmodal growth of streamwise vortices resulting in streamwise streaks is still the most efficient mechanism for linear disturbance amplification at subcritical conditions as for the case of a single phase fluid. To analyze the full nonlinear transition, we examine two scenarios well studied in the literature: (1) transition initiated by streamwise independent counter-rotating streamwise vortices and one three-dimensional mode and (2) oblique transition, initiated by the nonlinear interaction of two symmetric oblique waves. The threshold energy for transition is computed, and it is demonstrated that for both scenarios the transition may be facilitated by the presence of particles at low number density. This is due to the fact that particles may introduce in the system detrimental disturbances of length scales not initially present. At higher concentrations, conversely, we note an increase of the disturbance energy needed for transition. The threshold energy for the oblique scenario shows a more significant increase in the presence of particles, by a factor about four. Interestingly, for the streamwise-vortex scenario the time at which transition occurs increases with the particle volume fraction when considering disturbances of equal initial energy. These results are explained by considering the reduced amplification of oblique modes in the two-phase flow. The results from these two classical scenarios indicate that, although linear stability analysis shows hardly any effect on optimal growth, particles do influence secondary instabilities and streak breakdown. These effects can be responsible of the reduced drag observed in turbulent channel flow laden with heavy particles.

  • 8.
    Noorani, Azad
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Particle dispersion in turbulent curved pipe flowManuskript (preprint) (Övrigt vetenskapligt)
  • 9.
    Noorani, Azad
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Fysiokemisk strömningsmekanik.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll.
    Particle transport in turbulent curved pipe flowManuskript (preprint) (Övrigt vetenskapligt)
  • 10.
    Noorani, Azad
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Particle transport in turbulent curved pipe flow2016Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 793, s. 248-279Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Direct numerical simulations (DNS) of particle-laden turbulent flow in straight, mildly curved and strongly bent pipes are performed in which the solid phase is modelled as small heavy spherical particles. A total of seven populations of dilute particles with different Stokes numbers, one-way coupled with their carrier phase, are simulated. The objective is to examine the effect of the curvature on micro-particle transport and accumulation. It is shown that even a slight non-zero curvature in the flow configuration strongly impact the particle concentration map such that the concentration of inertial particles with hulk Stokes number 0.45 (based on hulk velocity and pipe radius) at the inner bend wall of mildly curved pipe becomes 12.8 times larger than that in the viscous sublayer of the straight pipe. Near-wall helicoidal particle streaks are observed in the curved configurations with their inclination varying with the strength of the secondary motion of the carrier phase. A reflection layer, as previously observed in particle laden turbulent S-shaped channels, is also apparent in the strongly curved pipe with heavy particles. In addition, depending on the curvature, the central regions of the mean Dean vortices appear to he completely depleted of particles, as observed also in the partially relaminarised region at the inner bend. The turbophoretic drift of the particles is shown to he affected by weak and strong secondary motions of the carrier phase and geometry-induced centrifugal forces. The first- and second-order moments of the velocity and acceleration of the particulate phase in the same configurations are addressed in a companion paper by the same authors. The current data set will be useful for modelling particles advected in wall-bounded turbulent flows where the effects of the curvature are not negligible.

  • 11. Nowbahar, Arash
    et al.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Picano, Francesco
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Turbophoresis attenuation in a turbulent channel flow with polymer additives2013Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 732, s. 706-719Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Turbophoresis occurs in wall-bounded turbulent flows where it induces a preferential accumulation of inertial particles towards the wall and is related to the spatial gradients of the turbulent velocity fluctuations. In this work, we address the effects of drag-reducing polymer additives on turbophoresis in a channel flow. The analysis is based on data from a direct numerical simulation of the turbulent flow of a viscoelastic fluid modelled with the FENE-P closure and laden with particles of different inertia. We show that polymer additives decrease the particle preferential wall accumulation and demonstrate with an analytical model that the turbophoretic drift is reduced because the wall-normal variation of the wall-normal fluid velocity fluctuations decreases. As this is a typical feature of drag reduction in turbulent flows, an attenuation of turbophoresis and a corresponding increase in the particle streamwise flux are expected to be observed in all of these flows, e. g. fibre or bubble suspensions and magnetohydrodynamics.

  • 12. Olivieri, S.
    et al.
    Picano, Francesco
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Iudicone, D.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    The effect of the Basset history force on particle clustering in homogeneous and isotropic turbulence2014Ingår i: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 26, nr 4, s. 041704-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the effect of the Basset history force on the dynamics of small particles transported in homogeneous and isotropic turbulence and show that this term, often neglected in previous numerical studies, reduces the small-scale clustering typical of inertial particles. The contribution of this force to the total particle acceleration is, on average, responsible for about 10% of the total acceleration and particularly relevant during rare strong events. At moderate density ratios, i.e., sand or metal powder in water, its presence alters the balance of forces determining the particle acceleration.

  • 13. Picano, F.
    et al.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. Dipartimento di Ingegneria Meccanica e Aeronautica, La Sapienza University of Rome, Italy .
    Gualtieri, P.
    Casciola, C. M.
    Particle-laden jets: Particle distribution and back-reaction on the flow2011Konferensbidrag (Refereegranskat)
    Abstract [en]

    DNS data of particle-laden jets are discussed both in the one- and two-way coupling regimes. Dynamics of inertial particles in turbulent jets is characterized by an anomalous transport that leads to the formation of particle concentration peaks along the jet axis. Larger is the particle inertia farther the peak location occurs. The controlling parameter is found to be the local large-scale Stokes number which decreases quadratically with the axial distance and is order one in coincidence of the peaks. The centerline mean particle velocity is characterized by two scaling laws. The former occurs upstream the location where the Stokes number is order one, and is linear in the axial distance with negative coefficient. The latter, occurring downstream where the local Stokes number is small, coincides with that of the centerline mean fluid velocity. This behavior affects the development of the particle-laden jet when the mass load of the particulate phase increases and two-way coupling effects become relevant. Two distinct behaviors for the jet development are found behind and beyond the location of unity local Stokes number leading to different scaling laws for the mean centerline fluid velocity.

  • 14.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    An Efficient-high Performance Code for Particle Transport in Homogeneous Turbulence2016Ingår i: Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2016 (ICCMSE-2016), American Institute of Physics (AIP), 2016, artikel-id UNSP 090004Konferensbidrag (Refereegranskat)
    Abstract [en]

    We have developed a fully parallel fortran/MPI code for tracking particles in homogeneous turbulent flows. The fluid is discretized in a uniform Eulerian grid while the particles are evolved via a Lagrangian tracking framework. The code is pseudo-spectral and employs the libraries FFTw, time integration has a third or fourth-order accuracy. The carrier phase can transport several equations for active/passive scalars that can act like a source of mass/energy transfer to the particles. We were able to simulate a fully-turbulent flow in an Eulerian grid of about 10(10) points and to track in a Lagrangian framework at least 10(9) point particles. The code is fully modular, can be easily extended or modified and available upon request.

  • 15.
    Sardina, Gaetano
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Boffetta, G.
    Mazzino, A.
    Buoyancy-Driven Flow through a Bed of Solid Particles Produces a New Form of Rayleigh-Taylor Turbulence2018Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 121, nr 22, artikel-id 224501Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Rayleigh-Taylor (RT) fluid turbulence through a bed of rigid, finite-size spheres is investigated by means of high-resolution direct numerical simulations, fully coupling the fluid and the solid phase via a state-of-the-art immersed boundary method. The porous character of the medium reveals a totally different physics for the mixing process when compared to the well-known phenomenology of classical RT mixing. For sufficiently small porosity, the growth rate of the mixing layer is linear in time (instead of quadratical) and the velocity fluctuations tend to saturate to a constant value (instead of linearly growing). We propose an effective continuum model to fully explain these results where porosity originated by the finite-size spheres is parametrized by a friction coefficient.

  • 16.
    Sardina, Gaetano
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Casciola, Carlo Massimo
    Henningson, Dan S.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Transport of inertial particles in turbulent boundary layers2011Ingår i: 13th  European Turbulence Conference (ETC13): Particles In Turbulence, Transport Processes And Mixing, Institute of Physics Publishing (IOPP), 2011, s. 052020-Konferensbidrag (Refereegranskat)
    Abstract [en]

    A direct numerical simulations (DNS) of a spatially evolving particle-laden turbulent boundary layer has been performed to study turbophoresis effects in presence of changing local Stokes number. The data show a preferential particle localization near the wall at the streamwise position where the local Stokes number St(+) assumes a value close to 25, similarly to that found in channel flow. Note that a complete steady state will never been reached for the particle concentration in this kind of flow. The effects of the seeding and of preferential sampling of the fluid velocity will be described as well.

  • 17.
    Sardina, Gaetano
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Picano, Francesco
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Casciola, C. M.
    Statistics of Particle Accumulation in Spatially Developing Turbulent Boundary Layers2014Ingår i: Flow Turbulence and Combustion, ISSN 1386-6184, E-ISSN 1573-1987, Vol. 92, nr 1-2, s. 27-40Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We present the results of a Direct Numerical Simulation of a particle-laden spatially developing turbulent boundary layer up to Re (theta) = 2500. Two main features differentiate the behavior of inertial particles in a zero-pressure-gradient turbulent boundary layer from the more commonly studied case of a parallel channel flow. The first is the variation along the streamwise direction of the local dimensionless parameters defining the fluid-particle interactions. The second is the coexistence of an irrotational free-stream and a near-wall rotational turbulent flow. As concerns the first issue, an inner and an outer Stokes number can be defined using inner and outer flow units. The inner Stokes number governs the near-wall behavior similarly to the case of channel flow. To understand the effect of a laminar-turbulent interface, we examine the behavior of particles initially released in the free stream and show that they present a distinct behavior with respect to those directly injected inside the boundary layer. A region of minimum concentration occurs inside the turbulent boundary layer at about one displacement thickness from the wall. Its formation is due to the competition between two transport mechanisms: a relatively slow turbulent diffusion towards the buffer layer and a fast turbophoretic drift towards the wall.

  • 18.
    Sardina, Gaetano
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Schlatter, Philipp
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Picano, Francesco
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Casciola, Carlo
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Henningson, Dan Stafan
    KTH, Skolan för teknikvetenskap (SCI), Mekanik, Stabilitet, Transition, Kontroll. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Self-similar transport of inertial particles in a turbulent boundary laye2012Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 706, s. 584-596Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Results are presented from a direct numerical simulation of a particle-laden spatially developing turbulent boundary layer up to Re-theta = 2500. The peculiar feature of a boundary-layer flow seeded with heavy particles is the variation of the local dimensionless parameters defining the fluid-particle interactions along the streamwise direction. Two different Stokes numbers can be defined, one using inner flow units and the other with outer units. Since these two Stokes numbers exhibit different decay rates in the streamwise direction, we find a decoupled particle dynamics between the inner and the outer region of the boundary layer. Preferential near-wall particle accumulation is similar to that observed in turbulent channel flow, while different behaviour characterizes the outer region. Here the concentration and the streamwise velocity profiles are found to be self-similar and to depend only on the local value of the outer Stokes number and the rescaled wall-normal distance. These new results are powerful in view of engineering and environmental applications and corresponding flow modelling.

  • 19.
    Segalini, Antonio
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Bellani, Gabriele
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW.
    Variano, Evan A.
    Corrections for one- and two-point statistics measured with coarse-resolution particle image velocimetry2014Ingår i: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, Vol. 55, nr 6, s. 1739-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A theoretical model to determine the effect of the size of the interrogation window in particle image velocimetry measurements of turbulent flows is presented. The error introduced by the window size in two-point velocity statistics, including velocity autocovariance and structure functions, is derived for flows that are homogeneous within a 2D plane or 3D volume. This error model is more general than those previously discussed in the literature and provides a more direct method of correcting biases in experimental data. Within this model framework, simple polynomial approximations are proposed to provide a quick estimation of the effect of the averaging on these statistics. The error model and its polynomial approximation are validated using statistics of homogeneous isotropic turbulence obtained in a physical experiment and in a direct numerical simulation. The results demonstrate that the present formulation is able to correctly estimate the turbulence statistics, even in the case of strong smoothing due to a large interrogation window. We discuss how to use these results to correct experimental data and to aid the comparison of numerical results with laboratory data.

  • 20.
    Zhan, Caijuan
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Sardina, Gaetano
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Lushi, Enkeleida
    Brandt, Luca
    KTH, Skolan för teknikvetenskap (SCI), Mekanik. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Accumulation of motile elongated micro-organisms in turbulence2014Ingår i: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 739, s. 22-36Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the effect of turbulence on marine life by performing numerical simulations of motile micro-organisms, modelled as prolate spheroids, in isotropic homogeneous turbulence. We show that the clustering and patchiness observed in laminar flows, linear shear and vortex flows, are significantly reduced in a three-dimensional turbulent flow mainly because of the complex topology; elongated micro-organisms show some level of clustering in the case of swimmers without any preferential alignment whereas spherical swimmers remain uniformly distributed. Micro-organisms with one preferential swimming direction (e.g. gyrotaxis) still show significant clustering if spherical in shape, whereas prolate swimmers remain more uniformly distributed. Due to their large sensitivity to the local shear, these elongated swimmers react more slowly to the action of vorticity and gravity and therefore do not have time to accumulate in a turbulent flow. These results show how purely hydrodynamic effects can alter the ecology of micro-organisms that can vary their shape and their preferential orientation.

1 - 20 av 20
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf