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Abstract

In this thesis, we study optimization techniques for future cellular systems. We
focus on all three directions for increasing data rates, namely, larger system band-
width offered by millimeter-wave systems, increased spectral efficiency via cellular
coordination, and densification via cloud radio access networks.

The first part is concerned with the investigation of the hybrid analog-digital
architecture, for millimeter-wave multiple-input multiple-output (MIMO) systems.
In this architecture, the precoding and combining are done in two steps: analog and
digital. After characterizing the optimal precoders/combiners, we focus on open is-
sues such as channel estimation and the design of precoders/combiners. Exploiting
channel reciprocity in time-division duplex MIMO, and the sparsity of eigenmodes,
we propose an algorithm (based on the Arnoldi Iteration) for estimating the domi-
nant subspace of the channel, and provide basic analytical bounds on its estimation
error. Moreover, we propose a mechanism for optimizing the precoders/combiners,
to approximate the estimated subspace.

Distributed coordination schemes for cellular networks is the aim of the second
part: designing the transmit (resp. receive) filters, at the base station (resp. users),
in a distributed manner. Despite an existing body of work, such algorithms require
a large number of over-the-air iterations (hundreds/thousands). As the resulting
overhead could potentially destroy the gains of such coordination algorithms, we
propose the use of fast-converging algorithms (a few iterations), focusing on algo-
rithms for (I) sum-rate maximization, and (II) leakage minimization. In the case
of (I), we optimize a lower bound on the sum-rate, and derive the corresponding
optimal transmit and receive filter update: we dub the latter as non-homogeneous
waterfilling, and highlight its inherent ability to turn-off streams with low-SINR,
thus greatly speeding up the convergence of the algorithm. For (II), we relax the
classical leakage problem, and propose two different filter update structures: rank-
preserving and rank-reducing updates. Inspired from the decoding of turbo codes,
we introduce turbo iterations (within each main iteration) for transmit/receive
filters, for improved convergence speed. The combined effect of introducing rank-
reducing updates and the turbo iteration, results in massively faster convergence.

In the final part, we investigate densification.The additional degrees-of-freedom
gains from having more base stations / antennas are contingent upon having ef-
fective means of combating interference. Due to its centralized nature, cloud radio
access networks enable tight coordination of several radio-heads to form an antenna
domain. We define the so-called antenna domain formation problem, as the opti-
mal assignment of users to antenna domains. Using the total interference leakage as
metric, we formulate it as an integer optimization problem, and devise an iterative
solution method. Motivated by the complicated nature of the problem, we propose
the use of lower bounds on the problem in question (and the interference leakage
consequently). We derive the corresponding Dantzig-Wolfe decomposition, the dual
problem, and show that the former provides a tighter bound on the problem.





Sammanfattning
I denna avhandling studeras optimeringstekniker för framtida cellulära system.

De tre huvudinriktningarna för att öka datatakterna i systemet studeras, nämligen,
ökad systembandbredd genom användningen av millimeterv̊agsystem, ökad spek-
traleffektivitet genom cellulär samordning, samt basstationsförtätning genom radi-
oaccessnät i molnet.

I den första delen av avhandlingen utreds en hybridarkitektur för millime-
terv̊agssystem med flera antenner. I denna arkitektur sker förkodning och mot-
tagningsfiltrering i tv̊a steg: först ett analogt steg och sedan ett digitalt steg. Först
karakteriseras de optimala förkodnings- och mottagningsfiltrena och sedan studeras
öppna fr̊agor s̊asom kanalskattning och filterdesign. Genom att utnyttja reciprocite-
ten fr̊an tidsdelningsduplexning, samt glesheten hos egenmoderna i kanalen, föresl̊as
en algoritm baserad p̊a Arnoldi-iterationer för att skatta det dominerande under-
rummet hos kanalen. Algoritmen ger även grundläggande analytiska gränser för
skattningsfelet. Slutligen föresl̊as en mekanism för att optimera förkodnings- och
mottagningsfiltrena s̊a att de approximerar det skattade underrummet.

I den andra delen studeras distribuerade system för samordningen av cellulära
nätverk, speciellt distribuerad utformning av förkodnings- samt mottagningsfilter
hos basstationer och användare. De existerande algoritmerna i litteraturen kräver
ett stort antal ‘over-the-air’-iterationer, typiskt hundratals eller tusentals. Eftersom
den resulterande overheaden skulle förstöra vinsterna av samordningen föresl̊ar av-
handlingen istället snabbkonvergerande algoritmer som bara kräver ett f̊atal itera-
tioner. Tv̊a fall studeras: summadatataktsmaximering samt störningsläckageminim-
ering. I det första fallet maximeras en undre gräns för summadatatakten och de op-
timala filteruppdateringsekvationerna härleds. Optimeringsmetoden är en form av
icke-homogen vattenfyllnad och har möjlighet att stänga av dataströmmar med l̊aga
signal-till-brus-och-störnings-förh̊allanden, vilket avsevärt p̊askyndar konvergensen
hos algoritmen. I det senare fallet s̊a relaxeras det klassiska störningsläckageproble
-met och tv̊a olika filteruppdateringsstrukturer föresl̊as: rang-bevarande och icke-
rang-bevarande uppdateringsekvationer. Inspirerade av avkodningen av turbokoder
s̊a introduceras turboiterationer (inom varje yttre ‘over-the-air’-iteration) för filtre-
na. Den kombinerade effekten av icke-rang-bevarande uppdateringar och turboite-
rationer ger avsevärt snabbare konvergens.

I den sista delen undersöks basstationsförtätning, vilket är det mest verknings-
fulla sättet att öka datatakterna i systemet. De ökade frihetsgraderna som erh̊alls ge-
nom flera basstationer och/eller antenner kräver goda sätt att hantera den uppkom-
na störningen. Tack vare dess centraliserade natur s̊a kan ett radioaccessnätverk i
molnet till̊ata en stram koordinering av flera radiohuvuden som därmed gemensamt
bildar en antenndomän. Avhandlingen definierar ett antenndomänbildningsproblem
som den optimala tilldelningen av användare till antenndomänerna. Metriken som
används är det totala störningsläckaget och ett heltalsoptimeringsproblem formule-
ras tillsammans med en iterativ lösningsmetod. P̊a grund av problemets komplice-



vi

rade natur s̊a optimeras en undre gräns av störningsläckaget. Avhandlingen härleder
Dantzig-Wolfeuppdelningen för problemet, det duala problemet, och visar att det
senare är en stramare undre gräns för problemet.
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Chapter 1

Introduction

Mathematical Notation

The mathematical notation used throughout the thesis is summarized below. Ad-
ditional notation will be specified within the individual chapters, when needed.

1.0.1 Sets

Calligraphic letters X are used to denote sets, and |X | denotes the cardinality of
the discrete set X . The following notations are used for common sets:

R / R+ set of real numbers / set of non-negative real numbers
Z / Z+ set of integers / set of non-negative integers
B set of binary number
C set of complex numbers
Sd+ set of d× d positive semi-definite matrices
Sd++ set of d× d positive definite matrices
{n} set of integers from 1 to n
K\i set K after removing the element i, i ∈ K
U(n, k) set of n× k (k ≤ n) unitary matrices
conv(X ) convex hull of a set X

Scalars, Vectors, Matrices

We use lowercase letters to denote scalar quantities, e.g., x, y, ..., bold lowercase
letters to denote vectors, e.g.,www = (w1, w2, ..., wn)T denote an n-dimensional vector,

1



2 Introduction

and bold uppercase letter to denote matrices, e.g.,

XXX =


x1,1 ... x1,n
...

...
xm,1 ... xm,n

 .
Moreover, we denote by

IIIn the n× n identity matrix
000n×m the n×m all zeros matrix
000n the n-dimensional all zeros vector
111n the n-dimensional all ones vector

Operators
We use the following superscripts/superscripts
T the transpose of a vector/matrix
c the complex conjugate of a scalar/vector/matrix
† the conjugate transpose (hermitian) of a complex scalar/vector/matrix.
V ⊥ the orthogonal complement of a subspace V
‖xxx‖2 the l2-norm (Euclidean norm) of xxx
‖xxx‖1 the l1-norm of xxx
xxx(i) the ith element of xxx
diag(xxx) diagonal matrix with the elements of xxx on the main diagonal

For any given square matrix AAA,
[AAA](i:j) the matrix formed by taking columns i to j
AAA(i) the ith column
AAA(i,j) element (i, j) of AAA
tr(AAA) the trace
‖AAA‖F the Frobenius norm
|AAA| the determinant
[AAA]SL matrix formed by the strictly lower triangular part (zeros everywhere else)
[AAA]U matrix formed by the upper triangular part (zeros everywhere else)
σi[AAA] ith singular value of AAA (sorted in decreasing order)
σmin[AAA] the smallest singular value of AAA
σmax[AAA] the largest singular value of AAA

Let AAA ∈ Sn+ and BBB ∈ Sn+. Unless otherwise stated in the corresponding chapter, we
adopt the convention of sorting the eigenvalues of AAA in decreasing order. Then,
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λi[AAA] the ith eigenvalue of AAA
λmin[AAA] the smallest eigenvalue of AAA
λmax[AAA] the largest eigenvalue of AAA
v1:d[AAA] matrix having as columns the eigenvectors corresponding

to d-largest eigenvalues of AAA
AAA � 000 implies that AAA ∈ Sn+
AAA � 000 implies that AAA ∈ Sn++
AAA−BBB � 000 implies that AAA−BBB ∈ Sn+
AAA−BBB � 000 implies that AAA−BBB ∈ Sn++

1.0.2 Random Variables

xxx ∼ CN (000,KKK) represents a random vector xxx, that is drawn from a circularly sym-
metric complex Gaussian distribution, with zero mean and covariance matrix KKK.
Moreover, E[xxx] denotes the expectation of the random variable xxx.

1.0.3 Order and Special Functions

Let f and g be two functions defined on some subsets of real numbers. Then,
f(x) = O(g(x)) as x→∞ if and only if there exists a positive real number M and
a real number x0 such that |f(x)| ≤M |g(x)| for all x ≥ x0.

Common Abbreviations

3G/4G/5G 3rd/4th/5th Generation Cellular Systems
AD Antenna Domain
AN Aggregation Node
AWGN Additive White Gaussian Noise
BS Base Station
BCD Block-Coordinate Descent
CSI Channel State Information
Cloud-RAN Could Radio-Access Network
DLT Difference of Log and Trace
DW Dantzig-Wolfe
FDD Frequency Division Duplex
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IA Interference Alignment
IBC Interfering Broadcast Channels
IC Interference Channel
IMAC Interfering Multiple-Access Channel
IP Integer Program
KKT Karush-Kuhn-Tucker
LP Linear Program
LM (Interference) Leakage Minimization
LR Lagrange Relaxation
LTE Long-Term Evolution
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
MS Mobile Station
mmWave Millimetre-Wave
SINR Signal-to-Interference-plus-Noise Ratio
SNR Signal-to-Noise Ratio
SRM Sum-Rate Maximization
TDD Time Division Duplex
UE User Equipment

1.1 Overview of Relevant Optimization Techniques

Optimization has been the backbone for decades of progress in the areas of signal
processing and communication. Indeed, a plethora of problems in signal process-
ing for wireless communication are posed as optimization problems. Such problems
are too numerous to name and range from the minimum mean-squared error esti-
mator, the maximum likelihood estimator, the optimal precoder design in single-
user (and multi-user) MIMO, the user assignment problem, all the way to joint
transmit/receive filter design in multi-user multi-cell cellular networks. Problems
in signal processing for wireless communication are tackled by a wide range of opti-
mization techniques, such as standard Lagrange techniques for convex optimization,
(integer) linear programming, block-coordinate descent methods (or alternating op-
timization), primal-dual decompositions, relaxations, semi-definite programming,
etc. We review some state-of-the-art optimization techniques, focusing on mod-
ern and prevalent ones in the field of wireless communication. Methods such as
the Block-Coordinate Descent (BCD), and standard Lagrangian are ubiquitous for
works that fall within the scope of the thesis.
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1.1.1 Block Coordinate Descent

Block-Coordinate Descent (BCD), also known as Gauss-Seidel method, is a gen-
eralization of the well known Alternating Optimization (or Coordinate Descent
method) technique. BCD consists of fixing all but one block of variables, while op-
timizing that latter block. It is the most used technique in this thesis. Hence, its
survey will be more detailed than that of other optimization methods.

Mathematical Description Put into a more rigorous context, let f(xxx1, ...,xxxN )
be a function consisting of N blocks of variables, xxx1, ...,xxxN , that needs to be mini-
mized,

(P )
{

min f(xxx1, ...,xxxN )
s. t. xxxk ∈ Ck,∀k ∈ {N}

(1.1.1)

where Ck is a closed convex set, and f is continuous. BCD produces a sequence of
iterates, {xxxl1, ...,xxxlN}l such that,

xxxl+1
k , argmin

wwwk∈Ck
f(wwwk, zzzlk) (1.1.2)

where zzzlk = xxxl+1
1 , ...,xxxl+1

k−1,xxx
l
k+1, ...,xxx

l
N , denotes the block of fixed variables, for xxxk

at the lth iteration.

Convergence The convergence of BCD is the object of a wide array of inves-
tigations: there are many convergence results, each with a specific set of assump-
tions about f(xxx1, ...,xxxN ). The most generic BCD convergence results were derived
in [Tse01], and typically require two conditions:

f has a unique minimum in N − 2 blocks of variables (e.g. f needs to have a
unique minimum in blocks xxx1, ...,xxxN−2 ), and

f is quasi-convex in each block of variables.

Then, the sequence {f(xxxl1, ...,xxxlN )}l convergence to a stationary point of (P ).
Other results about BCD convergence, hinge upon the idea that the minimizer

found in each of the steps above, be unique. This in turn requires that the function
be separable in each of the blocks, and that f(xxxk, zzzlk) is strongly convex in xxxk (i.e.,
when fixing everything but block xxxk, f is strongly convex in xxxk). Then, the sequence
{f(xxxl1, ...,xxxlN )}l converges to a stationary point of (P ). When the above conditions
are satisfied, BCD is a quite a powerful technique. The convergence of BCD has
been extended to more generic settings, such as non-smooth optimization [RHL12].
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Generalizations A generalization of BCD was recently proposed, the so-called
Block-Successive Upper-bound Minimization (BSUM) [RHL12]. BSUM generalizes
the BCD update in 1.1.2 as follows:

xxxl+1
k , argmin

wwwk∈Ck
uk(wwwk, zzzlk), (1.1.3)

where uk(xxxk, zzzlk) is a well-chosen approximation of f(xxxk, zzzlk). BSUM offers a strict
advantage over BCD in terms of convergence, i.e., there are cases where BCD does
not converge while BSUM does.

Applications In the last decade, BCD has been one of most prevalent optimiza-
tion techniques in several areas of signal processing. In the context of distributed
coordination algorithms for cellular networks - a relevant topic to this thesis, BCD
is the underlying method in most of the algorithms: indeed approaches such as
interference leakage minimization [GCJ11], [pet09] minimum mean-squared error
minimization (MMSE) [SSB+09,PH11], and weighted minimum mean-squared er-
ror minimization [SRLH11], to name a few, all have that same underlying method.
While such approaches are essentially precoder design problems (i.e., joint opti-
mization of transmit/receive filters), recent work applies BCD to the problem of
joint precoder design and user assignment ( [HXRL13,SRL14]).

In recent years, the BCD method was also applied to areas outside signal pro-
cessing, such as (group) Lasso, basis denoising pursuit, low-rank matrix recovery,
hybrid Huberized support vector machine, blind source separation, sparse dictio-
nary learning, non-negative tensor decomposition [XY13].

In its generic form, the BSUM covers several other well-known optimization
methods, such as the convex-concave procedure (for optimizing difference of convex
functions), the majorization minimization (e.g. the expectation minimization algo-
rithm), the proximal point algorithm, the forward-backward splitting algorithm,
the non-negative matrix factorization problem, and the re-weighted least-squares
problem [HRLP16]. More recently, the BSUM framework has found application in
several areas of bio-informatics such as DNA sequencing and tensor decomposition
(for clustering and compression).

It is clear at this point that methods such as BCD and BSUM are extremely
effective for tackling optimization problems such as (P ) in (1.1.1), where the objec-
tive f(xxx1, ...,xxxN ) is coupled in the variables. However, they are less effective when
tackling problems such as (P ) in (1.1.1), where the constraints are coupled: when
non-separable constraints are present, i.e., (xxx1, ...,xxxN ) ∈ C, no BCD convergence
results exist.

1.1.2 Lagrangian Techniques
The Complex Gradient: Though there are many ways to define complex deriva-
tives, we follow the most widely adopted one, first outlined in [Bra83]. Let f(XXX) :
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Cp×q → R be a real-value matrix function ofXXX ∈ Cp×q, that is differentiable. Then,
the complex gradient operator, ∇XXXf(XXX) : Cp×q → R, is defined as,

[∇XXXf(XXX)](k,l) = 1
2

(
∂f

<[XXX(k,l)]
+ j

∂f

=[xxx(k,l)]

)
, ∀(k, l) ∈ {p} × {q} (1.1.4)

Thus, ∇XXXf(XXX) = 0 is necessary and sufficient to find stationary points of f . Un-
der this definition, one can verify for instance that, ∇XXX tr(XXX†AAAXXX) = AAAXXX, and
∇XXX log |III +XXX†AAAXXX| = AAAXXX(III +XXX†AAAXXX)−1.

KKT conditions for convex problems Lagrangian techniques, based on the
Karush-Kuhn-Tucker (KKT) conditions, are the most fundamental tools in convex
optimization. The standard form is often given in the context of scalar/vector opti-
mization. However, as most of the thesis will deal with optimization problems with
matrix functions, we shall give the standard (matrix) form for convex optimization
problems: 

min
XXX∈Cp×q

f(XXX)

s. t. gi(XXX) ≤ 0,∀i ∈ {m},
hj(XXX) = 0,∀i ∈ {n}

(1.1.5)

where f : Cp×q → R is convex and differentiable, gi : Cp×q → R, ∀ i ∈ {m} are
convex and differentiable, and hj : Cp×q → R, ∀ j ∈ {n} are affine.

Let XXX? be the optimal primal value, and {λ?i }, {µ?j} the optimal dual Lagrange
multipliers. The KKT conditions are written as follows [BV04, Sect 5.5]:

∇f(XXX?) +
∑
i λ

?
i∇gi(XXX

?) +
∑
j µ

?
j∇hi(XXX

?)
gi(XXX?) ≤ 0,∀i ∈ {m}, hj(XXX?) = 0, ∀i ∈ {n}
λ?i gi(XXX

?) = 0, ∀i ∈ {m}
λ?i ≥ 0, ∀i ∈ {m} , µ?j 6= 0, ∀j ∈ {n}

(1.1.6)

where the gradient ∇f(XXX) follows the above definition. When the primal problem
is convex (i.e., f, g1, ..., gm are convex, and h1, ..., hn are linear/affine), and strong
duality holds, then the KKT condition are necessary and sufficient [BV04, Sect
5.5].

Remark 1.1. The KKT conditions are necessary conditions for optimality when
the problem is not convex (i.e., f, g1, ..., gm, h1, ..., hn are differentiable, f, g1, ..., gm
not necessarily convex, h1, ..., hn not affine), but where strong duality holds.

Applications: Standard Lagrangian techniques were essential to tackling classi-
cal problems such as the minimum mean-squared error estimation [TV04], the opti-
mal single-user MIMO precoder (waterfilling solution) [TV04], the optimal precoder
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in multi-user MIMO (iterative waterfilling [YRBC04]), etc. However, in recent years
very few problems in (modern) signal processing and communication can be formu-
lated as (1.1.5). However, formulations such as the one above are still very common
when one is dealing with practical problems. For instance, consider problems of the
form,

min
XXX,YYY

f(XXX,YYY ) s. t. XXX ∈ X , YYY ∈ Y (1.1.7)

where f(XXX,YYY ) is not jointly convex in all XXX and YYY . As mentioned earlier, such
problems are ideal candidates for the BCD method: fix YYY and optimize for XXX (first
subproblem), then fix XXX and optimize YYY (second subproblem), iteratively. Most
often, each of the subproblems satisfies the standard form in (1.1.5).

This is the case for a significant fraction of the algorithms for distributed cellular
coordination, namely, interference leakage minimization [GCJ11, pet09], minimum
mean-squared error minimization (MMSE) [SSB+09, PH11], and weighted mini-
mum mean-squared error minimization [SRLH11]. In such cases,XXX and YYY represent
the block of transmit and receive filters, respectively. The application of the BCD
algorithm to distributed coordination in cellular networks, is discussed at length in
Chap. 4.4.

1.1.3 Dantzig-Wolfe Decomposition for Integer Programs
Since its inception in the seminal work of P. Wolfe and G. Dantzig, the Dantzig-
Wolfe (DW) decomposition [GBD60a] has been widely adopted, for obtaining lower
bounds on Integer Programs (IPs).

Mathematical Formulation Consider the following IP,

(P ) : xxx?
{
argmin f(xxx)
s. t. xxx ∈ S, AAAxxx ≤ ccc

(1.1.8)

where f is a continuous function (possibly non-convex), S a finite set correspond-
ing to integer constraints, and let {ψψψj}Jj=1 be the set of vertexes for S. The DW
decomposition then proceeds by relaxing the integer constraint, i.e., xxx ∈ S, into a
convex one by taking its convex hull, i.e., xxx ∈ conv(S). As a result, every point in
conv(S) is represented as a convex combination of the vertexes of S, i.e.,

xxx ∈ conv(S) =


J∑
j=1

wjψψψj |
∑
j

wj = 1, wj ≥ 0,∀j

 (1.1.9)

=


J∑
j=1

wjψψψj |111TJwww = 1, www ≥ 000J

 (1.1.10)
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The DW decomposition is seen as a mapping for xxx to www (given by the above equa-
tion). By letting αj = f(ψψψj), the cost function in (P ) is equivalent to

∑J
j=1 wjαj .

Moreover, the linear constraint in (P ) can be rewritten as,

AAAxxx ≤ ccc⇔
J∑
j=1

wj(AAAψψψj) ≤ ccc⇔ ΓΓΓwww ≤ ccc (1.1.11)

where ΓΓΓ , [AAAψψψ1, ...,AAAψψψJ ], www = [w1, ..., wJ ]T (1.1.12)

Then, the DW decomposition associated with (P ) is given by the following linear
program

(PDW ) : www?
argmin

www∈RJ
fDW (www) , αααTwww

s. t. www ≥ 000J , ΓΓΓwww ≤ ccc
(1.1.13)

It then straightforward to show that

f(xxx?) ≥ fDW (www?),

thereby implying that the DW always provides a lower bound on (P ). A look at the
above problem immediately reveals the power of the DW decomposition: despite
the combinatorial and non-convex nature of (P ), the DW always results in a linear
program.

Applications: The DW decomposition is a wide-spread systematic tool, for lower
bounding integer programming problems. Though originally developed for linear in-
teger programs [GBD60a], it was later extended to arbitrary integer programs [BJN+96].
In the context of operations research, the DW decomposition is the most common
tool for tackling problems such as the (generalized) assignment problem: There are
a number of agents and a number of tasks. Any agent can be assigned to perform
any task. Moreover, each agent has a budget and the sum of the costs of tasks
assigned to it cannot exceed this budget. It is required to find an assignment in
which all agents do not exceed their budget and total cost of the assignment is
minimized. The generalized assignment problem is tightly related to the knapsack
problem. We apply the DW to lower bound a variant of this problem, in Chap. 7,
where the above cost function is replaced with a non-linear one.

1.2 Background and Motivation

Wireless communication is a vital component underlying most modern technolog-
ical aspects in our society. Technologies such as mobile cellular access, device-to-
device communication, machine-type communication, cyber-physical systems, wire-
less control, voice/video streaming services, the Internet of things, tactile Inter-
net, etc, are contingent on reliable operation of wireless devices such as mobile
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phones/tablets/laptops. For such reasons, wireless communication systems have
permeated a huge number of standards such as 3G/4G/LTE, WiFi (IEEE 802.11
family), Bluetooth, ZigBee, etc. In most of this thesis however, the focus is put on
cellular networks.

The targeted data rates for consecutive generations of cellular networks have
been drastically increasing: around 100 Kbps for 2G, around 2 Mbps for 3G, around
200 Mbps for 4G, and greater than 1 Gbps for 5G. Moreover, it is estimated that
the mobile data consumption (e.g. by smart phones, tablets, mobile PC) is expected
to increase by a factor of 10, between 2015 and 2021 [Eri15]. Moreover, a total of 28
billion connected mobiles devices are expected across the world by 2021. This expo-
nential increase in demand for data is also agreed upon (to some extent) by most
major mobile operators. Thus, communication engineers have the monumental task
of designing future cellular networks that are able to deliver unprecedented data
rates. From a historical perspective, the increase in data rates for cellular systems
over the last decades, can be broken down into three major categories [DHL+11]:

A1) increases in spectral efficiency

A2) exploiting more spectrum

A3) gains from higher densification

We underline the fact that the above categorization is exactly mirrored in the 5G
system requirements.

The EU project METIS is one of the few efforts offering insights into the possible
requirements of 5G systems [MET14]: concepts such as goals for 5G systems, as well
as the most common test cases (each relating to specific aspects of 5G systems), are
clearly defined. From the perspective of this thesis, the focus is one on test cases
relating to ultra-dense networks, as well as the goals concerned with increasing
data-rates.

5G Goals:

o 1000x data volume

o 10-100x user data rate

o 10-100x number of devices

o 10-longer battery life

o 5x reduced end-to-end latency

Test cases related to ultra-dense net-
works:

o Virtual reality office

o Dense urban information society

o Shopping mall

o Stadium

o Open air festival

The project is clear on the mapping between the above test cases, and the ‘10-
100x user data rate’ goal: this is achieved via densification, improved efficiency and
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new spectrum opportunities [MET14]. Note that this exactly corresponds to the
above categorization, A1)-A3).

That being said, in this thesis, we attempt to address all three, wherein each
part of the thesis will aim at addressing one of the above paradigms. Moreover, the
individual parts will be essentially self-contained.

1.2.1 Part I: Exploiting more spectrum via Millimeter-wave
Communication

Communication in the millimeter-wave band is one of the most promising solutions
to the ever increasing demand for higher data rates. Such system are extremely
attractive from that aspect, since they promise to deliver at least 10 times more
spectrum (up to 200 times) over cellular systems in conventional bands [RSM+13].
Thus, one can see how mmWave communication with MIMO capabilities, is an en-
abler for multi-Gpbs speeds, required for 5G systems. Firstly, note that at mmWave
frequencies, the required size and spacing of antennas is quite small. In addition to
the orders-of-magnitude larger spectrum, the many transmit and receive antennas,
operating at mmWave frequencies, result in arrays with larger number of antennas,
and narrow beams. This is turns leads to reduced interference, high array gain at
the transmitter and receiver (due many antennas), and better spectrum reuse (due
to high pathloss).

In the scope of 5G systems, there is no specific allocation of spectrum for
mmWave bands, yet. However, there are several strong candidates:1

(B1) 28 GHz: bandwidth of 1.3 GHz

(B2) 39 GHz: bandwidth of 1.4 GHz

(B3) 37 and 42 GHz: bandwidth of 2.1 GHz

(B4) 71− 76 and 81− 86 GHz: bandwidth of 10 GHz

In conjunction with MIMO transmission, its is envisioned that spatial multiplexing
will be used in (B1), (B2) and (B3), while beamforming will be used in (B4). With
that in mind, this thesis will provide insights for future standardization effort about
mmWave communication systems, for both 5G systems and IEEE 802.11ad (Gbps
WLAN).

However, MIMO communication in the millimeter-wave band comes with several
inherent challenges - that are in part addressed in this thesis (Part I), namely, the
high pathloss attenuation, channel modeling, channel estimation, precoder design,
etc. The latter topics are still active areas of mmWave research.The background
and motivation for mmWave MIMO systems are discussed at length, in Chap. 2.

1Based on the following presentation: Robert Heath - “Millimeter-wave MIMO as the future
of 5G”, 2015
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1.2.2 Part II: Increasing spectral efficiency via Distributed
Coordination

It has been known for the past years that coordination in cellular systems, results
in increased spectral efficiency. From a theoretical perspective, concepts such In-
terference Alignment [CJ08], Coordinated Multi-point (CoMP) [GHH+10], as well
as their numerous variants, are known to increase the spectral efficiency: in fact,
in some specific scenarios, they are known to achieve theoretic bounds. However,
several approaches that fall under that category require significant overhead, e.g.
global CSI at the BSs, thereby making them unfit for operating in cellular net-
works. Thus, in this thesis, we advocate coordination via distributed algorithms,
where each BS/MS is only required to have local CSI. While this has been a signifi-
cant area of research, the entirety of the proposed approaches have paid little-to-no
attention to the high associated communication overhead. That being said, a ma-
jor contribution of Part II in this thesis is to proposing algorithms with improved
convergence properties.

Distributed multi-cellular coordination in LTE standards is known under the
name of Coordinated Multi-point (CoMP). It essentially consists of several base
stations sharing CSI of their respective users (and potentially data of users to be
served) to manage interference - a thorough description of the mechanism behind
CoMP is done in Chapter 4.1.1. Moreover, since CoMP is operating in the context
of cellular networks there is a stringent requirement on the communication overhead
associated with the exchange of CSI (and potentially data): the size of the required
backhaul link (among different BSs) grows accordingly. In view of mitigating the
need for explicit exchange of CSI over a dedicated backhaul link, algorithms for
distributed CSI acquisition are generally considered instead. This is detailed in
Chap. 4.3.2.

CoMP is incorporated as an integral part of LTE Advanced as an effective
mechanism for dynamic coordination of transmission and reception over a multiple
base stations: it results in improved overall quality for the user, as well as better
utilization of the network. CoMP was also included as a vital component in 3rd
Generation Partnership Project (3GPP). CoMP-like ideas, i.e., coordination among
multiple transmit/receive nodes, are also central to other standards such as IEEE
WiMAX. With that in mind, CoMP has been identified as an essential technique for
achieving the spectral efficiency specified by 3GPP and LTE-Advanced standard.

However, the importance of CoMP is much more pronounced in future cellular
systems. Ultra-Dense Deployments (UDN) are identified as one of the most common
operation modes for 5G systems, wherein the density of access of nodes is orders
of magnitude higher than in current deployments [OBB+14]. Since interference is
known to be the bottleneck on achieving the optimal performance in such dense
settings, this inevitably raises the issue of effective management of the resulting
interference. Needless to say, CoMP-like coordination will be a critical component
in 5G systems.

We underline the fact that the framework and approaches presented in Part II
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of the thesis, have been developed as technical components (TeC) of the ‘Ad-
vanced inter-node coordination techniques’ (Task 3.2), under the project EU-FP7
METIS2020. Moreover, the aforementioned techniques have been tested and evalu-
ated (against LTE-based benchmarks), within a ‘proper’ 5G simulation setup. We
refer interested readers to [MET15], where such issues are discussed in full details.
Since the latter project is essentially a pre-draft for 5G standards, the techniques
proposed in this thesis will provide insights into the standardization of 5G systems.

1.2.3 Part III: Higher Densification via Cloud Radio Access
Networks

In the context of cellular networks, distributed optimization algorithms have been
prevalent in the last decade. However, in more recent years, there has been increas-
ing interest in the reverse side of the coin, i.e., coordination schemes of a centralized
nature. Such schemes are applied in the context of Cloud Radio Access Network:
Schemes falling under this category gather all the required CSI at one ’aggregation
node’, run the coordination algorithm in question, and propagate the results to
each base station (and user). We will investigate this approach in Part III.

From a historical perspective, the most significant fraction of the gains in data
rates are due to densification [DHL+11]: The small cells resulting from increased
levels of densification allows for higher reuse factor. Moreover, the insights gained
from CoMP [GHH+10, BJBO11] and IA [CJ08, MAMK08] show that coordina-
tion among (clusters of) base stations is a key to achieving higher sum-rate in the
network. However, in traditional cellular networks, the communication overhead as-
sociated with such techniques has been identified as a (potentially) limiting factor
of the sum-rate gains (e.g., [EALH12,EALH11,PH12,LHA13]). In contrast, due to
its inherent centralized nature, Cloud Radio Access Network (Cloud-RAN) enables
the tight coordination of antennas in a dense deployment in a rather economical
way.

1.3 Thesis Scope and Contributions

Part I: Chapters 2 and 3

Chapters 2 and 3 mainly address the problem of channel estimation and and pre-
coding for hybrid analog-digital millimeter-wave MIMO systems: while Chapter 2
focuses on studying the optimal precoder structure, under perfect CSI, Chapter 3
proposes practical algorithms for estimating the dominant subspace of the channel,
and the design of analog/digital precoders and combiners accordingly.

In Chapter 2, we motivate the hybrid precoding architecture - where both pre-
coding and combining are done in two stages, analog and digital, as the a promising
candidate for mmWave MIMO systems: it offers the best trade-off between classi-
cal fully digital solutions (that require high power consumption and complexity),
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and fully analog solutions (that are inherently limited to beamforming only). After
surveying related prior work, we characterize the optimal hybrid precoder (resp.
combiner) as the right (resp. left) singular vectors of the channel - similarly to the
conventional MIMO case. The metric under consideration is the user rate.

After characterizing the optimal precoding strategy, we tackle in Chapter 3
the problem of channel estimation and precoding in hybrid millimeter-wave MIMO
systems. For that matter, we propose a method based on the well-known Arnoldi
iteration exploiting channel reciprocity in TDD systems and the sparsity of the
channel’s eigenmodes to estimate the right (resp. left) singular subspaces of the
channel at the BS (resp. MS). We first describe the algorithm in the context of
conventional MIMO systems, and derive bounds on the estimation error in the
presence of distortions at both BS and MS. We later identify obstacles that hin-
der the application of such an algorithm to the hybrid analog-digital architecture,
and address them individually. In view of fulfilling the constraints imposed by the
hybrid analog-digital architecture, we further propose an iterative algorithm for
subspace decomposition, whereby the above estimated subspaces are approximated
by a cascade of analog and digital precoder/combiner. Finally, we evaluate the
performance of our scheme against the perfect CSI, fully digital case (i.e., an equiv-
alent conventional MIMO system), and conclude that similar performance can be
achieved, especially at medium-to-high SNR (where the performance gap is less
than 5%), however, with a drastically lower number of RF chains (∼ 4 to 8 times
less).

The contributions of the thesis for Part I are shown below.

o [GKBS16a] H. Ghauch, T. Kim, M. Bengtsson, and M. Skoglund, “Subspace
Estimation and Decomposition for Large Millimeter-Wave MIMO Systems,”
IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 528-
542, Apr. 2016

o [GBKS15] H. Ghauch, M. Bengtsson, T. Kim, and M. Skoglund, “Sub-
space estimation and decomposition for hybrid analog-digital millimeter-wave
MIMO systems,”, in 2015 IEEE 16th International Workshop on Signal Pro-
cessing Advances in Wireless Communications (SPAWC)

In addition to the above contributions, the author of the thesis also took part in the
following work, related to mmWave MIMO systems. Though not explicitly included
as contributions of the thesis, they are still related to this part.

o [CKGB16] W. M. Chan, T. Kim, H. Ghauch, and M. Bengtsson, “Subspace
estimation and hybrid precoding for wideband millimeter-wave MIMO sys-
tems”, invited paper, IEEE ASILOMAR, Nov. 2016.

o [HKG+14] J. He, T. Kim, H. Ghauch, K. Liu, and G. Wang, “Millimeter-
wave MIMO channel tracking systems”, in 2014 IEEE GLOBECOM Work-
shops(GC Workshops), 2014
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PART II: Chapter 4 , Chapter 5, and Chapter 6

In this part of the thesis, we use the so-called framework of distributed sum-utility
optimization. More specifically, Chapters 5 and Chapter 6, are special instances of
it.

We define this framework in Chapter 4 as a generic method for the (joint)
design of transmit and receive filters, in cellular network, and briefly describe its
operation. After surveying modern techniques for interference management (e.g.,
interference alignment, coordinated multi-point), we describe the so-called forward-
backward iterations - which is used in almost all distributed coordination algorithms
developed in the last decade. We argue that in the the context of cellular networks,
only a low number of forward-backward iterations can be carried out: despite the
plethora of algorithms proposed under the umbrella of forward-backward iterations,
virtually no work focused on algorithms that operate in the low-overhead regime.
In that sense, the approaches presented in Chapters 5 and 6, are special cases of the
aforementioned framework, where the aim is to design fast-converging low-overhead
algorithms for distributed network-utility maximization.

In Chapter 5, after lower bounding the sum-rate using a so-called DLT bound
(i.e., a difference of log and trace), we underline a major advantage of using such
a bound: it leads to separable convex subproblems that naturally decouple at both
the transmitters and receivers. Moreover, we derive the solution to the latter sub-
problem, that we dub non-homogeneous waterfilling (a variation on the MIMO
waterfilling solution), and underline an inherent desirable feature: its ability to
turn off streams exhibiting low-SINR, thereby greatly speeding up the convergence
of the proposed algorithm. This stream-control feature is at the basis for the fast
converging nature of the algorithm. We then show the convergence of the resulting
algorithm to a stationary point of the DLT bound (a lower bound on the sum-rate).
Finally, we rely on extensive simulations of various network configurations, to es-
tablish the superior performance of our proposed schemes, with respect to other
state-of-the-art methods.

In Chapter 6, we propose low-overhead fast-converging algorithms, using the
interference leakage as metric. For that purpose, we relax the well-known leakage
minimization problem, and then propose two different filter update structures to
solve the resulting non-convex problem: though one leads to conventional full-rank
filters, the other results in rank-deficient filters, that we exploit to gradually re-
duce the transmit and receive filter rank, and greatly speed up the convergence.
Furthermore, inspired from the decoding of turbo codes, we propose a turbo-like
structure to the algorithms, where a separate inner optimization loop is run at
each receiver, in addition to the main forward-backward iteration. In that sense,
the introduction of this turbo-like structure converts the communication overhead
required by conventional methods to computational overhead at each receiver - a
cheap resource, allowing us to achieve the desired performance, under a minimal
overhead constraint. Finally, we show through comprehensive simulations that both
proposed schemes significantly outperform the relevant benchmarks, especially for
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large system dimensions.
The contributions of the thesis for Part II are summarized below.

o [GKBS15] H. Ghauch, T. Kim, M. Bengtsson, and M. Skoglund, “Distributed
Low-overhead Schemes for Multi-streamMIMO Interference Channels,” IEEE
Transactions on Signal Processing, vol. 63 no. 7, pp. 1737-1749, April 2015

o [GKBS16b] H. Ghauch, T. Kim, M. Bengtsson, and M. Skoglund, “Sepa-
rability and Sum-rate Maximization in MIMO Interfering Networks,” IEEE
Transactions on Signal and Information Processing over Networks (in revi-
sion, submitted Jun 2016) ,

In addition to the above contributions, the author of the thesis also took part in
the following works, relating to distributed coordination. Though not explicitly
included as contributions of the thesis, they are still related to this part.

o [GMBS15] H. Ghauch, R. Mochaourab, M. Bengtsson, and M. Skoglund,
“Distributed precoding and user selection in MIMO interfering networks,” in
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
2015

o [MBGB15] R. Mochaourab, R. Brandt, H. Ghauch, and M. Bengtsson, “Overhead-
aware distributed CSI selection in the MIMO interference channel,”, in 23rd
European Signal Processing Conference (EUSIPCO), 2015

Part III: Chapter 7 and Chapter 8

Part III addresses the problem of coordination in cellular networks, from the oppo-
site perspective as that of Part II, by looking at centralized coordination in general,
i.e., Cloud-RAN. More specifically, in Chapter 7, we introduce the so-called Antenna
Domain Formation problem, focusing on its theoretical aspects.

In Chapter 7, we motivate the densification paradigm in cellular networks as the
one that has brought about most gains in data rates. We then argue that Cloud-
RAN is a promising candidate architecture that aims at effectively managing the
densely deployed remote radio-heads in an economical way: sets of coordinating
radio-heads are thus connected to a central aggregation node, and dubbed as an
antenna domain. Each aggregation node gathers all the CSI and/or data, performs
the required processing (e.g., computing precoder at each radio-head), and prop-
agates the resulting setting to individual radio-heads. We motivate the so-called
Antenna Domain Formation (ADF) problem, as the optimal assignment of users
to antenna domains, in Cloud-RAN systems, and formulate it as an integer opti-
mization problem.

After formulating the ADF problem, we focus in Chapter 8 on theoretical as-
pects of the problem, namely, finding lower bounds on the interference leakage in
the network. We first propose a simple iterative algorithm for obtaining a solution.
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Then, motivated by the lack of optimality guarantees on such solutions, we opt
to find lower bounds on the problem, and the resulting interference leakage in the
network, by deriving two different ones: The Dantzig-Wolfe decomposition corre-
sponding to the ADF problem, and the dual problem. Moreover, we show that the
former offers a tighter bound than the latter. We highlight the fact that the bounds
in question consist of linear problems with an exponential number of variables in
the total number of users, and adapt known methods aimed at solving them. In
addition to shedding light on the tightness of the bounds in question, our numeri-
cal results show sum-rate gains of at least 200%, over a simple benchmark, in the
medium SNR region.

The contributions of the thesis for Part III are shown below.

o [GRI+16] H. Ghauch, M. Mahboob Ur Rahman, S. Imtiaz, J. Gross, M.
Skoglund, and C. Qvarfordt “Performance Bounds for Antenna Domain Sys-
tem,” IEEE Transactions on Wireless Communications (submitted, Jun 2016)

o [GRIG16] H. Ghauch, M. Mahboob Ur Rahman, S. Imtiaz, J. Gross, “Coor-
dination and Antenna Domain Formation in Cloud RAN systems,” in 2016
IEEE International Conference on Communication (ICC)

In addition to the above contributions, the author of the thesis also took part in the
following works, that fall under the umbrella of centralized coordination. Though
not explicitly included as contributions of the thesis, they are still related to this
part.

o [RGIG15] M. Mahboob Ur Rahman, H. Ghauch, S. Imtiaz, J. Gross, “RRH
clustering and transmit precoding for interference-limited 5G CRAN down-
link,” in 2015 IEEE GLOBECOM Workshops(GC Workshops), 2014

o [GP11] H. Ghauch and C.B. Papadias, “Interference alignment: A one-sided
approach,” in 2011 IEEE Global Communications Conference (GLOBECOM
2011)

o [GKBS13] H. Ghauch, T. Kim, M. Bengtsson, and M. Skoglund, “Interference
alignment via controlled perturbations,” in 2013 IEEE Global Communica-
tions Conference (GLOBECOM 2013)
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Millimeter-Wave MIMO systems
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Chapter 2

Optimal Precoding in Hybrid
MIMO systems

Millimetre wave (mmW) communication systems have the distinct advan-
tage of exploiting the huge amounts of unused (and possibly unlicensed)
spectrum in those bands - around 200 times more than conventional cel-

lular systems 1. Moreover, the corresponding antennae size and spacing become
small enough, such that tens-to-hundreds of antennas can be fitted on conventional
hand-held devices, thereby enabling gigabit-per-second communication. However,
the large number of radio frequency (RF) chains required to drive the increas-
ing number of antennas, inevitably incurs a tremendous increase in power con-
sumption (namely by the analog-to-digital converters), as well as added hardware
cost. One elegant and promising solution to remedy this inherent problem is to
offload part of the precoding/processing to the analog domain, via analog precod-
ing (resp.combining), i.e., a network of phase shifters to linearly process the signal
at the BS (resp. MS). The system model under consideration in shown Fig. 2.1.
This so-called problem of analog and digital co-design for beamforming and pre-
coding in low-frequency regime was first investigated in [ZMK05, VvdV10]. This
architecture was later studied within the context of higher frequency (mmWave)
systems in [EARAS+14, AEALH14, NBH10] - under the name of hybrid precod-
ing/architecture - for the precoding problem. A similar setup for the case of beam-
forming was considered in [TPA11,WLP+09,HKL+13].

The hybrid analog-digital architecture has several salient features.

o Highly directional channels and propagation. Thus, the channel consists of a
relatively small number of paths, and beamforming is highly selective.

o Severe attenuation due to the atmospheric absorption peak at 60 GHz, is an
inherent feature for mmWave communication systems. In the the hybrid archi-
tecture, the severe pathloss is mitigated by having large number of transmit

1 Early results on the design of communication systems in the millimetre wave (mmW) spec-
trum date back to [OMM+00,OMI+03], but have started receiving growing interest over the past
few years.
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and receive antennas: thus one can achieve high enough array gain to com-
pensate for the small signal power due to attenuation.

o High number of transmit/receive antennas is facilitated in the hybrid archi-
tecture. This is due to the fact that antenna sizes at 60 GHz are quite small.
Moreover, in contrast to conventional MIMO systems, the number of required
analog-to-digital converters is a fraction of the number of transmit/receive
antennas. Thus, the resulting power consumption is not a limiting factor for
scaling up the number of antennas.

Several fundamental challenges have to resolved before any of the promised gains
can be harnessed.

o Channel estimation for the (large) mmWave MIMO channel is one of the ma-
jor obstacles. We underline the fact that classical training schemes developed
for MIMO systems are not applicable to the hybrid analog-digital architec-
ture, since the resulting overhead would be tremendously high (discussed in
detail in Remark 3.5). While few works focused on the channel estimation,
authors in [WLP+09,HKL+13,AEALH14] proposed schemes based on sound-
ing of hierarchical codebooks. Moreover, in [GBKS15,GKBS16a], we proposed
algorithms that estimate the dominant subspace of the channel, using the well
known Arnoldi Iteration.

o Hybrid precoding, wherein the analog/digital precoder and combiner are de-
signed based on the channel. Variations on the well-known Orthogonal Match-
ing Pursuit (OMP) were proposed in [EARAS+14,AHAS+12,MRRGPH15],
where the columns of the analog precoder / combiner are greedily designed.
The authors in [SY15a] obtained upper and lower bounds on the minimum
number of transmit and receive RF chains that are required to realize the
theoretical capacity. Later on, designs based on heuristics for maximizing
the rate, were proposed in [SY15b] initially, and later extended in [SY16],
where the authors show optimality if the number of data streams in equal
to the number of RF chains. Finally, in our work [GBKS15,GKBS16a], we
approximated the optimal precoder/combiner by proposed methods based on
Block-Coordinated Descent.

o Open problems in (hybrid) mmWave MIMO systems include (but not limited
to), the widespread adoption of a statistical channel model (i.e., the analog of
Rayleigh fading in conventional MIMO). Moreover, research on fundamental
aspects of hybrid MIMO systems, i.e., channel capacity and achievable rates,
is still not present.

Our work in this thesis falls under both channel estimation, and hybrid pre-
coding. After a series of approximations to the mutual information, and taking
into account precoding (excluding the receive combiners), [EARAS+14] derived an



2.1. System Model 23

optimality condition relating the analog and digital precoders to the optimal un-
constrained precoder (i.e., the right singular vectors of the channel), by assuming
full channel state information (CSI) at both the BS and MS. This assumption was
later relaxed in [AEALH14] where an algorithm for estimating the dominant prop-
agation paths was proposed, based on the previously proposed concept of hierarchi-
cal codebooks sounding in [WLP+09,HKL+13]. However, the algorithm requires a
priori knowledge of the number of propagation paths (i.e. the propagation environ-
ment), its performance is affected by the sparsity level of the channel, and exhibits
relatively elevated complexity. Finally, it appears rather inefficient to estimate the
entire channel, while only a few eigenmodes are needed for transmission: this is par-
ticularly relevant in mmWave MIMO channels, since the majority of eigenmodes
have negligible power.

In this chapter, we characterize the optimal precoding strategy for a single user
hybrid analog-digital MIMO link (assuming perfect CSI at the transmitter and
receiver): it is aligned with the dominant subspace of the MIMO channel. The ap-
proach we present here attempts to address the above limitations (presented in the
next chapter). The proposed algorithm is based on the well known Arnoldi Iter-
ation, exploits channel reciprocity inherent in TDD MIMO systems to gradually
build an orthonormal basis for the corresponding Krylov subspace, and directly
estimates the dominant left / right singular modes of the channel, rather than the
entire channel. We then propose an iterative method for subspace decomposition,
to approximate the estimated right (resp. left) singular subspace by a cascade of
analog and digital precoder (resp. combiner), while taking into account the hard-
ware constraints of this so-called hybrid analog-digital architecture. The subspace
estimation (SE) algorithm is based on BS-initiated echoing, whereby the BS sends
along some beamforming vector, and the MS echoes its received signal back to the
BS (using amplify-and-forward), thereby enabling the BS to obtain an estimate of
the effective uplink-downlink channel. We first detail the algorithm in the context of
conventional MIMO, taking into account distortions in the the system (e.g., noise,
or other disturbances), derive bounds on the estimation error, and highlight its de-
sirable features. We then adapt its structure, to fit the many operational constraints
dictated by the hybrid analog-digital architecture. While we feel that aspects such
as complexity, overhead and numerical stability are best left for future works, we
do shed light on each of them.

2.1 System Model

2.1.1 Channel Model

We adopt the prevalent physical representation of sparse mmWave channels adopted
in the literature, e.g., [AEALH14,EARAS+14], where only L scatterers are assumed
to contribute to the received signal at the MS - an inherent property of the poor
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Figure 2.1: Hybrid Analog-Digital MIMO system architecture

scattering nature in mmWave channels,

HHH =
√
MN

L

L∑
i=1

βi aaar(χ(r)
i )aaa†t(χ

(t)
i ) (2.1.1)

where χ(r)
i and χ

(t)
i are angles of arrival at the MS, and angles of departure at

the BS (AoA/AoD) of the ith path, respectively (both assumed to be uniform over
[−π/2, π/2]), βi is the complex gain of the ith path such that βi ∼ CN (0, 1), ∀i.
Finally, aaar(χ(r)

i ) and aaat(χ(t)
i ) are the array response vectors at both the MS and

BS, respectively. For simplicity, we will use uniform linear arrays (ULAs), where
we assume that the inter-element spacing is equal to half of the wavelength. We
also assume a TDD system, where channel reciprocity holds. Finally, we denote the
SVD of HHH as,

HHH =
[
ΦΦΦ1, ΦΦΦ2

] [ΣΣΣ1 000
000 ΣΣΣ2

][
ΓΓΓ†1
ΓΓΓ†2

]
= ΦΦΦ1ΣΣΣ1ΓΓΓ†1 + ΦΦΦ2ΣΣΣ2ΓΓΓ†2 (2.1.2)

where ΓΓΓ1 ∈ CM×d and ΦΦΦ1 ∈ CN×d are semi-unitary, and ΣΣΣ1 = diag(σ1, ..., σd) is
diagonal with the d largest singular values of HHH (in decreasing order).

2.1.2 Signal Model
We assume a single user MIMO system withM and N antennas at the BS and MS,
respectively, where each is equipped with r RF chains, and sends d independent
data streams (where we assume that d ≤ r ≤ min(M,N)). The downlink (DL)
received signal at the MS is given by,

yyy(r) = HHHFFFGGGxxx(t) +nnn(r) (2.1.3)

where HHH ∈ CN×M is the complex channel - assumed to be slowly block-fading,
FFF ∈ CM×r is the analog precoder, GGG ∈ Cr×d the digital precoder, yyy(r) the N -
dimensional signal at the MS antennas, xxx(t) is the d-dimensional transmit signal (at
the BS) with covariance matrix E[xxx(t)xxx(t)† ] = IIId and nnn(r) is the AWGN noise at the



2.2. Performance Metrics 25

MS, with E[nnn(r)nnn(r)† ] = σ2
(r)IIIN . Note that (t) and (r) subscripts/superscripts denote

quantities at the BS and MS, respectively. Both the analog precoder and combiner
are constrained to have constant modulus elements (since the latter represent phase
shifters), i.e., FFF ∈ SM,r and WWW ∈ SN,r (also referred to as the constant-modulus or
constant-envelope constraint). We adopt a total power constraint on the effective
precoder, i.e., ‖FFFGGG‖2F ≤ d, a widespread one in the hybrid analog-digital precoding
literature [EARAS+14,AEALH14].

With that in mind, the received signal after filtering in the DL is given as,

x̃xx(r) = UUU†WWW †yyy(r) = UUU†WWW †HHHFFFGGGxxx(t) +UUU†WWW †nnn(r) (2.1.4)

whereWWW ∈ CN×r and UUU ∈ Cr×d are the analog and digital combiners, respectively.
Similarly, exploiting channel reciprocity, the uplink received signal is given by

ỹyy(t) = GGG†FFF †HHH†WWWUUUxxx(r) +GGG†FFF †nnn(t) (2.1.5)

where ỹyy(t) is the d-dimensional signal at the BS after linear filter, and nnn(t) is the
AWGN noise at the BS, such that E[nnn(t)nnn(t)† ] = σ2

(t)IIIM .
We highlight the main assumptions for this part of the thesis.

Assumption 2.1.1 (No CSI). No a priori channel information is assumed. Rather,
the subspaces in question, have to be estimated first. Φ̃ΦΦ1 ≈ ΦΦΦ1 at the MS, and
Γ̃ΓΓ1 ≈ ΓΓΓ1 at the BS.

Assumption 2.1.2 (Slow block-fading channel). The channel coherence time is
assumed to be large enough, to make the estimation possible, e.g., low-mobility
scenarios.

Assumption 2.1.3 (Channel Reciprocity). We assume a TDD system where the
hardware between transmitter and receiver is accurately calibrated, such that chan-
nel reciprocity holds

Assumption 2.1.4 (Decoding). Joint encoding and decoding of each user’s desired
streams in assumed, and interference is treated as noise.

Problem Statement: The main goal for this part of the thesis is to firstly estimate
the dominant left / right subspaces, i.e., obtain Φ̃ΦΦ1 ≈ ΦΦΦ1 at the MS, and Γ̃ΓΓ1 ≈ ΓΓΓ1 at
the BS. We then wish to find the analog/digital precoder that best approximates Γ̃ΓΓ1,
as well as analog/digital combiner that best approximates Φ̃ΦΦ1, i.e., by solving (2.2.3).

2.2 Performance Metrics

We use the following expression as a performance metric (i.e., the “user-rate” cor-
responding to a given choice of precoders and combiners),

R = log2

∣∣∣IIId +HHHeHHH
†
e(σ2

(r)UUU
†WWW †WWWUUU)−1

∣∣∣ (2.2.1)
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where HHHe = UUU†WWW †HHHFFFGGG, 1
σ2

(r)
, SNR is the signal-to-noise ratio. Moreover we

assume, for simplicity, that uniform power allocation is performed (no waterfilling),
keeping in mind that a power allocation matrix ΛΛΛ can be easily incorporated in
the expression. Although not directly optimized, the above expression was used
in [EARAS+14], within the context of hybrid analog-digital precoding.

Remark 2.1 (Achievable rates). Note that the value of the expression in (2.2.1) is
related to achievable rates over the considered hybrid analog-digital MIMO link; in
particular R becomes an achievable rate in the scenario that both the BS and MS
are provided perfect knowledge ofHHH. Moreover, to the best of our knowledge, there
is no work that attempted to investigate achievable rates for hybrid analog-digital
MIMO systems, namely due to the lack of a prevalent statistical channel model for
such channels. With that in mind, the aim is to present an approach to maximizing
the metric R defined in (2.2.1). However, the value of the objective function is not
necessarily an achievable rate for our system. That being said, optimizing similar
expressions related to achievable rates has been proved to give good results in
previous work on transmission with partial CSI [BB11]. Since any rate achievable
with partial CSI, cannot be larger than the corresponding rate achievable with
perfect CSI, this criterion always provides an upper bound on the achievable rates
in our system. Hence, in our approach, if the proposed algorithms result in values
for R that are closing in on the perfect CSI upper bound, then the scheme is
performing optimally (in the sense of achievable rates). Thus, the optimal precoding
characterization that we provide is contingent on R being achievable.

Using Hadamard’s inequality, it can be easily verified that the optimalFFF ,GGG,WWW,UUU
that maximize R in (2.2.1), are the ones that diagonalize the effective channel HHHe.
This is formalized below.

Proposition 2.2.1. Assuming uniform power allocation, the optimal FFF ,GGG,WWW,UUU
that maximize R in (2.2.1), diagonalize the effective channel HHHe, and satisfy FFFGGG =
ΓΓΓ1 and WWWUUU = ΦΦΦ1. Moreover, the resulting maximum rate is given by,

R? , max R(FFF ,GGG,WWW,UUU) = log2
∣∣IIId + SNR ΣΣΣ2

1
∣∣ (2.2.2)

Proof. Refer to Appendix 2.3.1

With that in mind, we propose to tackle the following problem,

(FFF ?,GGG?) =

min
FFF, GGG

‖ΓΓΓ1 −FFFGGG‖2F
s. t. ‖FFFGGG‖2F ≤ d, FFF ∈ SM,d

(WWW ?,UUU?) =

min
WWW, UUU

‖ΦΦΦ1 −WWWUUU‖2F
s. t. WWW ∈ SN,d

(2.2.3)
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The above design criterion has been quite prevalent in earlier works relating to the
hybrid analog-digital architecture, and applied rather successfully in [AHAS+12,
EARAS+14,MRRGPH15,AEALH14]. After a series of approximations to the mu-
tual information in [EARAS+14], it was shown that the optimal precoders, FFF ,GGG,
are formulated in exactly the same fashion as above (though their formulation did
not include receive combining).

In a nutshell, (2.2.3) boils down to finding FFFGGG (resp.WWWUUU) that “best” approxi-
mate ΓΓΓ1 (resp. ΦΦΦ1). Moreover, if there exists optimal precoders and combiners that
make the distances in (2.2.3) zero, then they must satisfy

FFF ?GGG? = ΓΓΓ1, WWW ?UUU? = ΦΦΦ1.

We denote by R? the resulting “user-rate” that is obtained by plugging in the above
precoders/combiners in (2.2.1). Then R? can be expressed as,

R? , R(FFF ?,GGG?,WWW ?,UUU?) = log2
∣∣IIId + SNR ΣΣΣ2

1
∣∣ (2.2.4)

Following the above discussion on the achievability of R, R? is the maximum achiev-
able rate over the precoders and combiners, when HHH is known to both BS and MS.
We underline the fact that R in (2.2.1) depends on the subspace spanned by the
precoders / combiners, rather than the Euclidean distance between the right/left
dominant subspace and the precoder/combiner, i.e., (2.2.3). However, optimizing
metrics that involve span or chordal distances, is not straightforward. We thus em-
phasize that attempts at directly maximizing R in (2.2.1) are outside the scope of
this work: rather, the focus is put on proposing mechanisms for subspace estimation
and decomposition, and analyzing their performance.
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2.3 Appendix

2.3.1 Proof of Proposition 2.2.1
Letting ZZZ = HHHeHHH

†
e(σ2

(r)UUU
†WWW †WWWUUU)−1 and applying Hadamard’s Inequality to R

in (2.2.1) yields,

log2 |IIId +ZZZ| ≤ log2

d∏
i=1

(1 + [ZZZ]ii), (2.3.1)

where the bound is achieved for ZZZ diagonal. Moreover,

ZZZ diagonal ⇐
{
HHHeHHH

†
e diagonal

UUU†WWW †WWWUUU diagonal

⇐

{
HHHe = UUU†WWW †HHHFFFGGG diagonal
WWWUUU has orthonormal columns

⇐

{
FFFGGG = ΓΓΓ1

WWWUUU = ΦΦΦ1

Plugging in the above choice of precoders / combiners in the upper bound in (2.3.1)
yields,

R? = log2

d∏
i=1

(
1 + λi[HHHeHHH

†
e(σ2

(r)UUU
†WWW †WWWUUU)−1]

)
= log2

d∏
i=1

(
1 + λi[HHHeHHH

†
e]/σ2

(r)

)
= log2

d∏
i=1

(
1 + σ2

i [HHH]/σ2
(r)

)
= log2 |IIId + SNR ΣΣΣ2

1|



Chapter 3

Subspace Estimation and
Decomposition

In this chapter we propose a method (based on the well-known Arnoldi iteration)
exploiting channel reciprocity in TDD systems and the sparsity of the channel’s
eigenmodes, to estimate the right (resp. left) singular subspaces of the chan-

nel, at the BS (resp. MS), i.e., ΓΓΓ1 and ΦΦΦ. We first describe the algorithm in the
context of conventional MIMO systems, and derive bounds on the estimation error
in the presence of distortions at both BS and MS. We later identify obstacles that
hinder the application of such an algorithm to the hybrid analog-digital architec-
ture, and address them individually. In view of fulfilling the constraints imposed
by the hybrid analog-digital architecture, we further propose an iterative algorithm
for subspace decomposition, whereby the above estimated subspaces, are approxi-
mated by a cascade of analog and digital precoder/combiner. Finally, we evaluate
the performance of our scheme against the perfect CSI, fully digital case (i.e., an
equivalent conventional MIMO system), and conclude that similar performance can
be achieved, especially at medium-to-high SNR (where the performance gap is less
than 5%), however, with a drastically lower number of RF chains (∼ 4 to 8 times
less). Moreover, note that our proposed technique encompasses both beamforming
and precoding, i.e., it does not depend on the number of streams.

In addition to the notation defined in Chapter 1, we let ÛUU = qr(UUU) denote the
semi-unitary matrix returned by the QR algorithm, with UUU†UUU = III. and

Sp,q =
{
XXX ∈ Cp×q | |XXXij | = 1/√p , ∀(i, k) ∈ {p} × {q}

}
.

3.1 Motivation

In the previous chapter, we have identified the optimal transmission for the consid-
ered hybrid MIMO link, as the one along the dominant singular subspaces of the
channel, i.e. ΓΓΓ1 and ΦΦΦ1. However, since we assume that no channel information is
available at neither the BS, nor the MS, our aim in this chapter is to firstly obtain
an estimate of the subspaces in question, i.e. Φ̃ΦΦ1 ≈ ΦΦΦ1 at the MS, and Γ̃ΓΓ1 ≈ ΓΓΓ1 at

29
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the BS. We then propose methods that optimize the precoders and combiners to
accurately approximate the estimated subspaces, by providing means to solve prob-
lems such as ‖Γ̃ΓΓ1 − FFFGGG‖2F and ‖Φ̃ΦΦ1 −WWWUUU‖2F (while taking into consideration the
constraints inherent to the hybrid analog-digital architecture).

3.2 Eigenvalue Algorithms and Subspace Estimation

3.2.1 Subspace Estimation vs. Channel Estimation
The aim of subspace estimation (SE) methods in MIMO systems is to estimate
a predetermined low-dimensional subspace of the channel, required for transmis-
sion. We illustrate this in the context of conventional MIMO systems, i.e., where
precoders/combiners are fully digital. For the sake of exposition, we start with a
simple toy example, where noiseless single-stream transmission is assumed (and ig-
noring any physical constraints). The BS selects a random unit-norm beamforming
vector, ppp1, and then sends ppp1x

(t), where x(t) = 1. The received signal, qqq1 = HHHppp1,
is echoed back to the BS (in effect, this implies that the signal is complex con-
jugated before being sent), in an Amplify-and-Forward (A-F) like fashion.1 Then,
exploiting channel reciprocity, the received signal at the BS is first normalized, i.e.,
ppp2 = HHH†qqq1/‖HHH

†qqq1‖2 = HHH†HHHppp1/‖HHH
†HHHppp1‖2, and then echoed back to the MS. This

simple procedure is done iteratively, and the resulting sequences {pppl} at the BS,
and {qqql} at the MS, are defined as follows,

pppl+1 = HHH†HHHpppl/‖HHH
†HHHpppl‖2; qqql+1 = HHHpppl (3.2.1)

It was noted in [DCG04] that using the Power Method (PM), one can show that
as l → ∞, pppl → γγγ1 and qqql → σ1φφφ1, implying that this seemingly simple “ad-
hoc” procedure will converge to the maximum eigenmode transmission. The authors
of [DCG04] also generalized the latter method to multistream transmission, i.e., by
estimating ΓΓΓ1 and ΦΦΦ1, using the Orthogonal/Subspace Iteration (which was dubbed
Two-way QR (TQR) in [DCG04,DPCG07]).

We note that SE schemes such as the ones described above, offer the following
distinct advantage over classical pilot-based channel estimation: in spite of the large
number of transmit and receive antennas, SE methods can estimate the dominant
left/right singular subspaces with a relatively low communication overhead, when
the latter have small dimension (relative to the channel dimensions). Consequently,
subspace estimation is much more efficient than channel estimation, especially in
large low-rank MIMO systems such as mmWave channels (because the latter esti-
mates the dominant low-dimensional subspace instead of the whole channel). For
the reason above, our proposed algorithm falls under the umbrella of SE methods.
We first describe this algorithm in the context of “classical” MIMO systems, and
later adapt it to the hybrid analog-digital architecture.

1This mechanism for MIMO subspace estimation, where the MS echoes back the transmitted
signal using A-F, was first reported in [DCG04].
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Set m (m ≤M); qqq1 = random unit-norm ; QQQ = [qqq1]
for l = 1, 2, ...,m do

1.a pppl = AAAqqql
1.b tk,l = qqq†kpppl, k = 1, . . . , l
2. rrrl = pppl −

∑l
k=1 tk,lqqqk

3. tl+1,l = ‖rrrl‖2 ; if (tl+1,l = 0) stop
4. QQQ = [QQQ, qqql+1 = rrrl/tl+1,l]

end for

Table 3.1: Arnoldi Procedure

3.2.2 Arnoldi Iteration for Subspace Estimation
Despite the fact that Krylov subspace methods (such as the Arnoldi and Lanczos
Iterations for symmetric matrices) are among the most common methods for eigen-
value problems [Wat07], their use in the area of channel/subspace estimation is
limited to equalization for doubly selective OFDM channels [HDMF10], and chan-
nel estimation in CDMA systems [TO02]. Algorithms falling into that category
iteratively build a basis for the Krylov subspace, Km = span{xxx,AAAxxx, ...,AAAm−1xxx},
one vector at a time. We use one of many variants of the so-called Arnoldi Iter-
ation/Procedure, and a simplified version of the latter is shown in Table 3.1 (as
presented in [Saa11]). The algorithm returns QQQm = [qqq1, . . . , qqqm] ∈ CM×m and an
upper Hessenberg matrix TTTm ∈ Cm×m, such that

QQQ†mAAAQQQm = TTTm, QQQ
†
mQQQm = IIIm.

It can be shown that the algorithm iteratively builds QQQm, an orthonormal basis for
Km (when roundoff errors are neglected), and that QQQ†mAAAQQQm = TTTm. We then say
that the eigenvalues/eigenvectors of TTTm are called Ritz eigenvalues/eigenvectors,
and approximate the eigenvalues/eigenvectors ofAAA. The main idea behind processes
such as the Arnoldi (and Lanczos) is to find the dominant eigenpairs ofAAA, by finding
the eigenpairs of TTTm.

We note that the Arnoldi algorithm is a generalization of the Lanczos algorithm
for the non-symmetric case, i.e., the latter is specifically tailored for cases where
AAA � 000 (this is clearly the case in this work, since AAA = HHH†HHH ). This being said, the
reason for not using the Lanczos iteration is that in practice, noise that is inherent
to the echoing process, makes the Lanczos algorithm not applicable: namely, the
requirement that TTTm is tridiagonal, is violated.

Our goal in this section is to first apply the above algorithm to estimate the d
largest eigenvectors ofAAA = HHH†HHH at the BS (which are exactly ΓΓΓ1), by implementing
a distributed version of the Arnoldi process, that exploits the channel reciprocity
inherent to TDD systems. Moreover, we extend the original formulation of the algo-
rithm to incorporate a distortion variable (representing noise, or other distortions,
as will be done later).
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It becomes clear at this stage, that the BS requires knowledge of the sequence
{HHH†HHHqqql}ml=1, needed for the matrix-vector product in step 1 (Table 3.1): the latter
can be accomplished by obtaining an estimate pppl, ofHHH

†HHHqqql, l ∈ {m}. Without any
explicit CSI at neither the BS nor the MS, we exploit the reciprocity of the medium
to obtain such an estimate, via BS-initiated echoing: the BS sends qqql over the DL
channel, the MS echoes back the received signal in an A-F like fashion, over the
uplink (UL) channel (following the process proposed in [WTW08], and detailed in
Sect. 3.2.1), i.e.,

DL : sssl = HHHqqql +www
(r)
l

UL : pppl = HHH†sssl +www
(t)
l = HHH†HHHqqql +HHH†www

(r)
l +www

(t)
l

= HHH†HHHqqql + w̃wwl (3.2.2)

where sssl is the received signal in the DL, www(t)
l and www(r)

l are distortions at the BS
and MS, respectively (representing noise for example).

After the echoing phase, the BS has an estimate, pppl, ofHHH
†HHHqqql, as seen from (3.2.2).

The remainder of the algorithm follows the conventional Arnoldi Iteration, and is
shown in the Subspace Estimation using Arnoldi (SE-ARN) procedure (Table 3.2).
In addition to TTTm at the output of the algorithm, we define the matrices, T̃TTm, W̃WWm

and ẼEEm, as follows,

[T̃TTm]i,l =


qqq†iHHH

†HHHqqql, if l ≤ m, ∀i ≤ l
‖rrrl‖2, if l < m, i = l + 1
0, otherwise

W̃WWm = [w̃ww1, ..., w̃wwm], ẼEEm = [QQQ†mW̃WWm]SL (3.2.3)

where rrrl is given in Step 2.b (Table 3.2). Note that similarly to the conventional
Arnoldi Iteration, T̃TTm is an the upper Hessenberg matrix. It then follows from the
above definitions that

TTTm = T̃TTm + [QQQ†mW̃WWm]U . (3.2.4)

This can be easily verified by plugging in Step 1.b into 2.a in Table 3.2.
At the output of the SE-ARN procedure, the dominant eigenpairs of HHH†HHH are

approximated by those of TTTm as follows. Let TTTm = Θ̃ΘΘΛ̃ΛΛΘ̃ΘΘ−1 be eigenvalue decompo-
sition of TTTm, where Θ̃ΘΘ is the (possibly non-orthonormal) set of eigenvectors. Then,
it can easily be shown that Γ̃ΓΓ1 = qr(QQQm[Θ̃ΘΘ]1:d) are the Ritz eigenvectors of HHH†HHH,
where [Θ̃ΘΘ]1:d has as columns the eigenvectors of TTTm associated with the d largest
eigenvalues (in magnitude).

Remark 3.1. To be exact, the Ritz eigenvectors do not contain any estimation
noise. That being said, we stick to this nomenclature, with a slight abuse of def-
inition. Moreover, Σ̃ΣΣ1, the Ritz eigenvalues of HHH†HHH, come for free once the Ritz
eigenvectors are obtained (Table 3.2).
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procedure Γ̃ΓΓ1, Σ̃ΣΣ1 = SE-ARN (HHH, d)
Set m (m ≤M); Random unit-norm qqq; QQQ = [qqq1]
for l = 1, 2, ...,m do

// BS-initiated echoing: estimate HHH†HHHqqql
1.a sssl = HHHqqql +www

(r)
l

1.b pppl = HHH†sssl +www
(t)
l

// Gram-Schmidt orthogonalization
2.a tk,l = qqq†kpppl ,∀ k = 1, . . . , l
2.b rrrl = pppl −

∑l
k=1 qqqktk,l

2.c tl+1,l = ‖rrrl‖2
// Update QQQ
3.a QQQ = [QQQ, qqql+1 = rrrl/tl+1,l]

end for
// Compute Γ̃ΓΓ1
TTTm = Θ̃ΘΘΛ̃ΛΛΘ̃ΘΘ−1

Γ̃ΓΓ1 = qr(QQQmΘ̃ΘΘ1:d)
[Σ̃ΣΣ1]i,i =

√
|[Λ̃ΛΛ]i,i|,∀ i

end procedure

Table 3.2: Subspace Estimation using Arnoldi Iteration (SE-ARN)

Note that the latter procedure results in the BS obtaining Γ̃ΓΓ1, and consequently
Σ̃ΣΣ1, using the so-called BS-initiated echoing. This same procedure can be applied
using MS-initiated echoing, to estimate Φ̃ΦΦ1 (i.e., the eigenvectors of HHHHHH†), at the
MS (Fig.3.1).

3.2.3 Perturbation Analysis

In what follows, we extend some of the known properties of the conventional Arnoldi
iteration, to account for the estimation error, emanating from the distortion vari-
able.

Lemma 3.2.1. For the output of the Arnoldi process the following holds,
(P1) :

QQQ†mAAAQQQm = T̃TTm − ẼEEm , CCCm, (3.2.5)

where CCCm = SSSmΛΛΛmSSS−1
m is such that [ΛΛΛ]i,i ≥ 0 and SSS−1

m = SSS†m

(P2) : Let (λ(m)
i , sss

(m)
i ) be any eigenpair of CCCm. Then (λ(m)

i , ΘΘΘ(m)
i , QQQmsss

(m)
i ) is

an approximate Ritz eigenpair for AAA. Furthermore, the approximation error is such
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Figure 3.1: Proposed algorithm for Subspace Estimation using Arnoldi Iteration,
and its resulting communication structure at BS and MS

that,

‖AAAΘΘΘ(m)
i − λ(m)

i ΘΘΘ(m)
i ‖22 ≤ c(i)m + ‖IIIM −QQQmQQQ

†
m‖2F ‖W̃WWm‖2F , (3.2.6)

where c(i)m = ([T̃TTm]m+1,m|[sss(m)
i ]m|)2.

(P3) : As m→M , ‖AAAΘΘΘ(m)
i −λ(m)

i ΘΘΘ(m)
i ‖22 → 0, implying that the eigenpairs of CCCm

perfectly approximate the eigenpairs of AAA(up to round-off errors).

Proof. The proof is shown in Appendix 3.6.1.

We underline the fact that if the distortion variable W̃WWm is zero, the above deriva-
tions reduce to the well-known results on the Arnoldi process [Saa11, Sect. 6.2].
Lemma 3.2.1 establishes the fact that each eigenpair (λ(m)

i , sss
(m)
i ) of CCCm, is asso-

ciated with one eigenpair (λ(m)
i ,ΘΘΘ(m)

i ) of AAA.Though (P3) in Lemma 3.2.1 implies
that the error in approximating the eigenpairs of AAA with those of CCCm vanishes as
m → M , our simulations will later show that very good approximations can be
obtained, even for m�M .

Thus, one might be tempted to conclude at this point, that by computing the
eigenpairs ofCCCm, one can perfectly estimate the eigenpairs ofAAA, despite the presence
of the distortion variable W̃WWm. However, the fact remains that CCCm , T̃TTm − ẼEEm
cannot be computed, mainly because ẼEEm is not known to the BS. As a result, TTTm at
the output of the Arnoldi process will be used instead to approximate the eigenpairs
of AAA. Now that we established that the eigenpairs of CCCm approximate that of AAA,
the natural question is how close are the eigenpairs of TTTm, to that of CCCm.
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For that purpose, we first show the following,

CCCm +QQQ†mW̃WWm = (T̃TTm − ẼEEm) +QQQ†mW̃WWm

= T̃TTm + (QQQ†mW̃WWm − [QQQ†mW̃WWm]SL)
= T̃TTm + [QQQ†mW̃WWm]U , TTTm (3.2.7)

where the first equality follows from the definition ofCCCm, and the last one from (3.2.4).
Thus CCCm can be viewed as the matrix in question, and PPPm ,QQQ†mW̃WWm a perturba-
tion matrix. We then apply the Bauer-Fike Theorem [GVL96, Th. 7.2.2] to bound
the difference in eigenvalues.

Lemma 3.2.2. Every eigenvalue λ̃ of TTTm = CCCm +PPPm satisfies

|λ̃− λ| ≤
√
m ‖W̃WWm‖F ,

where λ is an eigenvalue of CCCm.

Proof. Refer to Appendix 3.6.2

Summarizing thus far, Lemma 3.2.1 showed that the eigenpairs of AAA can be
approximated by the eigenvalues of CCCm, with arbitrarily small error. However, since
the latter is not available, we approximate the eigenpairs of CCCm (and consequently
of AAA) by those of TTTm, the upper Hessenberg matrix at the output of the Arnoldi
process. Finally, Lemma 3.2.2 established the fact that this approximation error, for
the eigenvalues, is upper bounded by the magnitude of the perturbation itself. We
note that the relevant “error-metric” here is the distance between the true subspace
ΓΓΓ1, and estimated subspace Γ̃ΓΓ1 ∝ QQQmΘ̃ΘΘ1:d (Table 3.2). This does suggest that the
estimation error is dependent on Θ̃ΘΘ1:d, the eigenvectors of TTTm. However, performing
a similar sensitivity analysis on the eigenvectors is much more involved, since the
sensitivity of eigenvectors generally depends on the clustering of eigenvalues.

3.3 Hybrid Analog-Digital Precoding for mmWaveMIMO
systems

In this section we turn our attention to applying the above framework for subspace
estimation and precoding, to the hybrid analog-digital architecture. As this section
will gradually reveal, several obstacles have to be overcome for that matter. We
start by presenting some preliminaries that will be used throughout this section.

3.3.1 Preliminaries: Subspace Decomposition
We will limit our discussion to the digital and analog precoder, keeping in mind
that the same applies to the digital and analog combiner. In conventional MIMO
systems, the estimates of the right and left singular subspace, Γ̃ΓΓ1 and Φ̃ΦΦ1, obtained
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using SE-ARN, can directly be used to diagonalize the channel. However, the hybrid
analog-digital architecture entails a cascade of analog and digital precoder. Thus,
Γ̃ΓΓ1 has to be decomposed into FFFGGG (hence the term Subspace Decomposition (SD)),
as follows, 

min
FFF, GGG

h0(FFF ,GGG) = ‖Γ̃ΓΓ1 −FFFGGG‖2F
s. t. h1(FFF ,GGG) = ‖FFFGGG‖2F ≤ d

FFF ∈ SM,d

(3.3.1)

We underline the fact that the authors in [EARAS+14] arrived to the same formu-
lation as (3.3.1), and proposed a variation on the well-known Orthogonal Matching
Pursuit (OMP), to tackle it. The same framework was recently extended in [MR-
RGPH15] to relax the need for dictionaries based on the array response matrix. An
alternate decomposition was proposed by [SY15b], where the optimization metric is
the user rate. Both works were published after the initial submission of our paper.

Within the context of hybrid precoding, the authors in [ZMK05] showed that
there exists (non-unique) FFF ∈ SM,r, ggg ∈ Cr×1 such that Γ̃ΓΓ1 = FFFggg, if and only if
r ≥ 2. This was extended in [MRRGPH15] where it was shown that there exists
FFF ∈ SM,r,GGG ∈ Cr×d such that Γ̃ΓΓ1 = FFFGGG, if r ≥ 2d. We note that for such cases,
the cost function in (3.3.1) is zero, and we refer to such cases as optimal decompo-
sition -whose performance we evaluate in the numerical results section: although
the aforementioned schemes use all the available RF chains for the decomposition
(and our decomposition uses a subset of the RF chains), the sum-rate performance
is actually the same.

To a certain extent, (3.3.1) is reminiscent of formulations arising from areas such
as blind source separation, (sparse) dictionary learning, and vector quantization
[XY13,AEB06]. Though there is a battery of algorithms and techniques that have
been developed to tackle such problems, the additional hardware constraint on FFF ,
i.e. FFF ∈ SM,r makes the use of such tools not possible. As a result, we will resort to
developing our own algorithm. In spite of the non-convex and non-separable nature
of the above quadratically-constrained quadratic program, we propose an iterative
method that attempts to determine an approximate solution.

Block Coordinate Descent for Subspace Decomposition

In this part, we further assume that only d of the r available RF chains are used,
i.e., FFF ∈ CM×d and GGG ∈ Cd×d (the reason for that will become clear later in this
section). The coupled nature of the objective and constraints in (3.3.1) suggests
a Block Coordinate Descent (BCD) approach. The main challenges arise from the
coupled nature of the variables in the constraint (since the latter makes convergence
claims of BCD, not possible [RHL12]), and from the hardware constraint on FFF . We
will show that a BCD approach implicitly enforces the power constraint in (3.3.1),
and consequently the latter can be dropped without changing the problem.
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Our approach consists in relaxing the hardware constraint on FFF , and then ap-
plying a Block Coordinate Descent (BCD) approach to alternately optimize FFF and
GGG (while projecting each of the obtained solutions for FFF on SM,d). For that matter,
we first define the Euclidean projection on the set SM,d in the following proposition.

Proposition 3.3.1. Let XXX ∈ CM×d be defined as [XXX]i,k = |xi,k| ejφi,k , ∀(i, k), and

YYY = ΠS [XXX] 4= argmin
UUU∈SM,d

‖UUU −XXX‖2F

denote its (unique) Euclidean projection on the set SM,d.
Then [YYY ]i,k = (1/

√
M) ejφi,k ,∀(i, k).

Proof. Refer to Appendix 3.6.4

The latter result implies that given an arbitrary FFF , finding the closest point to
FFF , lying in SM,d simply reduces to setting the magnitude of each element in FFF , to
1/
√
M .
Neglecting the constraint on FFF in (3.3.1), one can indeed show that for fixed GGG

(resp. FFF ), the resulting subproblem is convex in FFF (resp. GGG). With this in mind,
our aim is to produce a sequence of updates, {FFF k,GGGk}k such that the sequence
{h0(FFF k,GGGk)}k is non-increasing (keeping in mind that monotonicity cannot be
shown due to the coupling in the power constraint). Thus, given GGGk, each of the
updates, FFF k+1 and GGGk+1, are defined as as follows,

(J1) FFF k+1 , min
FFF

h0(FFF ) = ‖Γ̃ΓΓ1 −FFFGGGk‖2F

(J2) GGGk+1 , min
GGG

h0(GGG) = ‖Γ̃ΓΓ1 −FFF k+1GGG‖2F

Both (J1) and (J2) are instances of a non-homogeneous (unconstrained) con-
vex quadratically-constrained quadratic programming (QCQP) that can easily be
solved (globally) by finding stationary points of their respective cost functions, to
yield,

FFF k+1 = Γ̃ΓΓ1GGG
†
k(GGGkGGG†k)−1 (3.3.2)

GGGk+1 = (FFF †k+1FFF k+1)−1FFF †k+1Γ̃ΓΓ1 (3.3.3)

We note that our earlier assumption that only d of the RF chains are used here
(i.e. GGG is square), guarantees that, (GGGlGGG†l ) in (3.3.3) is invertible, almost surely: in
fact, as our numerical results will later show, the incurred performance loss is quite
negligible.

Moreover, note that the solution in (3.3.2) does not necessarily satisfy the hard-
ware constraint on FFF . Thus, the result of Proposition 3.3.1 can be used to compute
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procedure [FFF , GGG] = BCD-SD (Γ̃ΓΓ1)
Start with arbitrary FFF 0
for k = 0, 1, 2, ... do

GGGk+1 ← (FFF †kFFF k)−1FFF †kΓ̃ΓΓ1
FFF k+1 ← ΠS [Γ̃ΓΓ1GGG

†
k+1(GGGk+1GGG

†
k+1)−1]

end for
end procedure

Table 3.3: Block Coordinate Descent for Subspace Decomposition (BCD-SD)

the projection of FFF on SM,d. To prove our earlier observation that the optimal up-
dates FFF k+1 and GGGk+1 satisfy the power constraint in (3.3.1), we plug (3.3.3) into
the following (dropping all subscripts for simplicity),

‖FFFGGG‖2F = tr

Γ̃ΓΓ†1FFF (FFF †FFF )−1FFF †FFF︸ ︷︷ ︸
=IIId

(FFF †FFF )−1FFF †Γ̃ΓΓ1


≤ tr

(
(FFF †FFF )−1FFF †FFF

)
tr
(
Γ̃ΓΓ1Γ̃ΓΓ†1

)
= d (3.3.4)

where we assumed that ‖Γ̃ΓΓ1‖2F = 1 w.l.o.g., and used the fact that tr(AAABBB) ≤
tr(AAA)tr(BBB) for AAA,BBB � 000. Note that the above relation holds for any arbitrary full-
rank FFF , and thus, the power constraint is satisfied even after applying the projection
step. The above shows that if BCD is used, then the power constraint in (3.3.1) is
always enforced. The corresponding method is termed Block Coordinate Descent
for Subspace Decomposition (BCD-SD), and is shown in Table 3.3.

Remark 3.2. We underline the fact that due to the projection step, one cannot
show that the sequence {ho(FFF k,GGGk)}k is non-increasing. Nevertheless, despite the
fact that monotonic convergence of BCD-SD cannot be showed analytically, our
simulations indicate that the latter is indeed the case, under normal operating
conditions.

Remark 3.3. It can be easily verified that the optimal FFF ?,GGG? that maximize R
in (2.2.1) are such that ‖FFF ?GGG?‖ = d. Though the optimal solution to (3.3.1) is not
invariant to scaling, as far as the performance metric in (2.2.1) is concerned, there
in no loss in optimality in scaling the solution given by BCD-SD, to fulfill the power
constraint with equality.

One-dimensional case

Note that echoing (e.g., our proposed mechanism in Table 3.2) relies on the BS
being able to send any vector qqql, to be echoed back by the MS. For the hybrid
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analog-digital architecture, this translates into the BS being able to (accurately)
approximate qqql by fff lgl, where fff l is a vector, gl is a scalar. As a result, subspace
decomposition for the one-dimensional case is of great interest here. When d =
1, (3.3.1) reduces to the problem below,

Lemma 3.3.1. Consider the single dimension SD problem,min
fff, g

ho(fff, g) = ‖fff‖22 g2 − 2g<(fff†γ̃γγ1)

s. t. [fff ]i = 1/
√
M ejφi ,∀i

(3.3.5)

where g ∈ R+ and [γ̃γγ1]i = rie
jθi . Then the problem admits a globally optimum

solution given by, [fff?]i = 1/
√
M ejθi ,∀i and g? = ‖γ̃γγ1‖1/

√
M

Proof. Refer to Appendix 3.6.3

Similarly to (3.3.4), it can be verified that a power constraint is indeed implicitly
verified. Moreover, the approximation error eee , γ̃γγ1 − fffg is such that,

[eee]i = |ri − ‖γ̃γγ1‖1/M |ejθi , ∀i ∈ {M}. (3.3.6)

We note that when considering the effective beamformer, i.e., fffg, the solution
given by Lemma 3.3.1 is to some extent reminiscent of equal gain transmission
in [LH03,ZXLS07], in terms of the optimal phases.

We recall that a similar hybrid beamforming setup was considered in [ZMK05]
where the authors optimize u,www,fff, g, to maximize the SNR as well as the spectral
efficiency. Although our formulation optimizes the same quantities, the optimization
metric we consider, the subspace distance, is different.

Column-wise Decomposition Note that the decomposition can be written in
a simple form. Given a vector γ̃γγ1, its globally optimal decomposition (from the
perspective of (3.3.1)) is given as,

γ̃γγ1 ≈ g?1fff
?
1 , (‖γ̃γγ1‖1/

√
M) ΠS [γ̃γγ1].

This can be generalized to obtain an alternate method to BCD-SD, by decomposing
Γ̃ΓΓ1, in a column-wise fashion,

Γ̃ΓΓ1 = [γ̃γγ1, · · · , γ̃γγd] ≈ [g?1fff
?
1, · · · , g?dfff

?
d]

, (1/
√
M) [ΠS [γ̃γγ1], · · · ,ΠS [γ̃γγd]] diag(‖γ̃γγ1‖1, · · · , ‖γ̃γγd‖1) (3.3.7)

Numerical Results

As mentioned earlier, (3.3.1) was formulated and solved in [EARAS+14], using a
variation on the well-known Orthogonal Matching Pursuit (OMP), by recovering
FFF in a greedy manner, then updating the estimate of GGG in a least squares sense.
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Figure 3.2: Average subspace distance ‖Γ̃ΓΓ1 −FFFGGG‖2F , for our proposed method and
OMP

We thus compare its average performance with our proposed method, for a case
where Γ̃ΓΓ1 ∈ CM×d is such that M = 64, r = 10 (for several values of d). The curves
are averaged over 500 random realizations of ΓΓΓ1 (the latter are random unitary
matrices). Moreover, we follow the same setup for OMP as that of [EARAS+14],
namely, that the dictionary is designed based on the array response vectors (of size
256). The reason for the large performance gap in Fig. 3.2 is that BCD-SD attempts
to find a locally optimal solution to (3.3.1) (though this cannot be shown due to
the coupled variables). Moreover, OMP is halted after r iterations, since it recovers
the columns of FFF one at a time, whereas our proposed method runs until reaching
a stable point. With that in mind, although OMP might perform better in terms of
approximating the span of ΓΓΓ1, it is challenging to measure and optimize such metrics
in practice. Moreover, we recall that in its original formulation in [EARAS+14]
OMP is indeed formulated to solve the problem at hand (i.e. (3.3.1)), and thus the
comparison seems fair. Interestingly, despite its extreme simplicity, the column-wise
decomposition in (3.3.7) offers a surprisingly good performance (as seen in Fig. 3.2).
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3.3.2 Echoing in the Hybrid Analog-Digital Architecture
It is clear by now that the gist behind the schemes described in this work, is to ob-
tain an estimate of {HHH†HHHqqql}ml=1 at the BS, by exploiting channel reciprocity, using
BS-initiated echoing described in (3.2.2). However, in the case of the hybrid analog-
digital architecture, there are several issues that prevent the application of the latter
procedure. Firstly, the digital beamforming vector qqql needs to be approximated by
a cascade of analog and digital beamformer, using the decomposition in Sect. 3.3.1,
i.e., qqql = f̃ff lg̃l + eeel, where eeel is the approximation error given in (3.3.6). More-
over, the BS-initiated echoing relies on the MS being able to amplify-and-forward
its received signal: this is clearly not possible using the hybrid analog-digital ar-
chitecture. In addition, neither the BS nor MS can digitally process the received
signal at the antennas: only after the application the analog precoder/combiner
(and possibly the digital precoder/combiner) can the baseband signal be digitally
manipulated [WLP+09,EARAS+14].

With this in mind, we emulate the A-F step in BS-initiated echoing, (3.2.2),
as follows. qqql is decomposed into f̃ff lg̃l at the BS and sent over the DL. The MS
linearly processes the received signal in the downlink, with the analog combiner,
i.e., sssl = WWW †l (HHHf̃ff lg̃l), and same filter is used as the analog precoder, to process
the transmit signal in the UL, i.e., WWW lsssl. Finally, the received signal at the BS is
processed with the analog precoder, FFF l. The resulting estimate, pppl, at the BS is,

pppl = FFF †lHHH
†WWW lWWW

†
lHHH(qqql − eeel) (3.3.8)

Note that the above process is possible using the hybrid analog-digital architecture.
Since noise is present in any uplink/downlink transmission, for clarity in what
follows, we drop the noise-related terms from all equations. Needless to say, their
effect is accounted for in the numerical results. It is clear from (3.3.8) that pppl is no
longer a “good” estimate of HHH†HHHqqql, for the reasons stated below.

1. Analog-Processing Impairments (API): Processing the signal at the MS with
the analog combiner/precoderWWW l greatly distorts the singular values/vectors
of the effective channel. Moreover, processing the received signal at the BS
with the analog combiner FFF l ∈ CM×r implies that pppl is now a low-dimensional
observation of the desired M -dimensional quantity HHH†HHHqqql (since r < M).

2. Decomposition-Induced Distortions (DID): The error from decomposing qqql
at the BS, eeel, further distorts the estimate (as seen in (3.3.8)).

The above impairments are a byproduct of shifting the burden of digital precod-
ing, to the analog domain. In what follows, these impairments will individually be
investigated and addressed.

Cancellation of Analog-Processing Impairments

Our proposed method for mitigating analog-processing impairments (API) relies on
the simple idea of taking multiple measurements at both the BS and MS, and lin-
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early combining them, such thatWWW lWWW
†
l and FFF lFFF

†
l approximate an identity matrix.

In the DL, qqql is approximated by f̃ff lg̃l, and f̃ff lg̃l is sent over the DL channel2,
Kr times (where Kr = N/r), each linearly processed with an analog combiner
{WWW l,k ∈ CN×r}Krk=1, to obtain the digital samples {sssl,k}Krk=1 (this process is shown
in Table (3.4)). Moreover, the analog combiners are taken from the columns of a
Discrete Fourier Transform (DFT) matrix, i.e,

[WWW l,1, ...,WWW l,Kr ] = DDDr, (3.3.9)

where DDDr = 1√
N


1 1 · · · 1
1 e−j

2π
N · · · e−j

2(N−1)π
N

...
...

...
1 e−j

2(N−1)π
N · · · e−j

2(N−1)2π
N

 . (3.3.10)

is a normalized N × N DFT matrix (i.e., where each column has unit norm and
satisfies the unit-modulus constraint). The same analog combiners, {WWW l,k}k, are
used to linearly combine {sssl,k}k, to form s̃ssl . We dub this procedure Repetition-
Aided (RAID) Echoing, and the aforementioned DL phase, is shown in Table 3.4.
The resulting signal at the MS, s̃ssl, can be rewritten as,

s̃ssl =
(
Kr∑
k=1

WWW l,kWWW
†
l,k

)
HHH(df̃ff lg̃l) = dHHHf̃ff lg̃l, (3.3.11)

where equality follows from our earlier definition of {WWW l,k}k in (3.3.9). Note that the
effect of processing the received signal with the analog combiner has been completely
suppressed. Now, s̃ssl is normalized, and echoed back in the UL direction.

A quite similar process is used in the UL: s̃ssl is first decomposed into w̃wwlũl, d
RF chains are used to send it over the UL, Kt times (where Kt = M/r), and each
observation is linearly processed with an analog combiner {FFF l,m ∈ CM×r}Ktm=1.
The resulting digital samples {zzzl,m}Ktm=1 are again linearly combined with the same
{FFF l,m}m, to obtain the desired estimate pppl. Similar to the DL case, the analog com-
biners are taken from the columns of a Discrete Fourier Transform (DFT) matrix,
i.e, [FFF l,1, ...,FFF l,Kt ] = DDDt. The process for the UL is also shown in Table 3.4. We
combine its steps to rewrite pppl as,

pppl =
(

Kt∑
m=1

FFF l,mFFF
†
l,m

)
HHH†(dw̃wwlũl) = dHHH†w̃wwlũl (3.3.12)

2When sending f̃ff lg̃l over the DL, we can use d RF chains, i.e.,

FFF lGGGl 111d = [f̃ff l, · · · , f̃ff l] diag(g̃l, · · · , g̃l) 111d = df̃ff lg̃l

thereby resulting in an array gain factor of d. Moreover, since we know from (3.3.4) that
‖f̃ff lg̃l‖2

2 ≤ 1, indeed this transmission scheme satisfies the power constraint. We also make use of
this observation in the UL sounding.
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Figure 3.3: Repetition-aided (RAID) echoing for the hybrid analog-digital architec-
ture

At the output of the RAID procedure, the BS has the following pppl,

pppl = dHHH†w̃wwlũl = dHHH†(s̃ssl − eee(r)
l ) = dHHH†(dHHHf̃ff lg̃l − eee

(r)
l )

= d2HHH†HHHqqql − d2HHH†HHHeee
(t)
l − dHHH

†eee
(r)
l (3.3.13)

Note that eee(t)
l = qqql − f̃ff lg̃l (resp. eee(r)

l = s̃ssl − w̃wwlũl) is the error emanating from
approximating qqql (resp. s̃ssl) at the BS (resp. MS), that we dub BS-side (resp. MS-
side) decomposition-induced distortion (DID). It is quite insightful to compare pppl
in the latter equation with (3.3.8). We can clearly see that impairments originating
from processing the received signals with both WWW l and FFF l, have completely been
suppressed. In (3.3.13), pppl indeed is the desired estimate, i.e., HHH†HHHqqql, corrupted
by distortions emanating from the BS-side decomposition, eee(t)

l , and the MS side
decomposition, eee(r)

l (both investigated later in the next subsection). Both UL and
DL phases of he process are illustrated in Fig. 3.3, and detailed in Table 3.4.

Remark 3.4. Note that employing this process reduces the hybrid analog-digital
architecture into a conventional MIMO channel: any transmitted vector in the DL,
(f̃ff lg̃l), can be received in a “MIMO-like” fashion, as seen from (3.3.11), at a cost
of Kr channel uses (the same holds for the UL, as seen from (3.3.12) ).

It can be seen from the above, that in the DL (resp. UL), d RF chains are
active at the BS (resp. MS), while all r RF chains are used at the MS (resp. BS),
to minimize the overhead. With this in mind, it can be seen that the associated
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// DL phase
qqql = f̃ff lg̃l + eee

(t)
l

sssl,k = WWW †l,kHHH(df̃ff lg̃l), ∀k ∈ {Kr}
s̃ssl =

∑Kr
k=1WWW l,ksssl,k

// UL phase
s̃ssl = w̃wwlũl + eee

(r)
l

zzzl,m = FFF †l,mHHH
†(dw̃wwlũl), ∀m ∈ {Kt}

pppl =
∑Kt
m=1FFF l,mzzzl,m

Table 3.4: Repetition-Aided (RAID) echoing

overhead with each echoing, Ω = (M +N)/r (channel uses), will decrease as more
RF chains are used.

Imperfect Compensation of Analog-Processing Impairments

Though the above method perfectly removes all artifacts of analog processing, the
overhead is proportional to (M+N)/r. A natural question is whether a similar result
can still be achieved when DDDr and DDDt are truncated matrices i.e. when Kr < N/r
and Kt < M/r. Perfect cancellation of API relies on a careful choice of the analog
precoder/combiner for each measurement, by picking {WWW l,k}Krk=1 and {FFF l,m}Ktm=1 to
span all the columns of (square) DFT matrices. We investigate the effect of picking
DDDr and DDDt as truncated matrices, i.e. when Kr < N/r and Kt < M/r. Focusing
our discussion on just analog precoders for brevity, we seek to find a (tall) matrix
D̃DDt ∈ CM×(ηM), η < 1, such that,min

D̃DDt

‖ 1
M IIIM − D̃DDtD̃DD

†
t‖2F

s. t. D̃DDt ∈ SM, ηM .
(3.3.14)

Due to the apparent difficulty of the problem, one can resort to stochastic optimiza-
tion tools, e.g. simulated annealing: this approach is ideal for the design of D̃DDt (and
D̃DDr as well), since it is completely independent of all parameters (except M,N and
η), and can thus be computed off-line and stored for later use. Then, the resulting
overhead would be reduced to Ω = ηM+N

r .
Let ΘΘΘl be the phase of D̃DDt at iteration l. Nc candidates for the phase update are

generated, by randomly perturbing each element in ΘΘΘl, i.e.

[BBBn]i,k = [ΘΘΘl]i,k + αl ui,k,∀(i, k), n = 1, ..., Nc,

where ui,k is a uniformly distributed random variable over [−π, π], and lim
l→∞

αl = 0.
The candidate solution that yields the best value is selected. The algorithm shown
in Table 3.5 can be used to find D̃DDt . Then, using exactly the same method, one
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Set α = 1, δ < 1, ΘΘΘ0 random
for l = 0, 2, ..., I − 1 do

α = δα
for n = 1, ..., Nc do

[BBBn]i,k = [ΘΘΘl]i,k + α ui,k, ∀(i, k)
CCCn = (1/

√
M).ejBBBn

end for
n? = argmax

n
‖ 1
M IIIM − CnC

†
n‖2F

ΘΘΘl+1 = BBBn?

end for
D̃DDt = (1/

√
M).ejΘΘΘI

Table 3.5: Random Phase Search

can also design D̃DDr ∈ CN×(ηN) by formulating a similar problem as (3.3.14).
Further investigations along this line are outside the scope of this work, but we
opted to include them briefly, for completeness.

3.3.3 Proposed Algorithms

Combining the results of the previous subsections, we can now formulate our al-
gorithm for Subspace Estimation and Decomposition (SED) for the hybrid analog-
digital architecture (shown in Algorithm 1): estimates of the right / left singular
subspaces, Γ̃ΓΓ1 and Φ̃ΦΦ1, can be obtained by using the SE-ARN procedure (Sect. 3.2),
keeping in mind that the echoing phase (Steps 1.a and 1.b) is now replaced by the
RAID echoing procedure (Table 3.4. Then, the multi-dimensional subspace decom-
position procedure, BCD-SD in Sect. 3.3.1, is then used to approximate each of the
estimated singular spaces, by a cascade of analog and digital precoder/combiner.
We highlight a desirable feature for the SED algorithm: the subspace estimation
mechanism is totally decoupled from the subspace decomposition part, and thus
any of the latter parts can be substituted, if desired.

Algorithm 1 Subspace Estimation and Decomposition (SED) for Hybrid Analog-
Digital Architecture

// Estimate Γ̃ΓΓ1 and Φ̃ΦΦ1
Γ̃ΓΓ1, Σ̃ΣΣ1 = SE-ARN (HHH, d)
Φ̃ΦΦ1 = SE-ARN (HHH†, d)
// Decompose Γ̃ΓΓ1 and Φ̃ΦΦ1
[FFF , GGG ] = BCD-SD (Γ̃ΓΓ1, ρ)
[WWW , UUU ] = BCD-SD (Φ̃ΦΦ1, ρ)
Perform waterfilling on Σ̃ΣΣ1
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Note that previously proposed algorithms within this context such as the PM
and TQR in [DCG04], are no longer applicable here: indeed both rely on the MS
being able to amplify-and-forward its received signal at the antennas - clearly this
modus operandi cannot be supported by the hybrid analog-digital architecture.
Interestingly, it is possible to apply elements from the RAID echoing structure
that we developed, effectively modifying the original echoing structure of the latter
schemes, and adapting them to the hybrid analog-digital architecture (as shown in
Algorithm 2).

Algorithm 2 Modified Two-way QR (MTQR) for Hybrid Analog-Digital Archi-
tecture

for l = 1, 2, ..., I do
// Decompose each column of XXX

[XXX]n ≈ f̃ffng̃n, ∀n ∈ {d} (using Lemma 3.3.1)
X̃XX = [ f̃ff1g̃1 , · · · , f̃ffdg̃d ]

// Send X̃XX in DL, one column at a time
TTT k = WWW †kHHHX̃XX, ∀k ∈ {Kr}
YYY =

∑Kr
k=1WWW kTTT k ; YYY = qr(YYY )

// Decompose of YYY
[YYY ]n ≈ w̃wwnũn, ∀n ∈ {d} (using Lemma 3.3.1)
ỸYY = [ w̃ww1ũ1 , · · · , w̃wwdũd ]

// Send ỸYY in UL, one column at a time
SSSk = FFF †kHHH

†ỸYY , ∀k ∈ {Kt}
ZZZ =

∑Kt
k=1FFF kSSSk ; XXX = qr(ZZZ)

end for

Operationally, the proposed MTQR algorithm is the same as the Two-way QR
(TQR) in [DCG04], whereby ΓΓΓ1 and ΦΦΦ1 are obtained iteratively: as I →∞,XXX → ΓΓΓ1
(at BS) and YYY → ΦΦΦ1 (at MS). At each iteration of the algorithm, the BS sends XXX
in the downlink, and the QR algorithm is applied to the received signal. Then, the
resulting signal is sent by the MS in the uplink, and the QR algorithm is applied
at the BS to form YYY . While TQR assumes fully digital MIMO transmission, our
contribution is to apply the RAID scheme, to make the transmission compatible
with the hybrid analog-digital systems.

3.3.4 Bounds on Eigenvalue Perturbation
It can be clearly seen that the iterative nature of Algorithm 2 makes the application
of Lemma 3.2.2, to quantify the impact of decomposition and approximation errors,
not possible. On the other hand, for Algorithm 1, the fact that each HHH†HHHqqql is only
corrupted by two sources of DID, eee(r)

l and eee
(r)
l , makes the latter possible. With

that in mind, we specialize the result of Sect. 3.2.2 and Lemma 3.2.2 (developed
for generic MIMO systems) to the case of Algorithm 1 in the hybrid analog-digital
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architecture. We thus relate the eigenvalues of TTTm at the output of SE-ARN, to
the dominant eigenvalues of CCCm, and consequently of AAA (Sect.3.2.2).

Corollary 3.3.1. Every eigenvalue λ̃ of TTTm satisfies

|λ̃− λ| ≤ m‖HHH‖2F (3 + 1
d‖HHH‖F

)

where λ in an eigenvalue of CCCm.

Proof. Refer to Appendix 3.6.5

Moreover, recall that as m → M , λ is an eigenvalue of AAA (Lemma 3.2.1 - P3).
Thus, this result directly relates the eigenvalues of TTTm, to that of AAA: though this
holds asymptotically in m, our simulations will show that good approximations can
still be obtained, even for m � M . Note that we have ignored the effect of DID
compensation, within the RAID echoing process, for convenience. As a result, the
above bound is a “pessimistic” performance measure.

3.3.5 Practical Implementation Aspects
We evaluate the communication overhead of both schemes, in number of channel
uses, keeping in mind that the actual overhead will be dominated by the latter.
Algorithm 1 requiresKt+Kr channel uses per iteration, to estimate Γ̃ΓΓ1, andKt+Kr

to estimate Φ̃ΦΦ1, for a total of

ΩSED = 2m M +N

r
, (3.3.15)

m being the number of iterations for the Arnoldi process. Letting I denote the num-
ber of iterations for MTQR, the number of channel uses required for Algorithm 2
is,

ΩMTQR = dI
M +N

r
(3.3.16)

It should be emphasized here that our main focus in this work is to inves-
tigate the principle of subspace estimation employing numerical techniques, and
through simulations describe the performance gain that can be expected by taking
on such an approach. Hence, our major concern is not to investigate a stable and
low-complexity technique that can be readily implemented in practice. We will,
however, provide suggestions on what can be done to enhance the stability of the
devised schemes, while admitting that many of the problems connected with practi-
cal implementation of the proposed method are subject to further study. Generally,
it is known that the Arnoldi (and Lanczos) algorithm may suffer from numerical
stability issues. Though analytically speaking, the basis QQQm is easily shown to be
orthonormal, in practice, however, errors resulting from floating-point operations
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lead to a loss in orthogonality (the extent to which it happens is dependent on the
application) [Saa11, Sec. 7.3]. Moreover, for our algorithm, noise inherent to the
echoing process will further amplify this effect. One of the widely adopted fixes
for this matter is the Implicitly Restarted Arnoldi algorithm [Saa11, Sec. 7.3]. We
did experiment with such an algorithm, and though it does enhance the numeri-
cal stability of the algorithm, the resulting overhead is increased by a large factor.
This issue is critical for the SED algorithm (that employs the RAID echoing),
since it renders real-world implementation quite impractical. Moreover, there are
many problems connected with practical implementations of the Restarted Arnoldi
method, that are subject to further study. Other methods that might enhance the
stability the Arnoldi Iteration, such as deflation techniques, have been reported
in [Sor96].

3.4 Numerical Results

3.4.1 Simulation Setup
In this section, we numerically evaluate the performance of our algorithms, in the
context of a single-user MIMO link, using the above channel model. In what follows,
we also assume that M/r = 8 and N/r = 4, i.e., as M,N increase, so does the
number of RF chains. As per our discussion on the achievability of R (Remark 2.1),
we use the following, as our performance metric in the simulations,

R̃ = log2

∣∣∣∣∣IIId + 1
σ2

(r)
UUU†WWW †HHHFFFGGGGGG†FFF †HHH†WWWUUU(UUU†WWW †WWWUUU)−1

∣∣∣∣∣ . (3.4.1)

In that sense, R̃ is the ‘user rate’ that is based on the actual channel HHH, and the
precoders / combiners that are in turn designed based on the estimated channel.

Benchmarks/Upper bounds

We use the Adaptive Channel Estimation (ACE) method (Algorithm 2 in [AEALH14])
as a benchmark, to estimate the mmWave channel. It is based on sounding of hi-
erarchical codebooks at the BS, feedback of the best codebook indexes by the MS,
and finding the analog/digital precoders and combiners using OMP [EARAS+14].
Moreover, the authors characterized the resulting communication overhead ΩACE ,
as a function of the codebook resolution. We used the corresponding MATLAB
implementation that was provided by the authors. We adjust the number of iter-
ations for both our proposed schemes and the codebook resolution of benchmark
scheme, such that ΩSED = ΩMTQR , Ωo ≈ ΩACE . Note that we do not assume any
quantization for phases of the RF filters. We also compare the performance of the
algorithms against the “optimal performance”, R? in (2.2.2), where full CSIT/CSIR
is assumed, fully digital precoding is employed, and the optimal precoders are used.
All curves are averaged over 500 channel realizations.
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Remark 3.5. Note that if one want to use “classical” pilot-based channel estima-
tion to estimate the DL channel, i.e., a pilot sequence of minimum length M , then
the same repetition-based framework that was used in RAID echoing, has to be
used to cancel the effect of WWW from the effective channel estimate: it can be easily
seen that the resulting total (both DL and UL) number of pilots slots would be
2MN/r2, thereby making the latter method infeasible.

3.4.2 Performance Evaluation
We start by investigating the performance of our schemes against the above bench-
marks, for the case where M = 128, N = 64, L = 3, and m = 3d, for two cases:
d = 1 and d = 2 where the resulting overhead is Ωo = 72 and Ωo = 144 chan-
nel uses, respectively. It can be seen from Fig. 3.4 that both proposed schemes
exhibit relatively similar performances, that are in turn very close to the optimal
performance bound R? (especially above −10 dB). This indeed suggests that the
multiplexing gain achieved by conventional MIMO systems can still be maintained
in the hybrid analog-digital architecture, albeit at a much lower cost: the number
of required RF chains can be drastically decreased, resulting in savings in terms of
cost and power consumption. Moreover, we observe a sharp and significant perfor-
mance gap between both our schemes and the benchmark from [AEALH14], over
all SNR ranges (the gap being more significant in the low-SNR regime). We also
evaluate the so-called optimal decomposition schemes [ZMK05,MRRGPH15] that
can exactly decompose ΓΓΓ1 into FFFGGG (discussed in Sec. IV). Thus, the curves labeled
’Optimal Decomp.’ refer to the case where the optimal decomposition is used in con-
junction with SED. Fig 3.4 clearly reveals that the ability to optimally decompose
the estimated subspaces does not bring about additional gains. We note that the
tiny mismatch between ’Optimal Decomp.’ and Algorithm 1 is due to simulation
resolution.

We attempt to shed light on the stability of the proposed algorithms, as the
number of paths in the mmWave channel, L, increases (where we set M = 64, N =
32, d = 2,m = 6). For clarity we restrict the result to the low SNR regime. Though
a degradation in the performance of both algorithms is expected, as L increases,
Fig. 3.5 clearly indicates that the latter degradation is not quite significant. Though
not visible here, our simulations show that this degradation is not present in the
medium-to-high SNR region. As expected, this technique is best used for channels
with a few paths, e.g., mmWave channels.

We investigate the performance of both SED and MTQR in terms of average
subspace angle, θ = E[α(ΓΓΓ1, Γ̃ΓΓ1)] where α(ΓΓΓ1, Γ̃ΓΓ1) (radians) is defined as the sub-
space angle between ΓΓΓ1 and Γ̃ΓΓ1 (implemented by computing the principal angles of
the latter subspaces). As shown in Fig. 3.6, both schemes exhibit a similar behavior
of better estimation accuracy, as the SNR increases.

Remark 3.6. Though the performance of Algorithm 2 seems to be better, Fig. 3.4-
3.6 both suggest that this gap is quite narrow. Moreover, both algorithms seem to
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Figure 3.4: Average sum-rate of proposed schemes (M = 128, N = 64, d = 2, L =
3,m = 6)
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Figure 3.6: Average subspace angle (M = 64, N = 32, d = 3, L = 4,m = 6)

exhibit very similar behavior. With that in mind, and for the sake of clarify of our
results, we opt to focus on Algorithm 1, the main object of investigation in this
work.

We next investigate its scalability: we scale up M and N (assuming N = M/2,
for simplicity), while keeping everything else fixed, i.e., d = 2,m = 6, and conse-
quently Ωo = 144. In doing that, we noticed that the complexity of the benchmark
scheme [AEALH14] was prohibitively high, thus preventing us from investigating
its scalability: we were unable to get any results for systems larger than 128 × 64
. On the other hand, both our algorithms exhibit no such problems since all the
computations that they involve are matrix-vectors/matrix-matrix operations. Con-
sequently, the complexity gap between Algorithm 1 and the benchmark increases
drastically, as M,N grow.

Fig 3.7 clearly shows that Algorithm 1 is able to harness the significant array
gain inherent to large antenna systems (by closely following the optimal perfor-
mance bound, R?, with a small constant gap), while keeping the overhead remark-
ably small. Though the performance might not be good enough to offset the over-
head, for the 16 × 8 case, it surely does for the 256 × 128. Moreover, note that
the gap between the optimal performance and Algorithm 1 is quite small (across
the entire SNR range) for small systems dimensions, and quite small even for large
values of M (at high SNR). The key to this result is to have M/r and N/r fixed,
as M,N increase.

We also evaluate the performance of Algorithm 1 in a more realistic manner,
by adopting the Spatial Channel Model (SCM) detailed in [3GP11, SDS+05], and
modifying its parameters to emulate mmWave channels: the number of paths is set
to 4, the carrier frequency to 60 GHz, the BS/MS array is modified to implement
ULAs, and an ’urban micro’ scenario is selected, where a small Ωo is desired. Fig. 3.8
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shows the average performance of such a system, with M = 64, N = 32,m = 2d,
for several values of d (each resulting in different values for Ωo). Though both our
algorithm and the benchmark exhibit similar performances for d = 1, this gap
increases with d, e.g. for d = 3 this performance gap is quite significant. Moreover,
we can clearly see that Algorithm 1 yields a relatively high throughput in this
realistic simulation setting (especially for d = 3), while still keeping the overhead
at a relatively low level.

Evidently, increasing m (the number of iterations for the Arnoldi) has the effect
enhancing the estimation accuracy (and increasing the communication overhead
as well (3.3.15)). The marginal improvement brought about by increasing m, is
decreasing, and thus our simulations indicated that setting 2d ≤ m ≤ 3d provides
a good trade-off.

3.4.3 Discussions

A few remarks are in order at this stage, regarding similarities and differences be-
tween our two proposed algorithms. As discussed in Remark 3.6, when the commu-
nication overhead is normalized, both SED and MTQR exhibit a similar behavior
and performance profile, across the entire SNR range (with a relatively small per-
formance gap): indeed they can be used interchangeably with no change at all in
the operational requirements. However, as this work shows, we have an accurate
analytical description of the behavior of SED: the Arnoldi algorithm was adapted
to the subspace estimation part (with some analytical performance guarantees),
and BCD-SD to mathematically describe the decomposition algorithm. In contrast,
MTQR is a (heuristic) variation on the original TQR, whose behavior we have not
modeled analytically.

One of the conclusions suggested by all the above results, is the fact that the low-
SNR performance of the proposed schemes is rather poor. However, interestingly,
Figs. 3.4-3.8 unambiguously point out that this is the case for the benchmark scheme
as well (ACE in [EARAS+14]): one might be tempted to conjecture at this point
that this low-SNR behavior is an inherent aspect of mmWave channel estimation.
Initial investigations reveal that, if more RF chains (more than r) can be employed
during the RAID echoing phase, the low-SNR performance can be greatly boosted.

3.5 Conclusion

We proposed an algorithm for blindly estimating the left and right singular subspace
of a mmWave MIMO channel, by exploiting channel reciprocity that is inherent to
TDD systems. Though the algorithm is a perfect match for conventional (large)
MIMO systems, we extended it to operate under the constraints dictated by the
hybrid analog-digital architecture, and showed via simulations that it is a good
fit for large MIMO channels, with low rank, e.g., mmWave channels. Finally, our
simulations showed that a similar performance to the ideal case (fully digital perfect
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CSI) can be achieved, with a only a few RF chains, thereby resulting in significant
saving in energy and cost, over conventional MIMO systems.

3.6 Appendix

3.6.1 Proof of Lemma 3.2.1
(P1) : Combining steps (2.b) and (3.a) in the SE-ARN procedure, we write,

AAAqqql + w̃wwl =
l+1∑
i=1

[T̃TTm]i,l qqqi +
l∑
i=1

[EEEm]i,l qqqi , ∀l ∈ {m},

We can rewrite the latter equation in matrix form, using the definitions of T̃TTm, W̃WWm

given in (3.2.3),

AAAQQQm + W̃WWm = QQQmT̃TTm + [T̃TTm]m+1,m qqqm+1bbb
†
m +QQQmEEEm (3.6.1)

where bbbm is the mth elementary vector, and EEEm = [QQQ†mW̃WWm]U . We can further
simplify the above, using the fact that QQQ†mQQQm = IIIm and QQQ†mqqqm+1 = ooo,

QQQ†mAAAQQQm +QQQ†mW̃WWm = T̃TTm +EEEm

Using the definition of EEEm, we write,

QQQ†mAAAQQQm = T̃TTm + [QQQ†mW̃WWm]U −QQQ†mW̃WWm

= T̃TTm − ẼEEm , CCCm

where ẼEEm = [QQQ†mW̃WWm]SL, as defined in (3.2.3).

(P2) : Noting that T̃TTm +EEEm = CCCm +QQQ†mW̃WWm, we rewrite (3.6.1) as,

AAAQQQm −QQQmCCCm = [T̃TTm]m+1,m qqqm+1bbb
†
m − (IIIM −QQQmQQQ

†
m)W̃WWm

Multiplying the latter equation by sss(m)
i , and using the fact thatCCCmsss(m)

i = λ
(m)
i sss

(m)
i ,

and QQQmsss
(m)
i = ΘΘΘ(m)

i

AAAΘΘΘ(m)
i −λ(m)

i ΘΘΘ(m)
i

= [T̃TTm]m+1,m qqqm+1bbb
†
msss

(m)
i − (IIIM −QQQmQQQ

†
m)W̃WWmsss

(m)
i

Finally, the desired residual is upper bounded as,

‖AAAΘΘΘ(m)
i − λ(m)

i ΘΘΘ(m)
i ‖22

≤ ([T̃TTm]m+1,m|bbb†msss
(m)
i |)2 + ‖(IIIM −QQQmQQQ

†
m)W̃WWmsss

(m)
i ‖2F

≤ ([T̃TTm]m+1,m|[sss(m)
i ]m|)2 + ‖IIIM −QQQmQQQ

†
m‖2F ‖W̃WWm‖2F
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where the last inequality follows from ‖BBB1BBB2xxx‖22 ≤ ‖BBB1‖2F .‖BBB2‖2F .‖xxx‖22

(P3) : The proof immediately follows by noting that ‖IIIM −QQQmQQQ
†
m‖2F → 0 and

[T̃TTm]m+1,m → 0, as m→M , thereby implying that ‖AAAΘΘΘ(M)
i − λ(M)

i ΘΘΘ(M)
i ‖22 � 1.

3.6.2 Proof of Lemma 3.2.2

The proof follows from a direct application of the Bauer-Fike Theorem [GVL96,
Th. 7.2.2]. Let CCCm = SSSmΛΛΛmSSS−1

m be the diagonalizable matrix in question, and
TTTm = CCCm +PPPm the “perturbed” matrix. Then, every eigenvalue λ̃ of TTTm satisfies,

|λ̃− λ|2 ≤ ‖SSSm‖22.‖SSS
−1
m ‖22.‖PPPm‖22 = ‖QQQ†mW̃WWm‖22

where λ is an eigenvalue of CCCm, and ‖BBB‖2 , σmax(BBB) is the vector-induced matrix
2-norm. The last equality follows from the fact that SSSm is unitary, as discussed in
Lemma 3.2.1. Using the fact that ‖BBB‖2 ≤ ‖BBB‖F , we rewrite the last equation,

|λ̃− λ|2 ≤ ‖QQQ†mW̃WWm‖2F ≤ ‖QQQm‖2F ‖W̃WWm‖2F = m‖W̃WWm‖2F

This concludes the proof.

3.6.3 Proof of Lemma 3.3.1

Note that there is not loss in optimality by assuming the g ∈ R+. Moreover, exploit-
ing the structure of ho, the globally optimal solution can be found by optimizing
for fff , assuming g is fixed (and vice) versa, i.e.,

fff?
4=argmin

fff
g2(fff†fff)− 2g<(fff†γ̃γγ1), s. t. [fff ]i = 1/

√
M ejφi

(a)⇔ {φ?i } =argmax
{φi}

1/
√
M <

(
M∑
i=1

ri e
j(θi−φi)

)

{φ?i } =argmax
{φi}

M∑
i=1
<
(
ej(θi−φi)

)
= {θi}

where (a) follows from applying the one-to-one mapping [fff ]i → 1/
√
M ejφi ,∀i.

Thus, [fff?]i = 1/
√
M ejθi ,∀i. Plugging fff? into the original problem, the optimiza-

tion of g is a simple unconstrained quadratic problem,

g?
4= argmin

g
g2 − 2g(‖γ̃γγ1‖1/

√
M) = ‖γ̃γγ1‖1/

√
M (3.6.2)
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3.6.4 Proof of Proposition 3.3.1
Since YYY ∈ SM,d by definition (i.e., |[YYY ]i,k| = 1/

√
M ) the problem just reduces to

finding the phase of each element in YYY . Thus,

YYY = ΠS [XXX] 4= argmin
UUU∈SM,d

‖UUU −XXX‖2F

(a)⇔ argmin
{θi,k}

∑
i,k

|(1/
√
M)ejθi,k − xikejφi,k |2

⇔ {θ?i,k} = {φ?i,k}

where (a) follows from the fact that UUU i,k = (1/
√
M)ejθi,k ,∀UUU ∈ SM,d. Thus, we

conclude that [YYY ]i,k = (1/
√
M) ejφi,k ,∀(i, k). Furthermore, it follows from this

formulation that this projection is unique (despite the non-convexity of SM,d).

3.6.5 Proof of Corrollary 3.3.1
The proof consists of finding a closed-from expression for W̃WWm as a function of
eee

(t)
l and eee(r)

l , and applying the result of Lemma 3.2.2. Note that w̃wwl in (3.2.2) can
represent any distortion, and by comparing pppl in both (3.2.2) and (3.3.13), can infer
that w̃wwl = −HHH†HHHeee(t)

l − (1/d)HHH†eee(r)
l . Thus, W̃WWm in (3.2.3) can be written as,

W̃WWm = −HHH†HHH[eee(t)
1 , · · · , eee(t)

m ]− (1/d)HHH†[eee(r)
1 , · · · , eee(r)

m ]

, −HHH†HHHEEE(t) − (1/d)HHH†EEE(r)

Then using properties of the Frobenius norm,

‖W̃WWm‖F ≤ ‖HHH‖2F ‖EEE
(t)‖F + (1/d)‖HHH‖F ‖EEE(r)‖F (3.6.3)

On the other hand, recall that eee(t)
l = qqql− f̃ff lg̃l and eee

(r)
l = s̃ssl− w̃wwlũl. Thus, using the

results of Sec. 3.3.1,

‖eee(t)
l ‖2 ≤ ‖qqql‖2 + ‖f̃ff lg̃l‖2 ≤ 2

‖eee(r)
l ‖2 ≤ ‖dHHHf̃ff lg̃l‖2 + ‖w̃wwlũl‖2 ≤ 1 + d‖HHH‖F

and it follows that

‖EEE(t)‖F ≤ 2
√
m, ‖EEE(r)‖F ≤

√
m(1 + d‖HHH‖F ) (3.6.4)

The upper bound follows by combining (3.6.3) and (3.6.4).
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Chapter 4

Preliminaries

4.1 Interference Management in Multiuser MIMO
Networks

Going from single cell to multi-cell settings, interference has been widely recognized
as the limiting factor on the sum-rate performance. Many early works character-
ized this using the analytical framework of degrees-of-freedom [CJ08]: the maxi-
mum number of interference-free signaling dimensions in a given network. It was
also shown that the maximum sum degrees-of-freedom (DoFs) of MIMO interfer-
ence channels are a high SNR approximation of the capacity [CJ08] - the maximum
performance that can be achieved. Graphically, the sum DoFs corresponds to the
high-SNR slope of the sum-rate vs SNR curve. With that in mind, it is also well-
known that the presence of unsuppressed interference leads to a collapse in the DoFs
of the network. The seminal works by M.A. Maddah-Ali, A.S. Motahari and A.K.
Khandani on one hand, and V. Cadambe, K. Gomadam and S.A. Jafar indepen-
dently, on the idea of Interference Alignment in wireless communication, highlighted
the intimate relation between IA and DoF maximization.

4.1.1 Coordination in Cellular Networks
The ideas of coordinating signals from multiple BSs, in view of mitigating inter-
ference, were considered much earlier, before the advent of CoMP. Such ideas were
earlier considered under the name of Virtual MIMO and Network MIMO. The
so-called Network MIMO concept was investigated in [KFVY06] and [ZCA+09],
where full intra-cluster coordination (to enhance the sum-rate and limited inter-
cluster coordination) was considered, for reducing interference for the cluster edge
users. Though basic in nature, the idea of exploiting causally known interference
for multi-cellular settings, dates as far back as [SZ01], where the “writing on dirty
paper” approach was employed to cancel interference that is known at the trans-
mitter but not to the receiver. CoMP introduced the idea of cooperation among the
BSs to mitigate inter-cell interference [GHH+10], and has been usually identified

59



60 Preliminaries

Figure 4.1: CoMP-CB (left) and CoMP-JT (right) (from [LSC+12] )

with several operation modes, Coordinated Beamforming (CB) and Joint Trans-
mission (JT), being the most relevant ones here. Though they are both precoding
techniques, they are fundamentally different in their operation, and consequently,
their inherent requirements and limitations [LSC+12].

CB is the setup where multiple BSs share their local CSI (i.e. channel informa-
tion of each BS, to all the users), resulting in each BS having global CSI of all the
channels. Moreover, the data of each of the users is only available at its serving BS,
and not shared among the other BSs. One instance of CB is to design the precoding
vectors at each BS in such a way that interfering signals lie in the null space of each
user’s desired signal subspace. This is illustrated in the left part of Fig 4.1 (where
interfering transmissions are denoted in red): the precoding is done in such a way
that each BS’s transmission is orthogonal to all transmissions, by other BSs in the
coordination area. On the other hand, JT - in addition to sharing of CSI among the
BSs (such that each BS has global CSI ), additionally requires the user data to be
shared as well: each BS needs to know the data of all the users in the coordination
area. The main idea behind JT is to design the precoding vectors at the BSs, in
such a way that each user is served by all the BSs (as illustrated in the right part of
Fig 4.1). Stated differently, JT requires signals from each BS to align constructively
at each MS. As a result, interference in the entire coordination region is turned
from destructive to constructive. Such ideas were initially put forth in [GHH+10].

Coordinated Beamforming

Coordination techniques that fall under the umbrella of CB are quite numerous and
diverse. Such techniques were the focus of many works, dating as far back as [GCJ11]
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and [SSB+09]. In essence, schemes falling under this category iteratively refine their
respective cost functions, in a fully distributed manner, i.e., only requiring local CSI
at both users and BSs and alleviating the need for any backhaul between transmit-
ters, or for any centralized compute node. Despite the massive number of CB-type
schemes falling under that category, they all employ the so-called framework of
forward-backward training (detailed next, in Sect. 4.3.1).

Usually, such schemes can be categorized according to the metric that they
optimize: such metrics mainly include (weighted) interference leakage [GCJ11],
[GP11], (weighted) mean-squared error [SSB+09], [SRLH11], signal to interference-
plus-noise ratio [GCJ11], [PH11], and (weighted) sum-rate [SGHP10a], [SRLH11]
[NSGS10] (an insightful and comprehensive comparison of such schemes was done
in [SSB+13]). Despite the fact that the latter methods attempt to solve a problem
that is more generic than Interference Alignment (in a sense that they do not aim at
suppressing interference completely), in many of the above cases, there indeed exists
an intimate relation between the two: for instance, in the high-SNR sum-rate max-
imization problem, the precoder optimization problem reduces to finding transmit
and receive filters, that satisfy the IA conditions (as formulated in [GCJ11]).

Interference Alignment

The concept of interference alignment in wireless communication was first presented
in [MAMK08], for the MIMO X channel. However, the concept was clearly crys-
tallized in [CJ08], for the K-user Interference Channel (IC). The simple approach
to solve the problem of interference in the interference channel is orthogonal access
in the time, frequency or spatial dimension (i.e. TDMA, FDMA, SDMA). As a
result, the resources of the channel (time, bandwidth, antennas, etc..) are divided
among the users equally, i.e. each receiver gets 1/K from the total resources. How-
ever with IA, every receiver can achieve 1/2 of the channel resources, regardless
of the number of users [CJ08]. This result is made possible by having every trans-
mitter sacrifice half of its maximum signaling dimensions (time, frequency bands,
antennas, etc...). Then, each transmitter-receiver pair can communicate over an
interference-free channel, regardless of the number of interferers [CJ09]. The capac-
ity of any channel (the summation of the rates achieved by all the users) can be
approximated as follows [CJ08] : C ≈ d log(1 +SNR) where d is referred to as the
multiplexing gain or the degrees-of-freedom (DoF) of the channel.

4.2 System Model

In this section we outline several of the canonical channel models that arise in
the context of multiuser communication and information theory (starting from the
most generic one). We restrict our exposition to ones used throughout this part of
the thesis.
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UUU12

UUUL2

Figure 4.2: The MIMO Interring Broadcast Channel (MIMO IBC)

4.2.1 The MIMO Interfering Broadcast Channel

The MIMO Interfering Broadcast Channel (MIMO IBC) is a downlink communi-
cation scenario, consisting of a set of L cells (each having a BS), whereby each BS
is serving multiple users, as shown in Fig. 4.2.

Let L be the set of BSs, and Kl be the set of MSs served by BS l ∈ L. Moreover,
denote by I the set of all users, i.e.,

I = {lj | (l, j) ∈ L ×Kl} (4.2.1)

and user lj ∈ I the jth user in cell l. HHH l,lj is the M ×N MIMO channel from BS
l ∈ L, to user lj ∈ I (assumed to have circularly symmetric i.i.d. complex random
variables with zero mean and unit variance), VVV lj ∈ CM×d is the d-dimensional
transmit filter for user lj ∈ I. Then, the signal that is transmitted from BS l is∑
j∈Kl VVV ljxxxlj , and xxxlj is the d-dimensional zero-mean circularly symmetric complex

Gaussian transmit signal for user lj ∈ I, such that E[xxxljxxxl†
j
] = (ρ/d) IIId. Moreover,

UUU lj ∈ CN×d denotes the d-dimensional receive filter of user lj ∈ I to linearly process
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its received signal. The received signal, yyylj , for user lj ∈ I is,

yyylj = HHH l,ljVVV ljxxxlj +
∑
ik∈I
ik 6=lj

HHHk,ljVVV ikxxxik +nnnlj , (4.2.2)

and the received signal of user lj ∈ I, after linear filtering, is given by,

x̂xxlj = UUU
†

ljHHH l,ljVVV ljxxxlj +
∑
ik∈I
ik 6=lj

UUU
†

ljHHHk,ljVVV ikxxxik +UUU
†

ljnnnlj , (4.2.3)

where the firs terms represents that desired signal, and the second one both intra
and inter-cell interference. We further define the signal and interference covariance
matrices of user lj ∈ I, as follows,

RRRlj = (ρ/d)HHH l,ljVVV ljVVV
†

ljHHH
†
l,lj

and (4.2.4)

QQQlj =
∑
ik∈I

HHHk,ljVVV ikVVV
†

ik
HHH†k,lj −RRRlj , (4.2.5)

The MIMO IBC is the communication scenario that is investigated in Chap. 6.

Special Case: The MIMO Interference Channel The MIMO Interference
Channel (MIMO IC) is known as the scenarios where a set L of transmit-receive
parts are sharing the same resource blocks (e.g. time, frequency). Each of the re-
ceivers wishes to decode the signal originating from its own transmitter, subject
to interference from the remaining transmitters. In cellular networks, this would
correspond to a set of L BSs, each serving a single MS, over the same resource
block. Then, the MIMO IFC is a special case of the MIMO IBC.

4.2.2 The MIMO Interfering Multiple-Access Channel
The MIMO Interfering Multiple-Access Channel (MIMO IMAC) represents an up-
link communication scenario, in the context of cellular networks. In that sense, the
MIMO IMAC is the “network dual” of the MIMO IBC. It comprises of a network
of L cells, each cell containing one BS, where BS l is serving a set Kl of MSs, and
each user wishes to send data to its serving BS (shown in Fig. 4.3).

We use the same notation as (4.2.1) to denote the total set of users, I,

I = {lj | (l, j) ∈ L ×Kl} (4.2.6)

where lj denotes the index of user j ∈ Kl, at BS l ∈ L. xxxik ∈ Cd represents the d-
dimensional vector of independently encoded symbols sent by MS ik ∈ I (zero mean
circularly symmetric), with covariance matrix E[xxxikxxx

†
ik

] = (ρ/d)IIId. VVV ik ∈ CM×d
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Figure 4.3: The MIMO Interfering Multiple-Access Channel (MIMO IMAC)

denotes the d-dimensional transmit filter employed by transmitter ik ∈ I, HHH l,ik

the N ×M MIMO channel from MS ik ∈ I, to BS l, assumed to have circularly
symmetric i.i.d. complex random variables with zero mean and unit variance. With
that in mind, the received signal at BS l ∈ L is given by,

yyyl =
∑
ik∈I

HHH l,ikVVV ikxxxik +nnnl, (4.2.7)

We denote by UUU lj ∈ CN×d the d-dimensional receive filter of user lj ∈ I. After
linear processing with the receive filter, the recovered signal vector of user j in cell
l, x̂̂x̂xlj , is given by,

x̂̂x̂xlj = UUU
†

ljHHH l,ljVVV ljxxxlj +
∑
ik∈I
ik 6=lj

UUU
†

ljHHH l,ikVVV ikxxxik +UUU
†

ljnnnl, ∀ lj ∈ I (4.2.8)

where the first term represents the desired signal, the second both intra and inter-
cell interference, and nnnl represents the N -dimensional AWGN noise, such that
E[nnnlnnn†l ] = σ2IIIN . Moreover, RRRlj and QQQlj are the desired signal and interference
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covariance matrices of user j’s signal, at BS l, respectively, and are given by,

RRRlj = (ρ/d) HHH l,ljVVV ljVVV
†

ljHHH
†
l,lj

,

QQQlj = (ρ/d)
∑
ik∈I

HHH l,ikVVV ikVVV
†

ik
HHH†l,ik −RRRlj (4.2.9)

The MIMO IMAC is the communication scenario that is investigated in Chap. 5.

4.2.3 General Remarks
Note that both the MIMO IBC and MIMO IMAC form the basis for deriving all
downlink and uplink models, i.e., every model is a special case of either one. In
that sense, the MIMO Interference Channel and the MIMO Broadcast Channel
(MIMO BC) are special cases of the MIMO IBC, and the MIMO Multiple-Access
Channel (MIMO MAC) is special case of the MIMO IMAC. Thus, we restrict our
presentation in this chapter, to the MIMO IBC and MIMO IMAC.

Note that we use the term transmit filters / receiver filters in view of keeping
nomenclature generic: this way, our framework is equally applicable to both MIMO
IMAC and MIMO IBC. With that in mind, the transmit filters {VVV lj} represent the
set of transmit precoders at the BSs (in the MIMO IBC context), and the transmit
precoders used by the UE’s (in the MIMO IMAC context). In addition, the receiver
filters {UUU lj} represent the set of receive filters at the UEs (in the MIMO IBC
context), and the receive filter applied at the BSs (in the MIMO IMAC context).
This is shown in Fig. 4.2 and Fig. 4.3

Note that in the above models (and what follows thereafter) we assume that
M,N and d are the same across users and BSs, for conciseness. However, this can
easily extended by adding the relevant indexes.

4.2.4 Assumptions
We first make explicit the following definitions.

Definition 4.2.1 (Local and Global CSI). Given a network of transmitters / re-
ceivers, global CSI refers to channel knowledge regarding all channels in the network.
On the other hand, local CSI refers to the channels that are directly linked to a
transmitter or receiver.

Definition 4.2.2 (Distributed Algorithm). In the scope of this thesis, an algorithm
is classified as distributed if it requires local CSI at each transmitter and receiver.

We outline the main assumptions of this part in the thesis.

Assumption 4.2.1 (Local CSI). We assume that the users and BSs have local
CSI, i.e., each user (resp. BS) knows the channels to its desired and interfering BSs
(resp. users). We recall that investigating the CSI acquisition mechanism is not part
of this work.
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Assumption 4.2.2 (Perfect CSI). CSI at each BS and user is assumed to be
perfectly known, i.e., channel estimation errors are not accounted for.

Assumption 4.2.3 (Distributed Operation). All schemes are required to use local
CSI only, using the framework of Forward-Backward training.

Assumption 4.2.4 (Decoding). Note that a common assumption in multi-user
uplink communication scenarios, is that multi-user decoding is performed (e.g. suc-
cessive interference cancellation). Due to the fact that such receivers are hard to
realize in practice, we do not make such assumptions. Moreover, joint encoding and
decoding of each user’s desired streams in assumed, while interference is treated as
noise.

Assumption 4.2.5 (Low-Overhead Regime). Following the argument put forth in
Sect. 4.3.3, we restrict our proposed schemes to operate in the low-overhead regime,
where only a small number of F-B iterations is used.

Assumption 4.2.6 (Transmit and receive power constraints). We underline the
fact that most of the work thus far only enforces a power constraint on the pre-
coder. The reason for that is the fact that communication in those setting is only
one-directional, i.e. from transmitter to receiver, and thus no receive power con-
straint is needed. However, our argument is as follows: when using distributed
optimization schemes employing F-B iterations, receivers are active in one of the
phases (i.e., by sending pilots). Thus, generally, one does need a maximum transmit
power constraint for the receiver filter, in addition to the maximum transmit power
constraint. In contrast to what has been done so far, we take this fact into account
in all our contributions, within this thesis: we impose a maximum power constraint
for both the transmitter and receiver.

4.3 Distributed CSI Acquisition

Obviously, all the methods discussed in the last section require each transmitter
and receiver to have local CSI. In this part, the CSI acquisition mechanism is
distributed. Such a mechanism underlies all our proposed schemes in this part of
the thesis, namely, the algorithms proposed in Chap. 5 and Chap. 6. And although
the investigation of different CSI acquisition mechanisms are outside the scope of
the thesis, we briefly summarize that process, for completeness.

4.3.1 Forward Backward Iterations
Also known as ping-pong iterations, over-the-air iterations, and bi-directional train-
ing. In the context of cellular networks, one of the fundamental building blocks for
distributed optimization techniques are the so-called Forward-Backward (F-B) it-
erations. In brief, F-B iterations exploit the reciprocity of the network - which only
holds in systems employing Time-Division Duplexing (TDD), and local CSI at each
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Figure 4.4: Basic structure of Forward-Backward (F-B) iteration

node, to gradually refine each of the transmit and receive filters, one at a time. In
the forward phase, transmitters send precoded pilots that allow each receiver to
acquire local CSI. Based on the latter, each receiver optimizes its receive filter (de-
pending on cost function that is used). The same process is used for the backward
phase, whereby receivers send precoded pilots, transmitters estimate their local CSI
and update their respective filters. This constitutes one F-B iteration (represented
in Fig. 4.4), the number of such iterations is a design choice. The main feature of
this process is that it results in a distributed algorithm. Though not made explicit,
this underlying F-B structure is ubiquitous in almost all distributed optimization
techniques for cellular networks, e.g., [GCJ11,SSB+09, SRLH11,PH11,SGHP10a].
Those works are among the first to use this particular F-B structure within the
context of MIMO IC and MIMO IBC, but its usage is attributed to many earlier
works such as [CTRF02,Ben02].

4.3.2 Mechanism for CSI Acquisition

The operation of the aforementioned schemes is contingent upon each transmit-
ter / receiver being able to estimate the signal and/or the interference-plus-noise
covariance matrices, in a fully distributed manner. This is accomplished via the
use of precoded pilots to estimate the effective channels. The methods developed
in [BB15a] are fully applicable, and we thus summarize the basic underlying struc-
ture. In the first phase, the signal covariance matrix for receiver lj ,RRRlj , can be com-
puted after estimating the effective signal channel, and the interference-plus-noise
covariance matrix is computed after estimating the effective interfering channels.
The receive filters at the BSs are updated following any of the proposed algorithms.
Then, in the second phase, the same procedure is used to estimate the signal and
interference-plus-noise covariance matrices, and update the filters at the receivers.
The process is summarized in Fig. 4.4. This aforementioned process constitutes one
forward-backward (F-B) iteration. We let T denote the total number of such iter-
ations that are carried out. We refer the interested reader to [BB15a] for a fully
detailed description of this mechanism.
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4.3.3 Communication Overhead

Thus, for such schemes to be fully distributed (i.e. requiring only local CSI), the
required CSI quantities have to be obtained via uplink-downlink pilots and train-
ing. As we can see, each F-B iteration has an associated communication over-
heard, namely the cost of bi-directional transmission of pilots. Although many other
works consider a more comprehensive definition of overhead (such as [EALH12]
and [EALH11]), we adopt a more simplistic definition, keeping in mind that the
actual overhead will be close to this quantity: it is the number of (minimal orthog-
onal) pilots symbols needed for estimating the required CSI quantities (assuming
that minimal number of orthogonal pilots is used, i.e., d orthogonal pilot slots for
each uplink/downlink effective channel).

The complexity, pilot requirement, and number of forward-backward iterations
depend on the type of global cost function that is being optimized. Simple cost
functions such as interference leakage [GCJ11] and MSE [SSB+09], were initially
considered, and later extended to directly optimize more complex cost functions
such as the sum-rate [SGHP10b], weighted sum-rate [SRLH11]. It becomes clear
at this stage that the overhead associated with such schemes is largely dominated
by the number of such F-B iterations, before convergence is reached. That being
said, almost all schemes falling under the category of F-B iterations, require a
relatively large number of such iterations, in the order of hundreds to thousands
[SSB+13]. Moreover, this number seems to increase with the dimensions of the
system. Consequently, this modus operandi is not feasible in a cellular network
(since F-B iterations are carried out over-the-air, and the associated overhead would
be higher than the potential gains). We thus focus on a regime where T = 2 ∼ 5.

This major limitation became the object of recent investigations such as [KTJ13,
BB15b,GKBS15,GKBS16b]. In our recent work, we also proposed algorithms with
improved convergence properties, using the interference leakage as cost function [GKBS15],
and (lower bounds on) the sum-rate [GKBS16b] function. The proposed schemes
achieve a similar performance as their conventional counterparts, however, with a
drastically lower number of forward-backward iterations. Such schemes result in
orders of magnitude reduction in overhead, over the conventional counterparts. In
fact, one of the main contributions of this part (Chap. 6 and Chap. 5) is to design
algorithms that operate under a very low-overhead regime (where just a few F-B
iterations are performed).

Although additional issues such as robustness and CSI error, have to considered
as well, such matter are outside the scope of our work (we refer the interested reader
to [BB15a]).
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4.4 Problem Formulation

4.4.1 Distributed Utility Maximization
We refer to network-utility functions as a type of utility functions that are used
in the context of communication networks, namely, cellular networks in our work.
With that in mind, distributed network-utility optimization refers to the process
of designing distributed optimization algorithms, that optimize some network-wide
sum-utility function, over a set of optimization variables. In the context of cellular
networks (more specifically, the MIMO IBC / MIMO IMAC), this can be written
in generic from, as follows,{

max uΣ =
∑
lj∈I ulj ({UUU lj}, {VVV lj})

s. t. VVV lj ∈ Vlj , UUU lj ∈ Ulj , ∀ lj ∈ I
(4.4.1)

where VVV lj ∈ CM×d and UUU lj ∈ CN×d are transmit and receive filter for user lj ∈ I,
respectively. uΣ is the network-wide utility function (also called sum-utility func-
tion), and ulj the utility of user lj ∈ I, defined as

ulj ({UUU lj ,VVV lj}) : {CN×d × CM×d}KL → R+ (4.4.2)

and assumed to be smooth and twice differentiable. Moreover, uΣ is assumed to be
(additively) separable, i.e., uΣ =

∑
lj∈I ulj (UUU lj , {VVV lj})

Moreover, the sets Vlj and Ulj representing individual constraints (possibly non-
convex), are assumed to be closed. While constraints arising in the context of the
wireless communication can be quite diverse, in the proposed framework, they are
assumed to be per-user, e.g., ‖VVV lj‖

2
F ≤ Plj , ∀lj ∈ I and ‖UUU lj‖

2
F ≤ Plj , ∀lj ∈ I.

The argument in favor of having a maximum transmit power constraint, for the
receiver as well, is discussed in Sect. 4.2.6 .

4.4.2 Block-Coordinate Descent
The framework under consideration entails tackling problems such as (4.4.1), using
the well known Block-Coordinate Descent (BCD) method (described in Sect. 1.1.1):
the block {UUU lj} is optimized, while the block {VVV lj} is assumed to be fixed (and
vice-versa). Letting n denote the iteration index, the resulting method is formalized
below,

{VVV n+1
lj
} , argmax

{VVV lj }
uΣ

{UUUn+1
lj
} , argmax

{UUU lj }
uΣ({UUU lj}, {VVV

n
lj})︸ ︷︷ ︸

J1

, {VVV lj}


︸ ︷︷ ︸

J2

, n = 1, 2, ...

(4.4.3)
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Moreover, the resulting subproblems are as follows,

(J1)

max
{UUU lj }

∑
lj∈I ulj ({UUU lj}, {VVV

n
lj})

s. t. UUU lj ∈ Ulj ,∀lj ∈ I
(4.4.4)

(J2)

max
{VVV lj }

∑
lj∈I ulj ({UUU

n+1
lj
}, {VVV lj})

s. t. VVV lj ∈ Vlj ,∀lj ∈ I
(4.4.5)

Since uΣ is separable, then the latter problems can be rewritten in equivalent form,

(J1) : UUUn+1
lj

argmax
UUU lj

ulj (UUU lj , {VVV
n
lj})

s. t. UUU lj ∈ Ulj
,∀lj ∈ I (4.4.6)

(J2) : VVV n+1
lj

argmax
VVV lj

ulj ({UUU
n+1
lj
},VVV lj )

s. t. VVV lj ∈ Vlj ,
∀lj ∈ I (4.4.7)

where UUUn+1
lj

and VVV n+1
lj

are local optimizers for (J1) and (J2), respectively , i.e.,
UUUn+1
lj

and VVV n+1
lj

need not be globally optimal solutions to their respective problems,
but only satisfy the KKT conditions.

Regarding convergence of the BCD method in(4.4.3) under the proposed frame-
work, the latter can readily be established in a straightforward manner.

Proposition 4.4.1 (Monotonicity). Let ψn , uΣ({UUUnlj}, {VVV
n
lj}), n = 1, 2, ... be the

sequence of iterates for the objective value. Then, {ψn} is non-decreasing in n, and
converges to a limit point, ψ0

The proof is simple. The application of each of the updates, {UUUn+1
lj
} and {VVV n+1

lj
},

cannot decrease the cost function,

uΣ({UUUnlj}, {VVV
n
lj}) ≤ uΣ({UUUn+1

lj
}, {VVV nlj}) ≤ uΣ({UUUn+1

lj
}, {VVV n+1

lj
})

where the inequalities follow from the fact that the application of the optimal
updates for (J1) and (J2), UUUn+1

lj
and VVV n+1

lj
, cannot increase ψn. It follows that ψn

is non-decreasing, and there exists a limit point, ψ0, such that ψ0 = limn→∞ ψn

Thought monotonic convergence to a limit point is guaranteed, establishing the
fact that the latter is a stationary point of uΣ obviously requires more conditions.
If strong convexity for each of the subproblems, (J1) and (J2), can be established,
the corresponding minimizers, UUUn+1

lj
and VVV n+1

lj
, are unique, and convergence to a

stationary point immediately follows.
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As it will become clear, the above formulation encompasses a wide array of
network-utility optimization problems. Thus it can be verified that a significant
fraction of previous works is a special case of the latter, namely, mean-squared error
minimization [SSB+09, PH11], interference leakage minimization [GCJ11]. More-
over, the two major contributions of this thesis, in this part, are alternate embod-
iments of that framework: in Chap. 5, uΣ represents the so-called DLT bound (a
lower bound on the sum-rate), and in Chap. 6 uΣ represents the total interference
leakage.

4.4.3 Sum-rate maximization
The first utility in question is the sum-rate, defined as the sum of all individual
achievable rates (across all users).

SRM for MIMO IBC

For the MIMO IBC setup in (4.2.1), the achievable rate of receiver lj is given by,

rlj = log2

∣∣∣∣IIId +
(
UUU
†

ljRRRljUUU lj

)(
UUU
†

lj (QQQlj + σ2IIIN )UUU lj
)−1

∣∣∣∣ , lj ∈ I (4.4.8)

Then, the corresponding sum-rate maximization problem (for the MIMO IBC) is
formulated as follows,

(SRM − IBC)
{

max RΣ({UUU lj}, {VVV lj}) =
∑
lj∈I rlj

s. t. ‖VVV lj‖
2
F ≤ Pt, ‖UUU lj‖

2
F ≤ Pr ∀lj ∈ I

(4.4.9)

where Pt is the total power budget of transmitter lj , and Pr that power constraint
of receiver lj (the argument for including a receive power constraint was discussed
in Assumption 4.2.6). In contrast to previous formulations of (SRM − IBC) where
a sum-power constraint is used [SRLH11], we follow the main assumptions of
the proposed framework (Sect. 4.4), and assume a per-user power constraint (as
shown in the above problem) - keeping in mind that a sum-power constraint could
potentially be handled. Note that the above problem degenerates into a the sum-
rate maximization problem for MIMO IC, (SRM−IC), when one user is served by
each BS. And since the latter is NP-hard [RLL11], it follows that (SRM − IBC)
is NP-hard as well.

Special Case: SRM for MIMO IC Following the signal model for the MIMO
IC in (4.2.1), the achievable sum-rate of receiver l ∈ I is given by,

rl = log2

∣∣∣∣IIId +
(
UUU
†

lRRRlUUU l

)(
UUU
†

l (QQQl + σ2IIIN )UUU l
)−1

∣∣∣∣ , (4.4.10)
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We can then formulate the sum-rate maximization problem, (SRM−IC), as follows,

(SRM − IC)
{

max RΣ({UUU l}, {VVV l}) =
∑L
l∈I rl

s. t. ‖VVV l‖2F ≤ Pt, ‖UUU l‖2F ≤ Pr,∀ l ∈ I
(4.4.11)

SRM for MIMO IMAC

Following the signal model for the MIMO IMAC setup in (4.2.2), the achievable
rate of user lj ∈ I is given by,

rlj = log2 |IIId + (UUU
†

ljRRRljUUU lj )(UUU
†

lj (QQQlj + σ2IIIN )UUU lj )
−1|, (4.4.12)

Then, the corresponding sum-rate maximization problem (for the MIMO IMAC is
formulated as follows,

(SRM − IMAC)
{

max RΣ({UUU lj}, {VVV lj}) =
∑
lj∈I rlj

s. t. ‖VVV lj‖
2
F ≤ Pt, ‖UUU lj‖

2
F ≤ Pr, ∀lj ∈ I

(4.4.13)

The discussion motivating the use of a receive power constraint was discussed in
Assumption 4.2.6. In contract the the MIMO IBC case, trying to impose the same
sum-power constraint in the MIMO IMAC leads to a sum-power constraint across
all UEs, in one cell: this is clearly not applicable in practice since it would hinder
the distributed nature of the algorithm. For the reasons above, a per-user constraint
is the natural choice, in the sum-rate maximization problem for the MIMO IMAC,
a per-user power allocation is assumed. Similarly to the MIMO IBC case, the NP-
hardness of (SRM − IMAC) can be easily establish.

Relevant Work Despite the fact that most SRM problems are NP-hard, several
approaches still tacked the latter problem. The authors in [SGHP10a] use Block
Coordinate Descent (BCD) to alternately optimize the transmit and receive fil-
ter for a MIMO IC, while moving in the direction of sum-rate gradient at each
step (convergence to a local minimum could not be shown due to the projection
step). The weighted SRM problem for the MIMO IC was addressed in [NSGS10]
where the authors exploit the equivalence between the weighted SRM problem
and the Weighted MMSE problem to design an BCD-based algorithm to alter-
nately optimize the transmit and receive filters (convergence to a local optimum
was shown). The same problem and algorithm was generalized in [SRLH11] for
the MIMO IBC setting, as the well known Weighted MMSE algorithm. Note that
the above SRM problems (IBC, IC and IMAC) do not fall under the framework
presented in Sect. 4.4. However, the main contribution of Chap. 5 is to propose a
mechanism for circumventing the latter problem, by introducing a utility that we
dub Difference of log and trace (DLT).
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4.4.4 Interference Leakage Minimization

The interference leakage is yet another metric that is used for optimizing the per-
formance of multiuser cellular networks. In contrast to (SRM) problems that are
quite complicated, the leakage metric yields simple tractable expressions. Within
the context of Interference Alignment for MIMO IC, the interference leakage min-
imization (LM) problem was first formulated in [GCJ11]. We present it for the
generic MIMO IBC case.

4.4.5 LM for MIMO IBC

Following the signal model introduced in Sect. 4.2.1, the Leakage Minimization
problem (LM) is formulated as,

(LM − IBC)
{

min φ({UUU lj}, {VVV lj}) =
∑
lj∈I tr(UUU

†

lj
QQQljUUU lj )

s. t. UUU †ljUUU lj = IIId, VVV
†

lj
VVV lj = IIId, ∀lj ∈ I

(4.4.14)

It can be easily checked that (LM − IBC) belongs to the framework presented
in Sect. 4.4: φ is separable, and convex in each block of variables. Moreover, the
resulting subproblem, has a unique solution (given by the eigenvectors of the co-
variance matrix in question). The framework presented in Chap. 4.4 is fully ap-
plicable. This is the basis of the well-known Distributed Interference Alignment
algorithm [GCJ11].

Motivation It can be seen that (LM − IBC) is a “surrogate problem” for inter-
ference alignment, in the sense that if φ = 0, then the IA conditions in Sect. 4.1.1
are satisfied. Moreover, another motivation for leakage minimization problem is its
connection to sum-rate maximization problem [GKBS15]. Referring to (4.4.9), as
σ2 → 0 (high-SNR regime), the achievable rate rlj can be approximated by,

r̃lj = log2

∣∣∣UUU †ljRRRljUUU lj ∣∣∣− log2

∣∣∣UUU †ljQQQljUUU lj ∣∣∣
Then, one can approximate (SRM − IBC) as follows,

(SRM − IBC) max
{UUU

lj
},{VVV

lj
}

R̃Σ =
K∑
l=1

L∑
j=1

r̃lj . (4.4.15)

By construction, algorithms based on interference leakage (referred to as subspace
methods) only optimize the interference subspace (as previously proposed algo-
rithms in [GCJ11], [PH11]). Thus, by dropping the signal term in r̃lj , we can bound
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it as follows,

r̃lj ≥ − log2

∣∣∣UUU †ljQQQljUUU lj ∣∣∣ (a)
≥

d∑
i=1
− log2

(
[UUU
†

ljQQQljUUU lj ]ii
)

(b)
> −

d∑
i=1

[UUU
†

ljQQQljUUU lj ]ii = −tr(UUU
†

ljQQQljUUU lj )

where (a) follows directly from applying Hadamard’s inequality, i.e. |AAA| ≤
∏

[AAA]ii
for AAA � 000, and (b) from the fact that x > log2(x), ∀ x > 0. Although this result
is expected, it proves that minimizing the interference leakage at each user, results
in optimizing a lower bound on the user’s high-SNR rate.

Related Work Several later works opted to use the interference leakage as met-
ric for optimization due to its inherent simplicity (e.g., [PH11] and [GCJ11]). The
authors in [MNM11] used the interference leakage as a metric, however, their for-
mulation entails a constraint on the desired signal space. The main contribution of
the thesis for the LM problem, is that of Chap. 6, where we investigate relaxing
the (LM − IBC) problem (replacing the unitary constraints with maximum power
constraint), thereby speeding up the convergence of their proposed algorithm.
Problem Statement: The goal for this part of the thesis is to develop algorithms
under the umbrella of the above framework. Moreover, such algorithms should be
fast-converging (i.e., T = 2 ∼ 5 F-B iterations), with convergence that is shown
analytically.



Chapter 5

Sum-Rate Maximization
Algorithms

We address the problem of sum-rate maximization in MIMO Interfering
Multiple-Access Channels (MIMO IMAC) in this chapter. Due to the
NP-hard nature of the problem (discussed in Chap. 4.2.2), we propose

to lower bound the problem using a so-called DLT bound (i.e., a difference of log
and trace). We show that it is a lower bound on the sum-rate, shed light on its
tightness, and underline a major advantage of using such a bound: The result-
ing problem is an instance of the distributed network-utility optimization, and it
thus leads to separable subproblems that decouple at both the transmitters and
receivers. Moreover, we derive the solution to the latter subproblem, that we dub
non-homogeneous waterfilling (a variation on the MIMO waterfilling solution), and
underline an inherent desirable feature: its ability to turn-off streams exhibiting
low-SINR, thereby greatly speeding up the convergence of the proposed algorithm.
We then show the convergence of the resulting algorithm, max-DLT, to a stationary
point of the DLT bound (a lower bound on the sum-rate).

We also propose a distributed algorithm dubbed Alternating Iterative Maximal
Separation (AIMS), that is a generalization of max-SINR [GCJ11]. Furthermore,
we argue (and later verify via simulations) that this generalization offers superior
performance over max-SINR. Finally, we rely on extensive simulation of various net-
work configurations, to establish the superior performance of our proposed schemes,
with respect to other state-of-the-art methods.

Remark 5.1. Though the paper addresses the problem at hand for a MIMO IMAC,
it can be verified that the latter framework and methods are applicable to the
network-dual problem, the MIMO IBC, without modifications. Needless to say, it
also applies to all ensuing special cases, such as the MIMO IFC, and the MIMO
Multiple-Access Channel. This will be done in the numerical results section of this
chapter.

Notation: In addition to the notation defined in Chap. 1, we define the following:
for a given matrix AAA, AAA−† denotes (AAA†)−1.

75
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5.1 Maximizing DLT bounds

In this section we propose another approach to tackle the sum-rate optimization
problem. The central idea behind this approach is to use a lower bound on the sum-
rate, that results in separable sub-problems. Following the MIMO IMAC model
presented in Chap. 4.2.2, the rate of user lj is given by,

rlj = log2 |IIId + (UUU
†

ljRRRljUUU lj )(UUU
†

ljQQQljUUU lj )
−1|, (5.1.1)

where RRRlj and QQQlj are the desired signal and interference-plus-noise (IPN) covari-
ance matrices for user j, at BS l, respectively, and are given by,

RRRlj = HHH l,ljVVV ljVVV
†
lj
HHH†l,lj , lj ∈ I

QQQlj =
L∑
i=1

K∑
k=1

HHH l,ikVVV ikVVV
†
ik
HHH†l,ik + σ2

l IIIN −RRRlj , lj ∈ I.

and σ2
l is the noise variance as BS l ∈ L. Moreover, we define,

R̄RRik = HHH†i,ikUUU ikUUU
†
ik
HHHi,ik , ik ∈ I

Q̄QQik =
L∑
l=1

K∑
j=1

HHH†l,ikUUU ljUUU
†
lj
HHH l,ik + σ̄2

ik
IIIM − R̄RRik , ik ∈ I

as the signal and IPN covariance matrices of user ik, in the reverse network (where
σ̄2
ik

is the noise variance at user ik). Finally, we henceforth denote LLLljLLL
†
lj

as the
Cholesky Decomposition of QQQlj , and KKKikKKK

†
ik

as that of Q̄QQik
We restate the resulting sum-rate maximization problem for the MIMO IMAC

(4.4.13), for convenience.

(SRM − IMAC)
{

max RΣ({UUU lj}, {VVV lj}) =
∑
lj∈I rlj

s. t. ‖VVV lj‖
2
F = Pt, ‖UUU lj‖

2
F = Pr, ∀lj ∈ I

(5.1.2)

Note that while the original formulation entails inequality constraints on the trans-
mit/receive filters, we will adopt in this chapter, and equality (as seen above). The
reason for this choice will be discussed in details, in Chap 5.1.4. Our proposal is
to lower bound rlj , using the so-called DLT bound, as follows,

r
(LB)
lj

, log2 |IIId +UUU†ljRRRljUUU lj | − tr(UUU†ljQQQljUUU lj ). (5.1.3)
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5.1.1 Problem Formulation
The derivations leading up to r(LB)

lj
are detailed in this section, focusing on interference-

limited case where the following holds,

λi[UUU†ljQQQljUUU lj ]→∞, ∀i ∈ {d},

⇔

{
A1) λi[(UUU†ljQQQljUUU lj )

−1]→ 0, ∀i ∈ {d}
A2) IIId � (UUU†ljQQQljUUU lj )

−1 (5.1.4)

Proposition 5.1.1. When (UUU†ljQQQljUUU lj ) � IIId, the user-rate rlj in (4.4.12) is lower
bounded by,

rlj ≥ log2 |IIId +UUU†ljRRRljUUU lj | − log2 |UUU
†
lj
QQQljUUU lj |, (b.1)

≥ log2 |IIId +UUU†ljRRRljUUU lj | − tr(UUU†ljQQQljUUU lj ) , r
(LB)
lj

, (5.1.5)

where r(LB)
lj

is such that,

∆lj , rlj − r
(LB)
lj

= tr(UUU†ljQQQljUUU lj )− log2 |UUU
†
lj
QQQljUUU lj |

+O(tr[(UUU†ljQQQljUUU lj )(UUU
†
lj
RRRljUUU lj )−1]), ∀lj ∈ I . (5.1.6)

Proof. Refer to Appendix 5.6.2.

The DLT bound, r(LB)
lj

, shall be used as basis for the optimization algorithm.
With that in mind, the sum-rate RΣ, can be lower bounded by R(LB)

Σ ,

R
(LB)
Σ

=
∑
lj∈I

log2 |IIId +UUU†ljRRRljUUU lj | − tr(UUU†ljQQQljUUU lj ) (5.1.7)

=
∑
ik∈I

log2 |IIId + VVV †ikR̄RRikVVV ik | − tr(VVV †ikQ̄QQikVVV ik), (5.1.8)

where the last equality is due to log |III + AAABBB| = log |III + BBBAAA|, and the linearity
of tr(.). Then, the MIMO IMAC sum-rate optimization problem in (5.1.2), can be
bounded below by solving the following, max

{VVV lj ,UUU lj }
R

(LB)
Σ

s. t. ‖UUU lj‖2F = Pr, ‖VVV lj‖2F = Pt, ∀lj ∈ I
(5.1.9)

Note that the above problem is not jointly convex in all the optimization variables,
due to the coupling between the transmit and receive filters.
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5.1.2 Proposed Algorithm
The formulation in (5.1.9) is an alternate embodiment of the distributed sum-
utility optimization framework (Sect. 4.4): we employ it to tackle 5.1.9. We use the
superscript (n) to denote the iteration number: at the nth iteration, the transmit
filters, {VVV (n)

lj
}, are fixed, and the update for the receive filters, {UUU (n+1)

lj
}, is the one

that maximizes the objective (and vice versa). This is formalized in (5.1.10), and
each of the resulting subproblems are detailed below.

{VVV (n+1)
lj

} , argmax
{VVV lj }

R
(LB)
Σ

{UUU (n+1)
lj

} , argmax
{UUU lj }

R
(LB)
Σ ({UUU lj}, {VVV

(n)
lj
})︸ ︷︷ ︸

J1

, {VVV lj}


︸ ︷︷ ︸

J2

, n = 1, 2, ...

(5.1.10)

Essentially, in each of the two stages, BCD decomposes the original coupled prob-
lem (5.1.9), into a set of parallel subproblems, that can solved in distributed fash-
ion. When the transmit filters are fixed, the problem decouples in the receive filters
{UUU lj}(as seen from (5.1.9)), and the resulting subproblems are given by,

(J1)

min
UUU lj

∑
lj∈I tr(UUU

†
lj
QQQljUUU lj )− log2 |IIId +UUU†ljRRRljUUU lj |

s. t. ‖UUU lj‖2F = Pr, ∀lj ∈ I
(5.1.11)

By recalling that R(LB)
Σ can be written in both (5.1.9) and (5.1.8), (J2) can be

written as,

(J2)

min
VVV ik

∑
ik∈I tr(VVV

†
ik
Q̄QQikVVV ik)− log2 |IIId + VVV †ikR̄RRikVVV ik |

s. t. ‖VVV ik‖2F = Pt, ∀ik ∈ I
(5.1.12)

Using the fact that R(LB)
Σ is separable, the resulting sub-problem at each receiver,

and transmitter are given as,

(J1)

min
UUU lj

tr(UUU†ljQQQljUUU lj )− log2 |IIId +UUU†ljRRRljUUU lj |

s. t. ‖UUU lj‖2F = Pr,
,∀lj ∈ I, (5.1.13)

(J2)

min
VVV ik

tr(VVV †ikQ̄QQikVVV ik)− log2 |IIId + VVV †ikR̄RRikVVV ik |

s. t. ‖VVV ik‖2F = Pt,
,∀ik ∈ I, (5.1.14)

respectively. Thus, choosing DLT expressions is rather advantageous, since they
lead to subproblems that decouple in both {UUU lj} and {VVV lj}
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Thus, choosing DLT expressions is rather advantageous, since they lead to sub-
problems that decouple in both {UUU lj} and {VVV lj}. Note that the equality constraints
in (J1) and (J2), do not affect the convexity of the problems, as they are already
non-convex. Indeed, expressions such as − log2 |IIId +UUU†ljRRRljUUU lj | are not convex in
UUU lj . 1 However, this does not make BCD less applicable, as long as (J1) and (J2)
are solved globally. The solution to each of the subproblems is given by the following
result.

Lemma 5.1.1. Non-homogeneous Waterfilling.
Consider the following problem,

(P )
{

min
XXX∈Cn×r

f(XXX) , tr(XXX†QQQXXX)− log2 |IIId +XXX†RRRXXX|

s. t. ‖XXX‖2F = ζ.
(5.1.15)

where QQQ � 000 and RRR � 000, r < n. Let QQQ , LLLLLL† be the Cholesky factorization of
QQQ, and MMM , LLL−1RRRLLL−†, MMM � 000, and define the following, {αi , λi[MMM ]}ri=1 ,
ΨΨΨ , v1:r[MMM ], {βi , ΨΨΨ†(i)(LLL

†LLL)−1ΨΨΨ(i)}ri=1.
Then the globally optimal solution for the above problem is given by,

XXX? = LLL−†ΨΨΨΣΣΣ?, (5.1.16)

where ΣΣΣ? (diagonal) is the optimal power allocation,

(P4)

min
{xi}

∑r
i=1 (xi − log2(1 + αixi))

s. t.
∑r
i=1 βixi = ζ, xi ≥ 0,∀i

(5.1.17)

Proof. Refer to Appendix 5.6.3

We underline that a similar problem was solved in [KG11]. However, a closer
look reveals that their problem formulation concerns covariance optimization - a
convex problem, as opposed to the non-convex precoder optimization in (P ), and
does not entail a power constraint. Hence, their results are not applicable to (P ).
With that in mind, (P4) has a closed-form solution can be obtained using standard
Lagrangian techniques.

Lemma 5.1.2. The solution to the optimal power allocation in (P4) is given by,

ΣΣΣ?(i,i) =
√(

1/(1 + µ?βi)− 1/αi
)+
,∀i, (5.1.18)

µ? is the unique root to,

g(µ) ,
r∑
i=1

βi

(
1/(1 + µβi)− 1/αi

)+
− ζ,

1To see this, consider the (degenerate) scalar case. It can be verified that − log2(1+ru2), r > 0
is concave for u� 1, and convex for u� 1.
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on the interval ] − 1/(maxi βi), ∞[, and g(µ) is monotonically decreasing on that
interval.

Proof. Refer to Appendix 5.6.3

With that result, the optimal receive and transmit filter updates - the solution
to (J1) and (J2) respectively, can be written as,

UUU?lj = LLL−†lj ΨΨΨlj ΣΣΣ?lj , ΨΨΨlj , v1:d[LLL−1
lj
RRRljLLL

−†
lj

], ΨΨΨlj ∈ CN×d, ∀ lj ,

VVV ?ik = KKK−†ik ΘΘΘik ΛΛΛ?ik , ΘΘΘik , v1:d[KKK−1
ik
R̄RRikKKK

−†
ik

], ΘΘΘik ∈ CM×d, ∀ ik , (5.1.19)

where ΣΣΣ?lj ∈ Rd×d+ and ΛΛΛ?ik ∈ Rd×d+ are the optimal diagonal power allocation,
for the receive and transmit filter updates, respectively (given in Lemma 5.1.1).
Moreover, LLLljLLL

†
lj

, QQQlj ,LLLlj ∈ CN×N is the Cholesky factorization of QQQlj , and
KKKikKKK

†
ik

, Q̄QQik ,KKKik ∈ CM×M is the Cholesky factorization of Q̄QQik , respectively.
The resulting algorithm, max-DLT, is detailed in Algorithm 3 (where T is the

number of F-B iterations). Moreover, due to the monotone nature of g(µ), µ? can
be found using simple 1D search methods, such as bisection.

Remark 5.2. We note that ΣΣΣ?lj and ΛΛΛ?ik are both required to ensure the monoton-
ically increasing nature of the updates. And despite the fact that the actual user
rate in (4.4.12) is invariant to ΣΣΣlj , the latter is indeed heavily dependent on the
choice of ΛΛΛik .

Algorithm 3 Maximal DLT (max-DLT)
for t = 1, 2, ..., T do

// forward network optimization: receive filter update
Estimate RRRlj ,QQQlj , and compute LLLlj , ∀lj
UUU lj ← LLL−†lj v1:d[LLL−1

lj
RRRljLLL

−†
lj

]ΣΣΣlj , ∀lj
// reverse network optimization: transmit filter update
Estimate R̄RRik , Q̄QQik , and compute KKKik , ∀ik
VVV ik ←KKK−†ik v1:d[KKK−1

ik
R̄RRikKKK

−†
ik

]ΛΛΛik , ∀ik
end for

5.1.3 Relation to Other Methods
The fact that the proposed approach seems close to other heuristics such as suc-
cessive convex programming (SCP) and the convex-concave procedure (CCP), is
misleading. Those methods start with expressions such as (b.1) (Proposition 5.1.1),
and approximate log2 |UUU

†
lj
QQQljUUU lj | with a linear function (in the case of CCP [LB15]),
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or lower bound it with a quadratic one (in the case of SCP [SZ95]). The approxi-
mation is iteratively updated until convergence. We will derive updates for the case
of CCP, to illustrate our argument.

Starting with expressions such as (b.1) (Proposition 5.1.1),

min
UUU lj

log2 |UUU
†
lj
QQQljUUU lj |︸ ︷︷ ︸

h(UUU lj )

− log2 |IIId +UUU†ljRRRljUUU lj |︸ ︷︷ ︸
g(UUU lj )

, (5.1.20)

CCP [LB15] generates a sequence of iterates {UUU (n)
lj
}n, where at iteration n, h is

approximated using its Taylor expansion at UUU (n)
lj

, as follows.

UUU
(n+1)
lj

= argmin
UUU lj

(
h(UUU (n)

lj
) + tr

{
∇h(UUU (n)

lj
)†(UUU lj −UUU

(n)
lj

)
})
− g(UUU lj )

= argmin
UUU lj

tr(∇h(UUU (n)
lj

)†UUU lj )− g(UUU lj )

= argmin
UUU lj

tr((AAA(n)
lj

)†UUU lj )− log2 |IIId +UUU†ljRRRljUUU lj | (5.1.21)

As the resulting problem in (5.1.21) is not convex, the expressions do yield closed
form solutions for the updates UUU (n)

lj
→ UUU

(n+1)
lj

. For those reasons, classical ap-
proaches such as the CCP are not of great use for the problem at hand. A similar
argument can be made about the unsuitability of SCP as well. While the deriva-
tions in (5.1.21) apply CCP to transmit/receive filter optimization, they are better
suited for covariance optimization problems. In such instances, their application
yields convex problems (in contrast to (5.1.21)). Despite the fact that some ear-
lier works successfully applied such methods to weighted sum-rate maximization
problems ( [NLN14,YCL14]), this was in done in the context of transmit covari-
ance optimization: We will benchmark against such a CCP scheme, where transmit
covariance optimization was considered in the MIMO IMAC setting [NLN14].

Note that a comparison between the CCP updates in (5.1.21) and those resulting
from our proposed approach, e.g., (J1), reveals that indeed our approach is different
from CCP. With that in mind, iteratively updating the DLT bound around the
operating point (in a similar fashion to CCP or SCP), is not applicable: this is not
of interest in this work, as the resulting bound would not be separable and decouple
at transmit/receive filter. We also note that such approaches will inevitably lead
to additional communication overhead and complexity; this goes against the main
motivation of the work (communication overhead is detailed in Sec. 5.3.4). While
this design choice might not lead to the best bound, the tightness of the DLT
bound is shown in Proposition 5.1.1. In addition, the choice of our particular DLT
expression, follows from the fact that few choices of bounds result in separable
subproblems at both the transmitters and receivers.
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5.1.4 Analysis and Discussions
Interpretation We provide an intuitive interpretation of the problem in Lemma 5.1.1
and its solution. It can be easily verified that {αi , λi[LLL−1RRRLLL−†]}ri=1 are also the
eigenvalues of QQQ−1RRR (where RRR and QQQ represent the signal and IPN covariance ma-
trix, respectively). Thus, {αi} acts as a (quasi)-SINR measure, for each of the data
streams. Moreover, it can be seen that the optimal power allocated to stream i,
ΣΣΣ?(i,i) in (5.1.18), tends to zero as αi → 0, i.e., no power is allocated to streams that
have low-SINR.2 Moreover, note that {βi} represents the cost of allocating power
to each of the streams (this can be seen in (P4)). Thus, the non-homogeneous wa-
terfilling solution in (5.1.16) simply allocates power to each of the streams, based
on the SINR and cost of each (possibly not allocating power to some streams).

Discussion We now discuss the reason for adopting the equality power con-
straints for the problem at hand (i.e., (J1) and (J2)), by showing the limitation
of using an inequality constraint. Note that in the noise-limited regime, σl �
1, ∀l ∈ L, and consequently αi , λi[LLL−1RRRLLL−†] → 0, ∀i ∈ {r}. Using the fact
that log(1 + y) ≈ y, y << 1, the optimal power allocation in (P4) is approximated
as,

r∑
i=1

xi − log2(1 + αixi) ≈
r∑
i=1

xi − αixi =
r∑
i=1

(1− αi)xi
αi→0
≈

r∑
i=1

xi (5.1.22)

When inequality constrains are considered, (P4) takes the following form,

min
∑
i

xi s. t.
r∑
i=1

βixi ≤ ζ, xi ≥ 0. (5.1.23)

One can see that the optimal solution is x?i = 0,∀i, and the optimal transmit/receive
filter in (J1) and (J2) is zero. Thus, operating with an inequality power constraint
leads to degenerate solution, in the noise-limited regime. Though it might seem that
an equality power constraint makes (J1) and (J2) harder to solve, this is not the
case as both have non-convex cost functions already. Moreover, the convergence of
BCD is unaffected since the globally optimal solution is found for each subproblem
(formalized in the next subsection).

Convergence of max-DLT Regarding convergence of the proposed algorithm,
max-DLT, it is established using standard BCD convergence results.

Proposition 5.1.2. Let ψn , R
(LB)
Σ ({UUU (n)

lj
}, {VVV (n)

lj
}), n = 1, 2, ... be the sequence

of iterates for the objective value. Then, {ψn} is non-decreasing in n, and converges
to a stationary point of R(LB)

Σ ({UUU lj}, {VVV lj})
2Although the optimal power allocation to stream i is zero for some streams, i.e., ΣΣΣ(i,i) = 0,

in the actual implementation of the algorithm, ΣΣΣ(i,i) = δ where δ � 1.
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Proof. The sequence ψn converges to a stationary point of the objective, since a
unique minimizer is found at each step. This follows form BCD convergence results
in [Tse01] and [LY73, Chap 7.8].

5.2 Generalizing max-SINR

In in part, we generalize the well-known max-SINR algorithm. This is not fully
aligned with this part of the thesis, as convergence of this algorithm cannot be
shown (similarly to max-SINR). However, we included it for completeness, and due
to its superior performance over max-SINR.

5.2.1 Problem Formulation
The intuition is also to lower bound the (SRM − IMAC) in (5.1.2). We make use
of the fact that log |XXX| is monotonically increasing on the positive-definite cone,
i.e.,

log |XXX2| ≥ log |XXX1|, for XXX2 �XXX1 � 000 (5.2.1)

Applying the above property, we lower bound rlj in (4.4.12) as,

rlj > log2 |(UUU
†
lj
RRRljUUU lj )(UUU

†
lj
QQQljUUU lj )

−1|

= log2
|UUU†ljRRRljUUU lj |

|UUU†ljQQQljUUU lj |
, r̃lj , ∀lj ∈ I (5.2.2)

Note that r̃lj is an approximation of the actual user rate rlj , where the approxima-
tion error is O(tr[(UUU†ljQQQljUUU lj )(UUU

†
lj
RRRljUUU lj )−1]) (refer to Appendix 5.6.2). Moreover,

bounds such as (5.2.2) are already prevalent in the MIMO literature. Thus, the
sum-rate RΣ can be bounded below, as follows,

RΣ >
∑
lj∈I

r̃lj = log2(
∏
lj

qlj ), where qlj ,
|UUU†ljRRRljUUU lj |

|UUU†ljQQQljUUU lj |

Since the log function is monotonic, the sum-rate maximization problem in (5.1.2)
is lower bounded as,

(SRM)

 max
{UUU lj ,VVV lj }

∏
lj∈I qlj

s. t. ‖UUU lj‖2F = Pr , ‖VVV lj‖2F = Pt ,∀ lj ∈ I
(5.2.3)

Referring to (SRM), qlj is the so-called Generalized Multi-dimensional Rayleigh
Quotient (GMRQ. It is a well-know separability metric that is extensively in the
study of linear discriminant analysis [Bis06, Chap. 4.1]. In a nutshell, it measure
the separation between the signal and IPN subspace. Consequently, given the signal
and IPN covariance matrices, RRRlj and QQQlj , each receiver chooses its filter such to
maximize the separation between signal and IPN subspace.
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5.2.2 Maximization of Generalized Multi-dimensional Rayleigh
Quotient

The main limitation of solving problems such (SRM) is the fact it is not jointly
convex in all the optimization variables. Though Block Coordinate Decent (BCD)
stands out as a strong candidate, one major obstacle persists: while the problem
decouples in the receive filters (as shown in (SRM)), attempting to write a similar
expression by factoring out the transmit filters, leads to a coupled problem. There-
fore, we propose an alternative (purely heuristic) method: the receive filters are
updated as the solution to maximize the sum-rate (assuming fixed transmit filters),
while the transmit filters are chosen as the solution of the reverse network sum rate
maximization (this same structure is implicitly exploited in max-SINR [GCJ11]),
i.e.,

(SRMF )

max
{UUU lj }

∏
lj∈I qlj (UUU lj ) =

|UUU†
lj
RRRljUUU lj |

|UUU†
lj
QQQljU

UU lj |

s. t. ‖UUU lj‖2F = Pr , ∀ lj ,
(5.2.4)

(SRMB)

max
{VVV ik}

∏
ik∈I pik(VVV ik) =

|VVV †
ik
R̄RRikVVV ik |

|VVV †
ik
Q̄QQik

VVV ik |

s. t. ‖VVV ik‖2F = Pt , ∀ ik .
(5.2.5)

In other words, assuming transmit filters as fixed, the receive filters are updated
such as to maximize the separability metric in the forward phase. Similarly, the
transmit filters are chosen to maximize the separability in the backward training
phase. Moreover, as seen from the above problems, the objective in each subproblem
is invariant to scaling of the optimal solution. Thus, they can be solved as uncon-
strained problems, and optimal solutions can be scaled, without loss of optimality.

Before we proceed, we first require a solution to the GMRQ maximization. The
solution to this problem was earlier proposed in [Pri03]. We provide a more generic
solution to the problem (Appendix 5.6.4).

Lemma 5.2.1. Consider the following maximization of the r-dimensional GMRQ,

XXX? , argmax
XXX∈Cn×r

q(XXX) = |X
XX†RRRXXX|
|XXX†QQQXXX|

, (5.2.6)

where QQQ ∈ Sn×n++ , RRR ∈ Sn×n+ and r < n. The optimal solution to this non-convex
problem is given by

XXX? = LLL−†ΨΨΨV̂VV , (5.2.7)

where

LLLLLL† = QQQ, LLL ∈ Cn×n ,
ΨΨΨ = v1:r[LLL−1RRRLLL−†], ΨΨΨ ∈ Cn×r ,



5.2. Generalizing max-SINR 85

and V̂VV ∈ Cr×r is an arbitrary non-singular square matrix.

Proof. Refer to Appendix 5.6.4

It is worth mentioning that the above solution is a generalized formulation of the
well-known generalized eigenvalues solution: this result was also obtained in [Pri03].

Corollary 5.2.1. Consider a special case of (5.2.7) where V̂VV = IIIr. Then, this
corresponds to the generalized eigenvalues solution, i.e.,

XXX? = LLL−†ΨΨΨ⇔ RRRXXX? = QQQXXX?ΛΛΛr (5.2.8)

where ΛΛΛr ∈ Rr×r be the (diagonal) matrix of eigenvalues for LLL−1RRRLLL−†.

Proof. Refer to [Pri03].

With this in mind, we can write the optimal transmit and receive filter updates,
as follows,

UUU?lj = LLL−†lj ΨΨΨlj , ΨΨΨlj , v1:d[LLL−1
lj
RRRljLLL

−†
lj

] , ∀ lj ,

VVV ?ik = KKK−†ik ΘΘΘik , ΘΘΘik , v1:d[KKK−1
ik
R̄RRikKKK

−†
ik

] , ∀ik , (5.2.9)

where we used the fact we can set V̂VV = IIId in the solution of (5.2.7). We note that the
optimal filter updates for the transmitter are more heuristic than the receiver ones:
While the receive filter updates directly maximizes a lower bound on the sum-rate
- as seen in (SRM), no such claim can be made about the transmit filter updates.
The details of our algorithm, Alternating Iterative Maximal Separation (AIMS),
are shown in Algorithm 4 (where T denotes the number of F-B iterations).

Algorithm 4 Alternating Iterative Maximal Separation (AIMS)
for t = 1, 2, ..., T do

// forward network optimization: receive filter update
Estimate RRRlj ,QQQlj , and compute LLLlj , ∀lj
UUU lj ← LLL−†lj v1:d[LLL−1

lj
RRRljLLL

−†
lj

], ∀lj
UUU lj ←

√
Pr UUU lj/‖UUU lj‖F

// reverse network optimization: transmit filter update
Estimate R̄RRik , Q̄QQik , and compute KKKik , ∀ik
VVV ik ←KKK−†ik v1:d[KKK−1

ik
R̄RRikKKK

−†
ik

], ∀ik
VVV ik ←

√
Pt VVV ik/‖VVV ik‖F

end for

A few comments are in order at this stage, regarding the difference between
AIMS and max-SINR. Referring to (SRMF ) and (SRMB), it is clear that our
proposed algorithm reduces to max-SINR, in case of single-stream transmission,
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i.e., setting d = 1. Moreover, an inherent property of the max-SINR solution is
that it yields equal power allocation across all the streams (since the individual
columns of each transmit/receive filter are normalized to unity). However, as evident
from (5.2.9), our proposed solution does not normalize the individual columns of
the receive filter, but rather the whole filter norm (as seen in Algorithm 4). This
allows for different power allocation, across columns of the same filter. That being
said, the proposed solution is expected to yield better sum-rate performance (w.r.t.
max-SINR), especially in the interference-limited regime. This is due to the intuitive
fact that much can be gained from allocating low power to streams that suffer from
severe interference, and higher power to streams with lesser interference (this will
be validated in the numerical results section). We next introduce a rank adaptation
mechanism that further enhances the interference suppression capabilities of the
algorithm.

5.2.3 AIMS with Rank Adaptation
We introduce one additional (heuristic) mechanism to robustify AIMS against
severely interference-limited scenarios, by introducing a mechanism of Rank Adap-
tation (RA): in addition to the transmit / receive filter optimization (Lemma 5.2.1),
the latter allows the filter rank to be optimized as well. Mathematically speaking,
RA addresses the following problem,

r? , argmax
r

[
XXX? , argmax

XXX∈Cn×r

|XXX†RRRXXX|
|XXX†QQQXXX|

]
, (5.2.10)

Using the same argument as Lemma 5.2.1, one can verify that XXX? and r? are as
follows,

XXX? = [LLL−†ΨΨΨ]1:r? , where ΨΨΨ = v1:n[LLL−1RRRLLL−†]
r? = argmax

r
|ΛΛΛr| =

∣∣{i | λi[LLL−1RRRLLL−† ≥ 1}
∣∣ (5.2.11)

where ΛΛΛr ∈ Rr×r is the (diagonal) matrix consisting of the r-largest eigenvalues of
LLL−1RRRLLL−†. Simply put, r? is the number of eigenvalues greater than one.

When RA is incorporated into AIMS, this mechanism will boost the performance
of the algorithm (namely in interference-limited settings). However, one still needs
to ensure that the filter ranks for each transmit-receive pair are the same, i.e.,
rank(UUU lj ) = rank(VVV lj ) ∀ lj . One quick (heuristic) solution is as follows. For each
transmit-receive filter pair, compute the optimal filter rank for both the transmit
and receive filter, and use the minimum.3 Needless to say, ensuring this condition
requires additional signalling overhead. We thus envision RA, as potential “add-
on” for AIMS, when one can afford the resulting overhead increase. In fact, rank-
reduction offers a trade-off between reducing interference and diversity of the signal:

3 Alternately, one can apply RA to the receive filters only, in the last iteration of the algorithm,
since the transmit filter updates are more heuristic than the receive filter updates.
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however, in interference-limited scenarios, the former is more critical than the latter.
This will be validated in the numerical results section.

5.3 Practical Aspects

5.3.1 Comparison
A few remarks are in order at this stage, regarding the similarities and differences
between AIMS and max-DLT. Referring to the optimal update equations for each
algorithm, i.e., (5.2.9) and (5.1.19), we clearly see that both span the same subspace,
i.e. the generalized eigenspace between the signal and IPN covariance matrices. In
addition, max-DLT computes the optimal power allocation for each stream. Despite
this significant similarity among the two solutions, recall that they are derived from
two fundamentally different problems. While (5.2.9) is a heuristic (an extension
of max-SINR) that greedily maximizes the separability at each BS and user, the
updates in (5.1.19) maximize a lower bound on the sum-rate capacity (and are
shown to converge to a stationary point of the DLT bound). That being said, their
performance evaluation is done via numerical results.

5.3.2 Benchmarks
As mentioned earlier, we will also investigate the proposed approach in alternate
scenarios such as MIMO IBC, and the MIMO Interference Channel (MIMO IFC).
We benchmark our algorithms against widely adopted ones,

o max-SINR [GCJ11] in the MIMO IMAC, MIMO IFC and MIMO IBC

o MMSE and Weighted-MMSE [PH11,SRLH11] in the MIMO IFC and MIMO
IBC

as well as relevant fast-converging algorithms,

o CCP-WMMSE [NLN14]: an accelerated version of WMMSE algorithm (using
CCP), for the MIMO IMAC

o IWU [GKBS15]: a fast-convergent leakage minimization algorithm for the
MIMO IFC

Both IWU and CCP-WMMSE reply on the use of turbo iterations, where I inner-
loop iterations are carried within each main F-B iteration. While those turbo itera-
tions are carried at the BS/UE in the case of IWU, they are run over-the-air in the
case of CCP-WMMSE, thus leading to higher overhead. We note as well that earlier
works applied SCA to MIMO IBC settings, e.g., [KTJ12], but their algorithms are
restricted to beamforming/combining (no precoding).
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Figure 5.1: Basic structure of Forward-Backward Iteration

5.3.3 Distributed CSI Acquisition
We underline in this section some practical issues that relate to the proposed
schemes, such as the mechanism for distributed CSI acquisition, and the result-
ing communication overhead and computational complexity. Although additional
issues such as robustness have to considered as well, such matters are outside the
scope of the current paper. We reiterate the fact that CSI acquisition mechanisms
are outside the scope of the paper (we refer the reader to [BB15a]). We just sum-
marize the basic operation behind F-B iterations.

Evidently, the operation of such schemes is contingent upon each transmitter /
receiver being able to estimate the signal and the IPN covariance matrices, in a fully
distributed manner. From the perspective of this work, this is accomplished via the
use of precoded pilots to estimate the effective channels.4 In the forward phase, the
signal covariance matrix, as well as the IPN covariance matrices, can be computed
after estimating the effective signal channel, and the effective interfering channels,
respectively. The receive filters at the base stations are updated following any of
the proposed algorithms (summarized in Fig. 5.1). Then, in the downlink phase,
the same procedure is used to estimate the signal and IPN covariance matrices,
and update the filters at the receivers. This aforementioned process constitutes
one forward-backward (F-B) iteration. Recall that T is the total number of such
iterations that are carried out.

5.3.4 Communication Overhead
Thus, for such schemes to be fully distributed, the required CSI quantities have to be
obtained via uplink-downlink pilots. Each F-B iteration has an associated commu-
nication overheard, namely that of bi-directional transmission of pilots. We adopt
a simplistic definition of the communication overhead, as the number of (minimal
orthogonal) pilots symbols needed for estimating the required CSI quantities (recall
that the actual overhead will be dominated by this quantity). We note that almost
all prior algorithms that have been proposed in the context of cellular system, focus
on a regime with a high enough number of F-B iterations (T = 100 ∼ 1000). On

4A full investigation of the total overhead of this decentralized solution, as compared to a
centralized implementation, falls outside the scope of the current paper.
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the contrary, and in line with recent attempts such as [KTJ13,BB15b,GKBS15], we
assume that this modus operandi is not feasible in the systems we consider (since
F-B iterations are carried out over-the-air, and the associated overhead would be
higher than the potential gains). We thus focus on a regime where T = 2 ∼ 5.
In addition, we assume that the minimal number of orthogonal pilots is used, i.e.,
d orthogonal pilot slots for each uplink/downlink effective channel. Moreover, the
pilots are orthogonal across users and cells, resulting in a total of KLd orthogonal
pilots for each uplink/downlink training phase. Consequently, the total overhead of
both AIMS and max-DLT is approximately,

Ωprop = T (KLd︸ ︷︷ ︸
UL

+KLd︸ ︷︷ ︸
DL

) = 2TKLd channel uses.

It can be verified that the overhead is the same for benchmarks such as max-
SINR, IWU and MMSE. Moreover, using similar arguments one can approximate
the overhead of CCP-WMMSE and WMMSE, as

Ωccp-wmmse = T [( KLM︸ ︷︷ ︸
UL chann.
estim

)×(L− 1)︸ ︷︷ ︸
CSI

sharing

+ I︸︷︷︸
turbo

×( KLN︸ ︷︷ ︸
cov. mat
upd.

)] c. u.

Ωwwmse = T (KLd︸ ︷︷ ︸
UL

+ KLM︸ ︷︷ ︸
weights

+KLd︸ ︷︷ ︸
DL

) c.u.

Though a coarse measure, we can see that the overhead associated with WMMSE
and its fast-converging variant CCP-WMMSE are significantly higher than that of
the proposed schemes. Moreover, CCP-WMMSE exhibits massively larger overhead
than the other two, namely due to the fact that the turbo optimization is carried
over-the-air (as described in Sec.5.3.2), and that the CSI for the uplink channels is
shared among the BSs [NLN14]. The overhead of the aforementioned schemes will
be included in the numerical results.

5.3.5 Complexity
Despite the fact that the communication overhead is the limiting resource in cellular
networks, we nonetheless shed light on the complexity of the proposed approaches,
for completeness. By noticing that operations such as matrix multiplication and
bisection search are quite negligible compared to other ones, both AIMS and max-
DLT have similar computational complexity: it is dominated by the Cholesky De-
composition of the IPN covariance matrix, and the Eigenvalue Decomposition ofMMM ,
both of which have similar complexity of O(N3). Thus, the complexity is dominated
by,

Cprop = O(2KL(M3 +N3))

Note that the same holds for benchmarks such as max-SINR, IWU, and WMMSE
since they are dominated by matrix inversion of the IPN covariance matrix. While
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the complexity of CCP-WMMSE is also dominated by the above quantity, it also
involves running a series of semi-definite programs (using interior point solvers),
within each turbo iteration. This renders the algorithm quite costly.

5.4 Numerical Results

5.4.1 Simulation Methodology
We use the achievable sum-rate in the network as the performance metric, where
the achievable user rate is given by (4.4.12). Because the approach here is presented
in the context of MIMO IMAC, a significant fraction of the results will be under
the latter. As mentioned earlier, we will also investigate the proposed approach
in alternate scenarios. We specialize our results to some MIMO IFC scenarios (a
special case of the MIMO IMAC by setting K = 1), where interference alignment
has been shown to be feasible [YGJK10]. We also investigate the MIMO IBC setup,
since the proposed algorithms are equally applicable to that case, with little-to-no
modification.

As mentioned earlier, we also proposed another algorithm in this work, AIMS
(a generalization of max SINR), whose development is not included here. We in-
clude it in in this section for completeness. In this work, we assume a block-fading
channel model with static users, where channel coefficients are drawn from inde-
pendent and identically distributed complex Gaussian random variables, with zero
mean and unit variance, for the sake of simplicity. We note at this point that we
applied our approaches to a much more realistic 5G setup. Since a description of the
resulting simulation methodology is rather lengthly, we refer the interested readers
to [MET15][Sect. 3.3.3]. In addition, we limit the number of F-B iterations, T , to a
small number. We further assume that both the signal and IPN covariance matrices
are perfectly estimated at the transmitter / receiver, i.e., we do not model channel
estimation errors. Finally, we note that all curves are averaged over 500 channel
realizations.

5.4.2 Results for Standard Scenarios
We first investigate the performance of such schemes in conventional canonical
scenarios, for benchmarking. We distinguish among feasible, proper and improper
setups [YGJK10].

MIMO IFC We start with a feasible MIMO IFC scenario, by setting M = N =
4, d = 2 and fixing the number of F-B iterations, T = 4, for all schemes. We evalu-
ate the sum-rate of both our algorithms against other well-known algorithms such
max-SINR [GCJ11], MMSE [PH11], the rank-reducing algorithm (IWU-RR) earlier
proposed in [GKBS15] (since such algorithms are designed for scenarios where fast
convergence is desired). We also included Weighted-MMSE with the corresponding
number of F-B iterations (T = 4), and a large enough number of iterations (as an
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upper bound). It is clear from Fig. 5.2 that while max-DLT has similar performance
as W-MMSE (for T = 4) in the low-to-medium SNR regime, the gap increases in the
high-SNR region (SNR ≥ 20 dB). Moreover, we note that our proposed schemes,
outperform all other benchmarks, across all SNR regimes. In particular, the per-
formance gap between max-DLT and the benchmarks, is quite significant in the
medium-to-high SNR region. Moreover, despite the fact that only the rank-reducing
scheme and max-DLT are able to achieve some degrees-of-freedom gain, max-DLT
offers a 35% gain over the rank reducing scheme. Though max-DLT and IWU-RR
are able to turn off some streams in view of reducing interference, the significant
performance gap is due to the fact that max-DLT also optimizes the signal subspace
as well. Finally, we note that the high-SNR performance of max-DLT is indicative of
the fact it is able to achieve some to degrees-of-freedom, while the others algorithms
seem to have a significant amount of residual interference, i.e., no degrees-of-freedom
gain. Note that the ‘optimal-performance’ of WMMSE is achieved for T = 200, but
the resulting overhead is massive. Although the performance of max-DLT is similar
to WMMSE (T = 4) in low-to-medium SNR regime, the overhead is much lower
for the former. Moreover, the gap increases in the medium-to-high SNR region.

MIMO IMAC We next evaluate MIMO IMAC setting with L = 2,K = 2,M =
4, N = 4, d = 2, as a function of the number of F-B iterations, T . We also bench-
mark against CCP-WMMSE (summarized in Sec. 5.3.2) by varying the number
of turbo iterations I, and testing the resulting performance and overhead. Fig. 5.3
clearly shows the fast-converging features of both algorithms. More specifically, this
is apparent in the case of max-DLT, that reaches 95% of its performance in 2 itera-
tions. While the performance of max-DLT is slightly better than CCP-WWMMSE
for I = 1, the overhead of the latter is twice that of the former (CCP-WMMSE
becomes better than max-DLT for I = 2, but the resulting overhead is thrice as
high). Note that the ‘full’ performance CCP-WMMSE is achieved for I = 50, but
the the resulting overhead (and complexity) are orders-of-magnitude larger than the
proposed schemes. Its performance is quite sensitive to solving the inner problem
to optimality (i.e., until the turbo iteration converges), thus making it ill-suited for
larger setups. Indeed, the running time of CCP-WMMSE (using a mosek solver in
CVX) prevented us form testing its performance for larger antenna configurations.

Proper MIMO IBC As mentioned earlier, our schemes are equally applicable to
MIMO IBCs. For that matter, we investigate their performance in a proper MIMO
IBC setup with 8 × 2 (single-stream) MIMO links, with L = 3,K = 3 (for several
SNR values). We benchmark our results against the well-known Weighed-MMSE
(WMMSE) algorithm [SRLH11]. Note that for the latter, we keep the sum-power
constraint that is employed by WMMSE, and adjust the per-user transmit power
constraint Pt, for our algorithms, assuming equal power allocation among users.5

5If ρ is the per-BS sum-power constraint for WWMMSE, then ρ/K is the per-user transmit
power constraint for our algorithms.
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MIMO IMAC)
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This implies that a more stringent constraint is placed on our schemes. Despite this
unfavorable setup, as Fig. 5.4 shows, both our schemes significantly outperform the
benchmark, in the low-overhead regime, i.e., for small T . We reiterate the fact that
this is the regime of interest in this work. Needless to say, the full-performance that
WMMSE is expected to deliver, is reached after more iterations are performed. As
for the overhead, it is Ω = 18T for our schemes, while is Ω = 36T for WMMSE.

Effect of non-homogeneous waterfilling The fast-converging behavior is due
to the fact that the non-homogeneous waterfilling solution in max-DLT can freely
allocate different powers to different directions of the subspace spanned by the
transmit / receive filter (possibly turning off some directions, when they suffer
from significant interference). As a result, it transforms an improper system, into
a (virtually) proper one by turning off one of the streams, for each user (for this
particular case). We attempt to capture the latter effect for an improper system
with L = 3,K = 3,M = M = 10 with d = 2. We simulate the average value of the
smallest singular value of the transmit filter (across all users),

γ(SNR) , E{ 1
|I|
∑
lj∈I

σ2
d[VVV lj ]}

for several SNR values. As we can see from Table 5.1, max-DLT is able to arbitrarily
reduce the smallest singular value of the transmit filters, especially in the very high
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Table 5.1: γ(SNR) for each scheme

−20−20−20 dB 000 dB 202020 dB 404040 dB
max-DLT 0.0522 0.002 3.34 10−7 3.31 10−7

AIMS 0.4859 0.3325 0.2055 0.1939
max-SINR 0.0515 0.2790 0.2262 0.2268

SNR (interference-limited) regime: this is a critical, since reducing interference is
vital to increasing the sum-rate. Note that this adaptation is clearly not present in
the case for AIMS and max-SINR.

5.4.3 Scaling up the system
In this section we evaluate the performance of the proposed schemes in uplink and
downlink scenarios where much more antennas are available at the BS, than the
users.

Large-scale Multi-user Multi-cell MIMO uplink We leverage the larger
number of antenna available at the BS. We evaluate a large-scale (in the num-
ber of antennas at the BS) multi-user multi-cell uplink with L = 5,K = 5, d =
2,M = 4, N = 32. Fig. 5.5 shows the resulting sum-rate of the proposed schemes
(and max-SINR), for T = 2 and T = 4 (we were unable to include CPP-WMMSE
as the resulting simulation time was too high). Recall that for each of the simulated
values of T , the overhead is the same for all schemes. We observe that both our
schemes outperform max-SINR significantly. In particular, max-DLT offer twice the
performance of max-SINR at 5dB (this performance gap increases with the SNR).
And while both our schemes show significant performance gain by increasing T , the
corresponding gain that max-SINR exhibits is negligible in comparison.

Large-scale Multi-user Multi-cell MIMO downlink We next investigate
a dual communication setup of the one just above, exploiting the larger number
of transmit antennas at the BS (i.e, setting M = 32, N = 4 and all else be-
ing the same). We benchmark our results against the well-known WMMSE al-
gorithm [SRLH11]. Note that while WMMSE employs a sum-power constraint, our
schemes have a per-user power constraint, and thus assume equal power allocation
among the users.6 This implies that a more stringent constraint is placed on our
schemes. Despite this unfavorable setup, both our schemes significantly outperform
WMMSE, the gap becoming quite large when SNR = 20dB (as seen in Fig. 5.6).

6If Pt is the per user constraint for our schemes, then KPt is the per-BS sum-power constraint
for WWMMSE.
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Figure 5.5: Ergodic sum-rate for L = 5,K = 5,M = 4, N = 32, d = 2 (Uplink)

Note as well that the overhead of our proposed schemes, is half that of WMMSE
as the latter requires feedback of the weights (refer to Sec. 5.3.4 for the overhead
calculations). Needless to say, the full-performance that WMMSE is expected to
deliver, is reached after more iterations are performed. The reason behind this be-
havior is the fast-converging nature of our algorithms, allowing them to reach a
good operating point, in just 2 iterations. In the case of the max-DLT, this is turn
due to the stream control feature of the non-homogeneous waterfilling.

5.4.4 Discussions

As mentioned earlier, the non-homogeneous waterfilling solution clearly shows that
streams that have low SINR are turned-off, and power is only allocated to the ones
that exhibit relatively high SINR. This greatly speeds up the convergence of max-
DLT, and allows it to achieve its required performance, with that limited number
of F-B iterations (e.g., 2). On the other hand, due to the large dimensions inherent
to low-band mmWave systems (i.e., more antennas, cells, users) other benchmarks
will require more iterations to reach a similar performance. As for the overhead,
our schemes are based on the framework of F-B iterations and result in minimal
overhead (the overhead consisting of uplink/downlink pilots only). However, other
schemes such as WMMSE and CCP-WMMSE require additional pilots and feed-
back, and result in significantly higher overhead (as detailed in Sec. 5.3.4).
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Figure 5.6: Ergodic sum-rate for L = 5,K = 5,M = 32, N = 4, d = 2 (Downlink)

5.5 Conclusion

In this chapter, we advocated the use of DLT bounds (as a lower bound on the sum-
rate) and highlighted their significant advantage in yielding optimization problems
that decouple at both the transmitters and receivers. More importantly, we pro-
vided a generic solution for the latter, the so-called non-homogeneous waterfilling:
we underlined its built-in stream-control feature, and its role in speeding up the
convergence. We proposed a distributed algorithm, max-DLT, that solves the latter
problem in a distributed manner. We later verified through simulations that our
proposed algorithms massively outperform other relevant benchmark algorithms
(especially in interference-limited multi-user environments), for several communi-
cation scenarios.

5.6 Appendix

5.6.1 Uniqueness of SVD
The proofs in this work rely on the central premise of mapping the problem into a
series of equivalent forms, where equivalence is ensured by the uniqueness of each
mapping [BV04]. One of the steps is rewrite the problem by mapping the variable
into its SVD form: for example, let maxXXX f(XXX) = tr(XXX†QQQXXX) and let XXX = UUUΣΣΣVVV †
be the SVD of XXX. Generally speaking, the SVD is unique only up to rotations
of the left and right singular vectors, i.e., the actual SVD of XXX takes this form,
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XXX = (UUUΘΘΘ)ΣΣΣ(ΘΘΘ†VVV †) where ΘΘΘ is diagonal with phase elements. Due to the quadratic
nature of f(XXX) it is easy to verify that the ambiguity brought by ΘΘΘ is lifted, i.e., it
is easy to verify that f(UUUΣΣΣVVV †) = f((UUUΘΘΘ)ΣΣΣ(ΘΘΘ†VVV †)). Note that the same arguments
holds for all the objective functions that we use in this work.

5.6.2 Proof of Proposition 5.1.1
We start by lower bounding the user rate in (4.4.12), as

rlj ≥ log2 |(UUU
†
lj
QQQljUUU lj )

−1 + (UUU†ljRRRljUUU lj )(UUU
†
lj
QQQljUUU lj )

−1|

= log2 |(IIId +UUU†ljRRRljUUU lj )(UUU
†
lj
QQQljUUU lj )

−1|

= log2 |IIId +UUU†ljRRRljUUU lj | − log2 |UUU
†
lj
QQQljUUU lj |

≥ log2 |IIId +UUU†ljRRRljUUU lj | − tr(UUU†ljQQQljUUU lj ) , r
(LB)
lj

(5.6.1)

where the first inequality follows from combining (5.1.4) and the monotonically
increasing nature log |XXX| (i.e, log |XXX1| ≥ XXX2, ∀ XXX1 � XXX2 � 000). Moreover the last
one follows from using log |AAA| ≤ tr(AAA) for AAA � 000.

We rewrite rlj in (4.4.12) as,

rlj = log2 |(UUU
†
lj
RRRljUUU lj )(UUU

†
lj
QQQljUUU lj )

−1[IIId
+ (UUU†ljQQQljUUU lj )(UUU

†
lj
RRRljUUU lj )−1]|

= log2 |(UUU
†
lj
RRRljUUU lj )(UUU

†
lj
QQQljUUU lj )

−1|

+ log2 |IIId + (UUU†ljQQQljUUU lj )(UUU
†
lj
RRRljUUU lj )−1|

= log2 |UUU
†
lj
RRRljUUU lj | − log2 |UUU

†
lj
QQQljUUU lj |

+O(tr[(UUU†ljQQQljUUU lj )(UUU
†
lj
RRRljUUU lj )−1])

Thus, rlj is approximated by log2 |UUU
†
lj
RRRljUUU lj | − log2 |UUU

†
lj
QQQljUUU lj | (where the error is

given in the above equation). Plugging this result in ∆lj yields,

∆lj = log2 |UUU
†
lj
RRRljUUU lj | − log2 |UUU

†
lj
QQQljUUU lj |

− [log2 |IIId +UUU†ljRRRljUUU lj | − tr(UUU†ljQQQljUUU lj )]

+O(tr[(UUU†ljQQQljUUU lj )(UUU
†
lj
RRRljUUU lj )−1])

Referring to the above, in the interference-limited regime (5.1.4), the first and third
terms become negligible w.r.t. the second and fourth. Consequently,

∆lj = tr(UUU†ljQQQljUUU lj )− log2 |UUU
†
lj
QQQljUUU lj |

+O(tr[(UUU†ljQQQljUUU lj )(UUU
†
lj
RRRljUUU lj )−1])
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5.6.3 Proof of Lemma 5.1.1
We rewrite the problem into a series of equivalent forms. Letting ZZZ = LLL†XXX ⇔XXX =
LLL−†ZZZ, then (P ) in (5.1.15) is equivalent to,

(P2)
{

min
ZZZ

f(ZZZ) , tr(ZZZ†ZZZ)− log2 |IIId +ZZZ†MMMZZZ|

s. t. tr(ZZZ†AAAZZZ) = ζ

where AAA = (LLL†LLL)−1. Letting ZZZ = TTTΣΣΣVVV † be the SVD of ZZZ (TTT ∈ Cn×r,ΣΣΣ ∈ Rr×r)
we rewrite (P2) as into an equivalent form,

(P3)

min
TTT ,ΣΣΣ

tr(ΣΣΣ2)− log2 |IIId + ΣΣΣ2TTT †MMMTTT |

s. t. tr(ΣΣΣ2TTT †AAATTT ) = ζ

The above problem is separable in TTT , in the sense that the optimal TTT is independent
of ΣΣΣ. It can be easily obtained from Hadamard’s Inequality i.e., TTT ? , v1:r[MMM ] = ΨΨΨ.
Moreover, the feasible set of (P3) becomes tr(ΣΣΣ2ΨΨΨ†AAAΨΨΨ) =

∑
i σ

2
i βi, where {σi} are

the diagonal elements of ΣΣΣ. With that in mind, (P3) is equivalent to,

min
{σi}

r∑
i=1

(
σ2
i − log2(1 + αiσ

2
i )
)
s. t.

r∑
i=1

βiσ
2
i = ζ

Letting xi = σ2
i , we can rewrite the problem as,

(P4)

min
{xi}

∑r
i=1

(
xi − log2(xi + 1

αi
)
)

s. t.
∑r
i=1 βixi = ζ, xi ≥ 0,∀i

(P4) is a generalization of the well-known waterfilling problem: in fact, (P4) reduces
to the waterfilling problem, if βi = 1,∀i, and by dropping the first term in the
objective. We start by writing the associated KKT conditions.

1− (xi + α−1
i )−1 + µβi − λi = 0, ∀i∑

i βixi = ζ, xi ≥ 0
λixi = 0, λi ≥ 0, µ 6= 0,∀i

Firstly, note that λi act as slack variables and can thus easily be eliminated. Then,
considering two cases, λi = 0,∀i or λi > 0,∀i, the optimal solution can be found in
a straightforward manner,

x?i =
{

(1 + µβi)−1 − α−1
i , if µ < (αi − 1)/βi

0, if µ > (αi − 1)/βi

=
(

1/(1 + µ?βi)− 1/αi
)+
,∀i
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where µ? is the unique root to

g(µ) ,
r∑
i=1

βi

(
1/(1 + µβi)− 1/αi

)+
− ζ

Note that g(µ) is monotonically decreasing, for µ > −1/(maxi βi), and µ? can be
found using standard 1D search methods, such as bisection.

Thus, the optimal solution for (J1) is ZZZ? = ΨΨΨΣΣΣ?(where ΣΣΣ?(i,i) = √xi,∀i), and
that of (5.1.15) is XXX? = LLL−†ΨΨΨΣΣΣ?

5.6.4 Proof of Lemma 5.1.2
It was shown in [Pri03] that the solution to (5.2.6) is given by, XXX? = LLL−†ΨΨΨ. We
note that it can verified that this optimal solution is invariant to scaling, i.e.,
q(XXX?ΣΣΣ) = q(XXX?), unitary rotation, i.e., q(XXX?VVV ) = q(XXX?), and q(XXX?SSS) = q(XXX?) for
any SSS ∈ Cr×r that is non-singular. Thus the generic form of the solution is,

XXX? = LLL−†ΨΨΨ(ΣΣΣVVV †SSS) = LLL−†ΨΨΨV̂VV

where V̂VV is square and non-singular.





Chapter 6

Leakage Minimization Algorithms

In this chapter, we propose a low-overhead distributed schemes for transmit and
receive filter optimization. In line with the main design goals of this part of
the thesis (Sect. 4.3.3), the proposed schemes in this chapter only require a

few forward-backward iterations, thus causing minimal communication overhead.
For that purpose, we relax the well-known leakage minimization problem, and then
propose two different filter update structures to solve the resulting non-convex
problem: though one leads to conventional full-rank filters, the other results in
rank-deficient filters, that we exploit to gradually reduce the transmit and receive
filter rank, and greatly speed up the convergence. Furthermore, inspired from the
decoding of turbo codes, we propose a turbo-like structure to the algorithms, where
a separate inner optimization loop is run at each receiver (in addition to the main
forward-backward iteration). This is illustrated in Fig. 6.1. In that sense, the intro-
duction of this turbo-like structure converts the communication overhead required
by conventional methods to computational overhead at each receiver (a cheap re-
source), allowing us to achieve the desired performance, under a minimal overhead
constraint. Finally, we show through comprehensive simulations that both proposed
schemes hugely outperform the relevant benchmarks, especially for large system di-
mensions. Although the algorithms and results in this Chapter are presented in the
context of MIMO IC for simplicity, they are still applicable to both MIMO IBC
and MIMO IMAC. The notation in this chapter deviates from the thesis notation
(defined in Chap. 1), in the following aspect only λi[QQQ] denotes the ith eigenvalue
of a Hermitian matrix QQQ ( assuming the eigenvalues are sorted in increasing order),

6.1 System Model and Problem Formulation

We hence start from the MIMO IBC signal model (presented in Chap. 4.2.1), we
restate the leakage minimization problem as (Chap. 4.4.4),{

min φ({UUU lj}, {VVV lj}) =
∑
lj∈I tr(UUU

†

lj
QQQljUUU lj )

s. t. UUU †ljUUU lj = IIId, VVV
†

lj
VVV lj = IIId, ∀lj ∈ L

(6.1.1)
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Figure 6.1: Proposed Algorithm Structure, within the framework of F-B training

where we define the interference covariance matrix at receiver lj ∈ I as,

QQQlj =
∑
ik∈I
ik 6=lj

(ρ/d)HHHk,ljVVV ikVVV
†

ik
HHH†k,lj (6.1.2)

and the interference covariance matrix at transmitter lj , as follows,

Q̄̄Q̄Qlj =
∑
ik∈I
ik 6=lj

HHH†j,ikUUU ikUUU
†

ik
HHHj,ik (6.1.3)

Recall that the above leakage minimization problem results in optimizing a lower
bound on the sum-rate - albeit a loose one (as shown in Chap. 4.4.4).

6.1.1 Problem Formulation
Now that we have motivated the leakage minimization problem, we turn out atten-
tion to devising an iterative algorithm for that purpose. As mentioned earlier, the
schemes that we study in this work, fall under the category of distributed schemes,
where each receiver / transmitter optimizes its filter, based on the estimated inter-
ference covariance matrix. In other words, at the lth F-B iteration, after estimating
and updating its interference covariance matrix, QQQnlj ← QQQn+1

lj
, receiver lj aims

to update its filter, UUUnlj ← UUUn+1
lj

, such as to optimize some predetermined met-
ric (interference leakage, mean-squared error, sum-rate, etc...). The F-B iteration
structure was first applied within the context of IA, in the distributed IA algorithm
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(proposed in [GCJ11] and re-written below for later reference), where each receive
filter update is such that,

min
UUUn+1
lj

flj (UUUn+1
lj

) = tr(UUUn+1†
lj

QQQn+1
lj

UUUn+1
lj

)

s.t. UUUn+1†
lj

UUUn+1
lj

= (Pr/d)IIId , (6.1.4)

where Pr is the receive filter power constraint. In other words, in the forward
phase each receiver estimates its interference covariance matrix and updates its
filter such as to minimize the interference leakage. Then, in the backward phase,
exploiting channel reciprocity, transmitters estimate their respective interference
covariance matrices, and use the same update rule of minimizing the leakage. It can
be shown that this iteration process, will converge to stationary points of the leakage
function. Thus, for the interference leakage cost function, F-B iterations can be used
to gradually refine the transmit and receive filters, thereby ultimately creating a
d-dimensional interference-free subspace at every receiver. Ideally, as n → ∞, the
transmit and receive filters that the algorithm yields should satisfy the IA conditions
outlined in [GCJ11]. The existence of transmit and receive filters that fulfill this
condition is guaranteed, if the system is feasible (as described in [YGJK10]). The
distributed IA algorithm has been extensively used and experimentally observed
to closely match the theoretical predictions of IA, in small to moderate network
configurations. However, one can see that as the dimensions of the problem grow
(more antennas and streams), better performance can be achieved be relaxing the
unitary constraint.

This sub-optimal performance in multi-stream settings, is partly attributed to
the fact that all the streams are allocated the same power - an inherent property
of the unitary constraint in (6.1.4). It is evident at this point that much could
be gained from allocating different powers to different streams, especially as the
number of such streams grow, i.e., as d increases. Consequently, we propose to relax
the unitary constraint in (6.1.4), and allow the transmit / receive filter columns to
have unequal norms, i.e., the receive filter update UUUnlj ← UUUn+1

lj
, is as follows,

min
UUUn+1
lj

flj (UUUn+1
lj

) = tr(UUUn+1†
lj

QQQn+1
lj

UUUn+1
lj

)

s.t. ‖UUUn+1
lj
‖2F = Pr. (6.1.5)

Note that the factor (Pr/d) in (6.1.4) ensures that the receive power constraint,
‖UUUn+1

lj
‖2F , is the same for both (6.1.4) and (6.1.5). Let R and S be the feasible

sets of (6.1.4) and (6.1.5) respectively, i.e., R = {UUU ∈ CN×d | UUU†UUU = (Pr/d)IIId}
and S = {UUU ∈ CN×d | tr(UUU†UUU) = Pr}. Consequently, for any UUU ∈ R ⇒ UUU†UUU =
(Pr/d)IIId ⇒ tr(UUU†UUU) = Pr ⇒ UUU ∈ S. This implies that R ⊆ S, and that indeed
(6.1.5) is a relaxation of (6.1.4). In addition, note that the distributed IA problem
in (6.1.4) has a simple analytical (well-known) solution. Although the reformulation
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in (6.1.5) promises to deliver better performance, it does make the problem non-
convex.

In spite of this non-convexity, the problem can still be tackled in many ways.
Firstly, note that (6.1.5) can in fact easily be solved by writing the problem in
vector form and finding the globally optimal rank-one solution spanned by the
eigenvector of QQQn+1

lj
with the minimum eigenvalue. In addition, it is also known

that in the case of (6.1.5), Semi-Definite Relaxation (SDR) provides the optimal
solution as well [LMS+10]. However, the solution that both these methods yield is
rank-one1, and it is well-known from the interference alignment literature that the
optimal filter rank in the high-SNR regime is d (assuming that d has been selected
properly such that the system is feasible). On the other hand, at medium and low-
SNR, the sum-rate performance will improve if the filters have reduced rank (in
the limit, the waterfilling power allocation results in one stream being active, in
the very low-SNR). The main idea behind our proposed algorithm is therefore to
not solve (6.1.5) but rather to use it as a heuristic, while preventing the algorithm
from always converging to the aforementioned rank-one solution of (6.1.5), either
explicitly using a rank-preserving algorithm or implicitly by exploiting the transient
phase of the rank-reducing algorithm and stopping after a small number of iterations
(more about this in Sect. III). As a result, those algorithms should give a better
performance than the optimal solution to (6.1.5) given above (simulations will show
that this claim is indeed true).

Thus, imposing two different update rules on the transmit / receive filters yields
the two different algorithms mentioned above: while one of the update rules do
not necessarily result in full-rank transmit / receive filters (which we refer to as
rank-reducing updates), the other one implicitly enforces full-rank transmit / receive
filters (which we refer to as rank-preserving updates). The reason for this distinction,
as well as its impact, will become clearer in Sect. 6.3.1.

6.2 Rank-reducing Updates

Within this class, we opted to use the most generic update rule (i.e., the one that
represents the “widest” class of matrices), for obvious reasons. Thus, we propose
the following update structure,

UUUn+1
lj

= ∆∆∆ljAAA
n
lj + ΦΦΦljBBB

n
lj , (6.2.1)

where ∆∆∆lj
∈ U(N, d) and ΦΦΦlj ∈ U(N,N−d) are such that ∆∆∆†ljΦΦΦlj = 000. Furthermore,

AAAnlj ∈ Cd×d and BBBnlj ∈ C(N−d)×d are the combining weights of ∆∆∆lj
and ΦΦΦlj , respec-

tively.2 We underline the fact that some choices of ∆∆∆lj
and ΦΦΦlj should be better

1Since the rank is a coarse measure, we use a wider definition of the rank of a matrix, through-
out this paper. Let AAA ∈ Cn×m(n > m), then we define rank(AAA) = card({σi(AAA) | σi(AAA) > δ, ∀ i =
1, ...,m}), where {σ1(AAA), ..., σm(AAA)} are the singular values of AAA, and δ a predetermined tolerance.

2Generally speaking, there are other ways to “partition” the N -dimensional space in question,
i.e., ∆∆∆lj

∈ U(N, r), AAAn
lj
∈ Cr×d and ΦΦΦlj

∈ U(N,N − r), BBBn
lj
∈ C(N−r)×d, where 1 ≤ r ≤ N − 1.



6.2. Rank-reducing Updates 105

than others, in terms of cost function value. Although this would suggest that they
should be optimized within each iteration, a quick look at the resulting optimization
problem reveals that the complexity of such a scheme would be tremendously high.
As a result, we opt to have the sets {∆∆∆lj

} and {ΦΦΦlj} fixed throughout the algorithm.
In addition to the fact that the update rule in (6.2.1) is the most generic possible
(i.e., it can represent any matrix), another reason for picking such a structure is that
the resulting optimization problem is a relaxation (although a non-convex one) of
the optimization solved by the distributed IA [GCJ11] - a result that is formalized
in the next subsection.

6.2.1 Relaxation Heuristic
By incorporating the update in (6.2.1) into (6.1.5), the resulting optimization prob-
lem is given by,

min
UUUn+1
lj

flj (UUUn+1
lj

) = tr(UUUn+1†
lj

QQQn+1
lj

UUUn+1
lj

)

s.t. ‖UUUn+1
lj
‖2F = Pr

UUUn+1
lj

= ∆∆∆ljAAA
n
lj + ΦΦΦljBBB

n
lj . (6.2.2)

Since we already proved that (6.1.5) is a relaxation (6.1.4), it remains to show that
(6.1.5) is equivalent to (6.2.2) (as defined in [BV04]). Note that this immediately
follows from the one-to-one nature of the update in (6.2.1): indeed (6.2.1) should
be seen as a one-to-one mapping G, from UUUn+1

lj
to AAAnlj ,BBB

n
lj
(for fixed ∆∆∆lj

and ΦΦΦlj ),
i.e., G : UUUn+1

lj
→ G(AAAnlj ,BBB

n
lj

).
Summarizing thus far, we relaxed the distributed IA problem in (6.1.4), but

made the process of solving it more complex. In view of simplifying the solution
process, we imposed a structure on the variables of the problem (the update rule
in (6.2.1)): generally, this has the effect of constraining the variables to have a
particular structure, i.e., adding an additional constraint set S to the problem.
Thus S needs to be as “wide” as possible, such that it does not alter the feasible
region. This is the reason for choosing a generic update rule (that results in S
encompassing a “wide” range of matrices, e.g., unitary).

Although the relaxation argument implies that such a scheme will yield “better"
solutions than its distributed IA counterpart, two comments on the latter statement
are in order. Firstly, the obvious fact that the solution of the relaxed problem,
(6.2.2), will be lower than that of the original problem, (6.1.4), is contingent upon
both schemes being able to find the global solutions to their respective problems.
Furthermore, since both problems have to be solved at every iteration, it is rather
hard to show that at any given iteration, the leakage value for one of the schemes

However, in that case, selecting the best value of r will likely depend on the particular problem
instance, and thus will have to be selected based on empirical evidence. Consequently, we set r = d
for the sake of simplicity
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will be better or worse than the other one (since the sequence {QQQnlj}n is different
for each of the schemes). As a result, although the relaxation argument cannot
lead to a rigorous proof of the superiority of any of the schemes, it does provide a
well-founded heuristic for adopting such an update rule.

6.2.2 Problem Formulation
Now that we showed that (6.2.2) is a relaxation of (6.1.4), we proceed to rewrite
(6.2.2) into a simpler equivalent problem, making use of the following result.

Proposition 6.2.1. Let UUU ∈ Cn×p, p < n, be a given full rank matrix, and QQQ ∈
U(n, p) a unitary matrix. Then there exists AAA ∈ Cp×p and BBB ∈ C(n−p)×p such that
UUU = QAQAQA+QQQ⊥BBB, where QQQ⊥ ∈ U(n, n− p). Furthermore, AAA = QQQ†UUU and BBB = QQQ⊥

†
UUU .

Proof. Refer to Appendix 6.7.1

As a result, Proposition 6.2.1 implies any UUUn+1
lj

∈ CN×d, can be written as
UUUn+1
lj

= ∆∆∆lj
AAAnlj + ΦΦΦljBBB

n
lj
, and consequently, the second constraint in (6.2.2) can

be removed without changing the domain of the optimization problem. Then, by
applying the one-to-one mapping G : UUUn+1

lj
→ ∆∆∆lj

AAAnlj + ΦΦΦljBBB
n
lj
, we rewrite (6.2.2)

as,

min
AAAn
lj
,BBBn
lj

flj (AAAnlj ,BBB
n
lj ) = tr[(∆∆∆ljAAA

n
lj + ΦΦΦljBBB

n
lj )
†QQQn+1

lj
(∆∆∆ljAAA

n
lj + ΦΦΦljBBB

n
lj )]

s.t. ‖AAAnlj‖
2
F + ‖BBBnlj‖

2
F = Pr . (6.2.3)

6.2.3 Turbo Optimization
Due to the fact that flj is not jointly convex in AAAnlj and BBB

n
lj
, alternately optimizing

each of the variables stands out as a possible solution. Furthermore, even when
one of the variables is fixed, the resulting optimization problem is still a non-
convex one, due to the non-affine equality constraint. Still, it is possible to find the
globally optimum solution for each of the variables, as shown in Lemma 6.2.1. By
repeating this process multiple times, we wish to produce a non-increasing sequence
{flj (AAA

n,m
lj

,BBBn,mlj )}m (m being the turbo iteration index) that converges to a non-
negative limit. Thus, in addition to the main outer F-B iteration, n, we now have an
inner loop (or turbo iteration), where AAAn,mlj and BBBn,mlj are sequentially optimized.
With this in mind, for a given BBBn,mlj , the sequential updates AAAn,m+1

lj
,BBBn,m+1

lj
are

defined as follows,

BBBn,m+1
lj

4= argmin
BBB

flj

AAAn,m+1
lj

4= argmin
AAA

flj (AAA,BBB
n,m
lj

)︸ ︷︷ ︸
J1

, BBB


︸ ︷︷ ︸

J2

,
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where the inner optimization problems are elaborated below,

(J1) : AAAn,m+1
lj

= argmin
AAA

flj (AAA,BBB
n,m
lj

)

s. t. h1(AAA) = ‖AAA‖2F + ‖BBBn,mlj ‖
2
F − Pr = 0 ,

(J2) : BBBn,m+1
lj

= argmin
BBB

flj (AAA
n,m+1
lj

,BBB)

s. t. h2(BBB) = ‖BBB‖2F + ‖AAAn,m+1
lj

‖2F − Pr = 0 .

Remark 6.1. Both (J1) and (J2) are non-convex due to the quadratic equality
constraint. Note that applying convex relaxation by replacing the equality by an
inequality (thus forming a convex superset) will not help: indeed one can show in
that that the sequences of optimal updates within the turbo iteration, are such
that {AAAn,mlj }m → 000 and {BBBn,mlj }m → 000 (consequently, UUUn+1

lj
= 000 , implying that the

algorithm converges to a point that does not necessarily correspond to stationary
points of the leakage function).

The following lemma provides the solution to the different subproblems of our
proposed algorithms.

Lemma 6.2.1. Consider the following non-convex quadratic program,

min
XXX

f(XXX) = tr[(γ1ΘΘΘ + γ2TTTXXX)†QQQ(γ1ΘΘΘ + γ2TTTXXX)]

s. t. h(XXX) = ‖XXX‖2F − ζ = 0 , ζ > 0 , (6.2.4)

where QQQ � 000 , ΘΘΘ 6= 000 , 0 ≤ γ1 , γ2 ≤ 1. Then, the (globally optimum) solution XXX?

is given by
XXX?(µ?) = −γ1γ2

(
γ2

2 TTT
†QQQTTT + µ?III

)−1
TTT †QQQΘΘΘ (6.2.5)

where µ? is the unique solution to

‖XXX?(µ)‖2F = ζ

in the interval −γ2
2 λ1[TTT †QQQTTT ] < µ < γ1γ2‖ΘΘΘ†QQQTTT‖F /

√
ζ. Moreover, ‖XXX?(µ)‖2F is

monotonically decreasing in µ, for µ > −γ2
2 λ1[TTT †QQQTTT ].

Proof. Refer to Appendix 6.7.2.

Though it might seem that (6.1.5) can be solved using Lemma 6.2.1, i.e., by
setting ΘΘΘ = 000, this does make the necessary and sufficient conditions inconsistent
(refer to Appendix 6.7.2). On the other hand, it becomes clear at this point that (J1)
is a special case of (6.2.4), by letting XXX = AAA, ΘΘΘ = ΦΦΦljBBB

n,m
lj

, TTT = ∆∆∆lj
, γ1 = γ2 = 1,
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ζ = Pr − ‖BBBn,mlj ‖
2
F (keeping in mind that ‖AAAn,mlj ‖

2
F + ‖BBBn,mlj ‖

2
F = Pr , ∀m, it is

evident that ζ > 0). Applying the result of Lemma 6.2.1, we now write the solution
to (J1) as,

AAAn,m+1
lj

(µ) = −(∆∆∆
†

ljQQQ
n+1
lj

∆∆∆lj + µIII)−1∆∆∆
†

ljQQQ
n+1
lj

ΦΦΦljBBB
n,m
lj

,

µ ∈ { µ | g(µ) = ‖AAAn,m+1
lj

(µ)‖2F + ‖BBBn,mlj ‖
2
F − Pr = 0 ,

µ > −λ1[∆∆∆
†

ljQQQ
n+1
lj

∆∆∆lj ]}. (6.2.6)

Since the function g(µ) is monotonically decreasing, the solution can be efficiently
found using bisection.

The process of solving (J2) follows exactly the same reasoning as above. By
lettingXXX = BBB, ΘΘΘ = ∆∆∆lj

AAAn,m+1
lj

, TTT = ΦΦΦlj , γ1 = γ2 = 1, ζ = Pr−‖AAAn,m+1
lj

‖2F , ζ > 0.
Then, the application of of Lemma 6.2.1 immediately yields the solution to (J2),

BBBn,m+1
lj

(µ) = −(ΦΦΦ
†

ljQQQ
n+1
lj

ΦΦΦlj + µIII)−1ΦΦΦ
†

ljQQQ
n+1
lj

∆∆∆ljAAA
n,m+1
lj

,

µ ∈ { µ | g(µ) = ‖BBBn,m+1
lj

(µ)‖2F + ‖AAAn,m+1
lj

‖2F − Pr = 0 ,

µ > −λ1[ΦΦΦ
†

ljQQQ
n+1
lj

ΦΦΦlj ]}. (6.2.7)

6.2.4 Reverse network optimization

Due to the inherent nature of the leakage function, the reverse network optimization
follows the same reasoning as the one presented above. Thus, to avoid unnecessary
repetition, we just limit ourselves to stating the results, skipping all the derivations.
The update rule for the transmit filter as is set as follows (similarly to (6.2.1)),

VVV n+1
lj

= ΛΛΛljCCC
n
lj + ΓΓΓljDDD

n
lj , (6.2.8)

where ΛΛΛlj ∈ U(M,d) and ΓΓΓlj ∈ U(M,M − d) are such that ΛΛΛ†ljΓΓΓlj = 000. Further-
more, CCCnlj ∈ Cd×d and DDDn

lj
∈ C(M−d)×d are the combining weights of ΛΛΛlj and

ΓΓΓlj , respectively. Then, the resulting sequential optimization problems are given as
follows,

(J3) : CCCn,m+1
lj

= argmin
CCC

f̄lj (CCC,DDD
n,m
lj

)

s. t. h3(CCC) = ‖CCC‖2F + ‖DDDn,m
lj
‖2F − Pt = 0,

(J4) : DDDn,m+1
lj

= argmin
DDD

f̄lj (CCC
n,m+1
lj

,DDD)

s. t. h4(DDD) = ‖DDD‖2F + ‖CCCn,m+1
lj

‖2F − Pt = 0,
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where Pt is the transmit filter power constraint, and f̄lj , the leakage at transmitter
lj , is given by

f̄lj (CCCnlj ,DDD
n
lj ) = tr(VVV n+1†

lj
Q̄̄Q̄Qn+1
lj

VVV n+1
lj

)

= tr[(ΛΛΛljCCC
n
lj + ΓΓΓljDDD

n
lj )
†Q̄̄Q̄Qn+1

lj
(ΛΛΛljCCC

n
lj + ΓΓΓljDDD

n
lj )].

Again, the same block coordinate descent structure can be employed to optimize
the weight matricesCCCnlj andDDD

n
lj
. Using the same reasoning as earlier, one can obtain

the optimal updates, using the result of Lemma 6.2.1, to yield,

CCCn,m+1
lj

(µ) = −(ΛΛΛ
†

lj Q̄̄Q̄Q
n+1
lj

ΛΛΛlj + µIII)−1ΛΛΛ
†

lj Q̄̄Q̄Q
n+1
lj

ΓΓΓljDDD
n,m
lj

,

µ ∈ { µ | g(µ) = ‖CCCn,m+1
lj

(µ)‖2F + ‖DDDn,m
lj
‖2F − Pt = 0 ,

µ > −λ1[ΛΛΛ
†

lj Q̄̄Q̄Q
n+1
lj

ΛΛΛlj ]}, (6.2.9)

DDDn,m+1
lj

(µ) = −(ΓΓΓ
†

lj Q̄̄Q̄Q
n+1
lj

ΓΓΓlj + µIII)−1ΓΓΓ
†

lj Q̄̄Q̄Q
n+1
lj

ΛΛΛljCCC
n,m+1
lj

,

µ ∈ { µ | g(µ) = ‖DDDn,m+1
lj

(µ)‖2F + ‖CCCn,m+1
lj

‖2F − Pt = 0 ,

µ > −λ1[ΓΓΓ
†

lj Q̄̄Q̄Q
n+1
lj

ΓΓΓlj ]}. (6.2.10)

The resulting algorithm, Iteratively Weighted Updates with Rank Reducing updates
(IWU-RR) is shown in Algorithm 5.

Algorithm 5 Iterative Weight Update with Rank-Reduction (IWU-RR)
T : number of F-B iterations, I : number of turbo iterations
for n = 0, 1, ..., T − 1 do

// forward network optimization
Update receiver interference covariance matrix
for m = 0, 1, ..., I − 1 do

Compute {AAAn,m+1
lj

}lj in (6.2.6), {BBBn,m+1
lj

}lj in (6.2.7)
end for
Check rank and perform rank-reduction (Remark 6.2)
Update receive filter in (6.2.1)
// reverse network optimization

Update transmitter interference covariance matrix
for m = 0, 1, ..., I − 1 do

Compute {CCCn,m+1
lj

}lj in (6.2.9), {DDDn,m+1
lj

}lj in (6.2.10)
end for
Check rank and perform rank-reduction (Remark 6.2)
Update transmit precoder in (6.2.8)

end for
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Remark 6.2. If the weight combining matrices at the output of the turbo iteration
(for, say, the receive filter update) are rank deficient, then resulting receive filter is
rank deficient as well. The rank-reduction process is done by eliminating linearly
dependent columns of AAAn,mlj and BBBn,mlj , and appropriately scaling each of them, to
fulfill the power constraint.

6.2.5 Convergence Analysis
As shown earlier, although the problem solved within the turbo iteration is a non-
convex one, i.e., (6.2.3), we can still show that the application of the updates for
AAAn,m+1
lj

and BBBn,m+1
lj

(given in (6.2.6) and (6.2.7), respectively), cannot increase the
leakage at each receiver.

Theorem 6.2.1. For fixed {VVV n+1
lj
}lj , the leakage within the receiver turbo itera-

tion is non-increasing, i.e. the sequence {flj (AAA
n,m
lj

,BBBn,mlj )}m is non-increasing, and
converges to a non-negative limit fn,stlj

≥ 0, where AAAn,m+1
lj

and BBBn,m+1
lj

are given
in (6.2.6) and (6.2.7).

Proof. The proof immediately follows from showing that for a fixed F-B iteration
number l, the following holds,

flj (AAA
n,m+1
lj

,BBBn,m+1
lj

)
(b)
≤ flj (AAA

n,m+1
lj

,BBBn,mlj )
(a)
≤ flj (AAA

n,m
lj

,BBBn,mlj ),∀m. (6.2.11)

Note that (a) follows immediately from the definition and solution of (J1). Con-
sequently, the application of the update AAAn,mlj ← AAAn,m+1

lj
, given by (6.2.6), cannot

increase the cost function. Similarly, points that satisfy (6.2.7) mimimize (J2) (as
shown by Lemma 6.2.1). Thus, the update BBBn,mlj ← BBBn,m+1

lj
given in (6.2.7) cannot

increase the cost function, and (b) follows. Therefore, the sequence {flj (AAA
n,m
lj

,BBBn,mlj )}m
is non-increasing, and since the leakage function is non-negative, we conclude that
{flj (AAA

n,m
lj

,BBBn,mlj )}m converges to some non-negative limit fn,stlj
.

With this in mind, not only does Theorem 6.2.1 establish the convergence of the
turbo iteration to some limit, but also that the leakage is non-increasing with each of
the updates (as immediately seen from (6.2.11)). Although Theorem 6.2.1 shows the
convergence of the turbo iteration, to some limit, one cannot claim that this limit
corresponds to a stationary point of the function, because the variables in (6.2.3) are
coupled [RHL12]. Moreover, recall that we do not wish our algorithm to converge
to stationary points of the leakage function since the latter correspond to rank-
one solutions (following the discussion in Sect. II-B). Consequently, showing the
convergence of the block coordinate descent method to stationary points becomes
much less critical in our case, as long as we can establish the non-increasing nature
of the leakage. In addition, it is not hard to see that exactly the same reasoning
can be used to extrapolate the result of Theorem 6.2.1 to show that the updates
for the transmit filter weights (given in (6.2.9) and (6.2.10)), can only decrease the
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leakage at the given transmitter, and thus establishing the convergence of the turbo
iteration for the transmit filter weights.

6.2.6 Convergence to lower-rank solutions
For convenience, we define T as the maximum number of F-B iterations, and I
as the maximum number of turbo iterations, for our algorithm. Strong (empirical)
evidence suggests that the proposed algorithm will gradually reduce the transmit /
receive filter rank, and converge to rank-one solutions, as T, I → ∞. As a result,
operating the algorithm with large values of T, I will result in a multiplexing gain
of 1 degree-of-freedom per user (highly suboptimal especially if multistream trans-
mission is desired). Conversely, by allowing the algorithm to gradually reduce the
rank of a given transmit / receive filter, we exploit the “transient phase” of this
algorithm stopping before convergence to rank-one solutions (i.e. for small values of
T, I). In addition, recall that reducing the transmit / receive filter rank also reduces
the dimension of the interference that is caused to other receivers (this is benefi-
cial in the interference-limited regime): this makes the alignment of interference
“easier” and greatly speeds up the convergence. Note as well that although having
small values of T, I is extremely desirable (the associated communication and com-
putational overhead will be relatively low), having them too small will evidently
result in poor performance, e.g., T = 0, I = 0. This does suggest the existence of
a trade-off on T and I, between the performance and overhead. Unfortunately, a
mathematical characterization of the latter reveals to be impossible, and we will
rely on empirical evidence to select them.

6.3 Rank-Preserving Updates

6.3.1 Proposed Update Rule and Problem Formulation
An inherent consequence of the coupled nature of the weight updates for AAAnlj and
BBBnlj , i.e., (6.2.6) and (6.2.7) (as well as the turbo-like structure of the algorithm),
is the fact that if any of the latter are rank-deficient, then the other one will be
rank-deficient as well. Moreover, imposing an explicit rank constraint would make
the problem extremely hard to solve (since most rank-constrained problems are
NP-hard). Alternately, one way to have the algorithm yield full-rank solutions, is
to use another update rule (shown below) where this effect is absent, i.e.,

UUUn+1
lj

=
√

1− βn2
lj
UUUnlj + βnlj∆∆∆

n
ljZZZ

n
lj , 0 ≤ βnlj ≤ 1, (6.3.1)

where ∆∆∆n
lj
∈ U(N,N − d) is such that ∆∆∆n

lj
⊆ (UUUnlj )

⊥, ZZZnlj ∈ C(N−d)×d is the
combining weight matrix for the receiver update, and βnlj is the step size for the
receive filter update. Note that due to the dependence of the update on the current
receive filter, UUUnlj , it is easy to verify that UUUn+1

lj
is full rank, if UUUnlj is. In addition, if
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both UUUnlj and ZZZnlj satisfy the power constraint, i.e., ‖UUUnlj‖
2
F = Pr and ‖ZZZnlj‖

2
F = Pr,

then ‖UUUn+1
lj
‖2F = Pr.

Similarly to (6.2.2), by incorporating the above update structure, the resulting
optimization problem at each receiver is stated as follows,

min
UUUn+1
lj

flj (UUUn+1
lj

) = tr(UUUn+1†
lj

QQQn+1
lj

UUUn+1
lj

)

s.t. ‖UUUn+1
lj
‖2F = Pr

UUUn+1
lj

=
√

1− βn2
lj
UUUnlj + βnlj∆∆∆

n
ljZZZ

n
lj . (6.3.2)

A few comments are in order at this point regarding the similarities and funda-
mental differences between the rank-reducing update proposed earlier, and the
rank-preserving update above. Given that both result in non-convex optimization
problems, they both rely on a coordinate descent approach to optimize each of
their respective variables. In addition, it is clear that the rank-reducing update in
(6.2.1) is more generic than the rank-preserving update in (6.3.1). As a result, the
relaxation argument that was put forth to motivate the use of the update in (6.2.1)
(Sect. 6.2.1), no longer holds here. Furthermore, both algorithms have exactly the
same structure: in that sense, after updating its interference covariance matrix, re-
ceiver lj wishes to optimize both its combining weight and step-size, i.e. βnlj and
ZZZnlj , such as to minimize the resulting interference leakage at the next iteration.
Plugging (6.3.1) into (6.3.2) yields the cost function at receiver lj ,

flj (βnlj ,ZZZ
n
lj ) = (1− βn

2

lj )tr(UUUn
†

lj QQQ
n+1
lj

UUUnlj ) + βn
2

lj tr(ZZZ
n†

lj ∆∆∆n†

lj QQQ
n+1
lj

∆∆∆n
ljZZZ

n
lj )

+ 2βnlj
√

1− βn2
lj
Re[tr(UUUn

†

lj QQQ
n+1
lj

∆∆∆n
ljZZZ

n
lj )]. (6.3.3)

6.3.2 Inner Optimization
Again, we will use block coordinate descent to mitigate the non-convexity of (6.3.3),
implying that receiver lj optimizes both its weight combining matrix and step
size (ZZZnlj and βnlj ), alternately and sequentially, within the turbo iteration, to pro-
duce a non-increasing sequence {flj (β

n,m
lj

,ZZZn,mlj )}m that will converge to some non-
negative limit. Thus, given βn,mlj at themth turbo iteration, the sequential updates
ZZZn,m+1
lj

and βn,m+1
lj

are chosen, as follows,

βn,m+1
lj

4= argmin
β

flj

β, ZZZn,m+1
lj

4= argmin
ZZZ

flj (β
n,m
lj

,ZZZ)︸ ︷︷ ︸
K1


︸ ︷︷ ︸

K2

,
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where (K1) : ZZZn,m+1
lj

= argmin
ZZZ

flj (β
n,m
lj

,ZZZ)

s.t. h1(ZZZ) = ‖ZZZ‖2F = Pr.

Note that (K1) in non-convex due the quadratic equality constraint, but can be
solved using Lemma 6.2.1 by letting XXX = ZZZ, ΘΘΘ = UUUnlj , TTT = ∆∆∆n

lj
, γ1 =

√
1− βn,mlj ,

γ2 = βn,mlj , ζ = Pr. Applying the result of Lemma 6.2.1 the optimal update is given
by,

ZZZn,m+1
lj

(µ) = −βn,mlj
√

1− βn,mlj
(
βn,mlj ∆∆∆n†

lj QQQ
n+1
lj

∆∆∆n
lj + µI

)−1
∆∆∆n†

lj QQQ
n+1
lj

UUUnlj ,

µ ∈ { µ | g(µ) = ‖ZZZn,m+1
lj

(µ)‖2F − Pr = 0, µ > −βn,mlj λ1[∆∆∆n†

lj QQQ
n+1
lj

∆∆∆n
lj ]}. (6.3.4)

Given ZZZn,m+1
lj

, the optimization for βn,mlj is formulated as follows,

(K2) : βn,m+1
lj

= argmin
β

flj (β,ZZZ
n,m+1
lj

) = (1− β2)e1

+ β
√

1− β2e2 + β2e3

s.t. 0 ≤ β ≤ 1, (6.3.5)

where, for the sake of clarity, we let

e1 = tr(UUUn
†

lj QQQ
n+1
lj

UUUnlj ),

e2 = 2Re[tr(UUUn
†

lj QQQ
n+1
lj

∆∆∆n
ljZZZ

n,m+1
lj

)],

e3 = tr(ZZZn,m+1†
lj

∆∆∆n†

lj QQQ
n+1
lj

∆∆∆n
ljZZZ

n,m+1
lj

).

The main issue that one has to carefully consider while optimizing βn,mlj is that
the sign and magnitude of e2 in (6.3.5) may vary depending on the particular
instance and channel realization. Furthermore, we also need to rule out the fact
that flj might in fact be concave in βn,mlj (since by finding the stationary points,
we would be maximizing our cost function), or having many extrema. The result
of Lemma 6.3.1 addresses all those issues (whose proof is given in Appendix 6.7.3).

Lemma 6.3.1. The function p(x) = (1 − x2)e1 + x
√

1− x2e2 + x2e3 is convex
on the interval [0, 1], and thus has a single unique global minimum given by x∗ =(

1
2 + e1−e3

2
√

(e1−e3)2+e2
2

)1/2
.

Proof. Refer to Appendix 6.7.3.

Lemma 6.3.1 establishes the uniqueness of the solution to (K2), by showing that
flj (β

n,m
lj

,ZZZn,m+1
lj

) is indeed convex in βn,mlj . Thus, the update for βn,mlj can be



114 Leakage Minimization Algorithms

simply expressed as,

βn,m+1
lj

= x∗ =
(

1
2 + e1 − e3

2
√

(e1 − e3)2 + e2
2

)1/2

. (6.3.6)

6.3.3 Reverse Network Optimization
We again exploit the duality that is inherent to the structure of the leakage function,
to apply the same reasoning to obtain the optimal updates for the reverse network
optimization phase. Thus, skipping all the details, we limit ourselves to just pre-
senting the results. Similarly to the receiver update, each transmitter updates its
filter according to the following rule,

VVV n+1
lj

=
√

1− αn2
lj
VVV nlj + αnljΦΦΦ

n
ljWWW

n
lj , 0 ≤ αnlj ≤ 1, (6.3.7)

where ΦΦΦnlj ∈ U(M,M − d) is such that ΦΦΦnlj ∈ (VVV nlj )
⊥, and WWWn

lj
∈ C(M−d)×d is

the matrix of combining weights. Thus, the resulting optimization problems solved
within the turbo iteration are as follows,

(K3) : WWWn,m+1
lj

= argmin
WWW

f̄lj (αnlj ,WWW )

s.t. h2(WWW ) = ‖WWW‖2F = Pt,

(K4) : αn,m+1
lj

= argmin
α

f̄lj (α,WWW
n,m+1
lj

)

s.t. 0 ≤ α ≤ 1

where the interference leakage at transmitter lj is given by,

f̄lj (αnlj ,WWW
n,m
lj

) = (1− αn
2

lj )tr(VVV n
†

lj Q̄̄Q̄Q
n+1
lj

VVV nlj ) + αn
2

lj tr(WWW
n,m†

lj
ΦΦΦn
†

lj Q̄̄Q̄Q
n+1
lj

ΦΦΦnljWWW
n,m
lj

)

+ 2αnlj
√

1− αn2
lj
Re[tr(VVV n

†

lj Q̄̄Q̄Q
n+1
lj

ΦΦΦnljWWW
n,m
lj

)]. (6.3.8)

Finally, the optimal updates within the turbo iteration are as follows,

WWWn,m+1
lj

(µ) = −αnlj
√

1− αn2
lj

(
αn

2

lj ΦΦΦn
†

lj Q̄̄Q̄Q
n+1
lj

ΦΦΦnlj + µI
)−1

ΦΦΦn
†

lj Q̄̄Q̄Q
n+1
lj

VVV nlj ,

µ ∈ { µ | ‖WWWn,m+1
lj

(µ)‖2F − Pt = 0, µ > −αn
2

lj λ1[ΦΦΦn
†

lj Q̄̄Q̄Q
n+1
lj

ΦΦΦnlj ]}. (6.3.9)

Using Lemma 6.3.1, the optimal update for αnlj is,

αnlj =
(

1
2 + b1 − b3

2
√

(b1 − b3)2 + b22

)1/2

, (6.3.10)
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where

b1 = tr(VVV n
†

lj Q̄̄Q̄Q
n+1
lj

VVV nlj ),

b2 = 2Re[tr(VVV n
†

lj Q̄̄Q̄Q
n+1
lj

ΦΦΦnljWWW
n,m+1
lj

)],

b3 = tr(WWWn,m+1†
lj

ΦΦΦn
†

lj Q̄̄Q̄Q
n+1
lj

ΦΦΦnljWWW
n,m+1
lj

).

Algorithm 6 Iterative Weight Update with Rank-Preservation (IWU-RP)
T : number of F-B iterations, I : number of turbo iterations

2: for n = 0, 1, ..., T − 1 do
// forward network optimization

4: Update receiver interference covariance matrix
for m = 0, 1, ..., I − 1 do

6: Compute {ZZZn,m+1
lj

}lj in (6.3.4), {βn,m+1
lj

}lj in (6.3.6)
end for

8: Update receive filter in (6.3.1)
// reverse network optimization

10: Update transmitter interference covariance matrix
for m = 0, 1, ..., I − 1 do

12: Compute {WWWn,m+1
lj

}lj in (6.3.9), {αn,m+1
lj

}lj in (6.3.10)
end for

14: Update transmit precoder in (6.3.7)
end for

6.3.4 Convergence of turbo iteration
The convergence of the turbo iteration (for both the receive and transmit filter
updates) can be established using a similar reasoning as the one used in Sect 6.2.5.
In other words, we show that the application of each update cannot increase the
cost function, i.e.,

flj (β
n,m+1
lj

,ZZZn,m+1
lj

)
(b)
≤ flj (β

n,m
lj

,ZZZn,m+1
lj

)
(a)
≤ flj (β

n,m
lj

,ZZZn,mlj ).

The proof follows exactly the same argument in as the one in Theorem 6.2.1, i.e.,
by showing that the updates ZZZn,mlj ← ZZZn,m+1

lj
in (6.3.4), and βn,mlj ← βn,m+1

lj
in

(6.3.6) cannot increase the cost function.

6.4 Implementation Aspects and Complexity

The major drawback for previously proposed distributed schemes that rely on F-B
iterations, is that they assume a large number of F-B iterations to deliver their
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intended performance, ranging from hundreds to thousands (as we shall see in the
next section) - a prohibitively high cost since they correspond to actual channel
uses between the transmitter and receiver. The chief advantage of the proposed
approach is the fact that it greatly reduces the latter communication overhead to
a few iterations, while still retaining a very high performance (as simulations will
show).

We will use the flop count as a surrogate measure of complexity, although it
is well known that the latter is a rather coarse one. Assume for simplicity that
d = N/2 = M/2 4= n (this is consistent with the simulation parameters), and
denote by C the complexity per F-B iteration. Note that the latter quantity will
be largely dominated by the computationally demanding operations such as matrix
product, matrix inversion, and eigenvalue decomposition (EVD). With this in mind,
for XXX ∈ Cm×p,YYY ∈ Cp×n, then XYXYXY needs 8mnp flops. Furthermore, inverting an
n×n matrix requires 2n3−n flops, while computing the EVD of an n×n Hermitian
matrix using the SVD requires 126n3 flops3, resulting in each update in IWU-RR
requiring (67/4)n3−n. Thus, keeping in mind that each iteration involves 2K such
updates repeated I times, and that EVD is applied to an n/2 × n/2 matrix, the
complexity of IWU-RR is

CIWU−RR = (2K)(I)(16n3 + 67n3 − 4n) = 2KI(83n3 − 4n).

The same logic applies in the case of IWU-RP, except that each update requires
(53/4n3 − n), to yield

CIWU−RP = 2KI(95/2n3 − n).

Given that the complexity of the bisection method is negligible in comparison with
the above, and that the latter depends on the channel realization, and many of the
problem parameters (making it extremely difficult to characterize), we have ignored
the cost of the bisection method in both cases. Finally, for distributed IA, the cost
is largely dominated by the EVD of an n× n matrix, to yield

CDIA = 2K(126n3).

Since our schemes employ relatively small values of I, the complexity (per F-B
iteration) is similar for all the above schemes (albeit slightly lower for distributed
IA). However, our simulations generally indicated that our proposed algorithms
require a much smaller number of F-B iterations to reach a predetermined tolerance
value. Consequently, the overall complexity of our schemes will be much lower.

3Generally speaking, the complexity of operations such EVD or SVD, are data dependent:
though it is well-known that they are O(n3), the exact values depend on the matrix itself. For
simplicity, we approximate the complexity of an n× n SVD as 126n3 [GVL96].
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6.5 Simulation Results

As stated earlier, the performance of the proposed schemes is largely dependent
on the number of F-B iterations T , as well as the number of turbo iterations I.
Since any explicit optimization of the latter quantities is a rather tedious task - if
not infeasible, we will rely on simulations to evaluate their effect, as well as both
algorithms’ performance. For that matter, we fix the maximum number of F-B
iterations to a small value, e.g., T = 2 (since we wish to keep the communication
overhead at a low level), and evaluate the algorithms’ performance for several values
of I. In addition, initializing distributed IA with random rank-d unitary transmit
filters, the stopping criterion in all subsequent simulations is a maximum number
of F-B iterations T , thus keeping the overhead the same for all schemes. Although
in this case, the proposed schemes will have higher computational overhead with
respect to distributed IA, this will easily be offset by the gains in performance (as
this section will clearly show).

We choose the matrices {∆∆∆lj
}, {ΦΦΦlj} (for the receive filter optimization), and

{ΛΛΛlj}, {ΓΓΓlj} (for the transmit filter optimization) as random unitary matrices ob-
tained by applying the QR decomposition to random matrices with Gaussian i.i.d
entries. Because the latter matrices are fixed throughout the entire algorithm, we
can see that their choice is irrelevant, firstly since it is not based on some a pri-
ori channel information (for instance, the performance will improve by choosing
{∆∆∆lj

} to span the range of HHH l,lj ). Moreover, we generate the channel matrices
as i.i.d. circular Gaussian random variables, which are stochastically invariant to
unitary transformations. All the sum-rate curves are averaged over 1000 channel
realizations. We reiterate the important fact that our schemes only optimize the
interference subspace, without any regard to the signal or noise. Thus, a comparison
with schemes such as max-SINR [CJ08] and (weighted) MMSE [SSB+09], [SRLH11]
is somewhat not relevant for this work, since they also optimize the desired signal
subspace.

6.5.1 Evolution of Interference Leakage versus T and I

Using insights from the feasibility of IA [RLL12,YGJK10] , we test the robustness of
the proposed schemes against the following scenario, known a priori to be infeasible.
Though this might seem to put distributed IA at a disadvantage (given that the
latter is designed to handle feasible scenarios), scenarios that are known to be
feasible are few, and might not always be of practical interest. Thus, robustness to
infeasible IA configurations is desirable. Fig. 6.2 shows the (average) evolution of the
leakage with the number of F-B iterations, for both our schemes (plotted for several
values of I), and distributed IA. Although both schemes outperform distributed IA
for any value of I, the gap between IWU-RR and the benchmark is indeed impressive
(∼ 3 to 5 orders of magnitude, depending on the value of I). As expected, this gain
stems from the ability of IWU-RR to perform rank-reduction, thereby decreasing
the dimension of the interference at the corresponding receiver. In addition we
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Figure 6.2: Interference Leakage as a function of T , I (4× 4 MIMO, 4 users, d = 2)

observe that the gain from each additional turbo iteration is decreasing: this is
clearly visible in the case of IWU-RP, where the curves corresponding to I = 2 and
I = 4 are almost identical, implying that only a few turbo iteration are needed to
give the desired performance boost.

6.5.2 Sum-Rate Performance

Next, we simulate the ergodic sum-rate of both our schemes for a 10× 10 MIMO,
4-user MIMO IC with d = 4, known to be proper [RLL12], and fix the number of F-
B iterations to 2, for all algorithms. We use the distributed IA algorithm in [CJ08]
as a benchmark, but most importantly, we also include the rank-one solution to
(6.1.5), given by SDR. Fig. 6.3 reflects the effect of the turbo iteration on the
sum-rate performance of both algorithms: by running just a few turbo iterations,
we see that both schemes significantly outperform distributed IA, especially in the
high SNR region, when the gain becomes very large! In addition we observe that
indeed the rank-one solution of SDR offers extremely poor performance in terms
of sum-rate (as discussed in Sect. II.B). Moreover, we observe that the high-SNR
slope for IWU-RR (I = 10) is higher than that of SDR, implying that on average,
IWU-RR yields transmit / receive filters whose rank is larger than 1.

Moreover, we observe from Fig. 6.3 that the performance gap is very pronounced,
e.g., the high-SNR spectral efficiency of IWU-RR with 10 turbo iterations is almost
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Figure 6.5: Sum-rate performance in more realistic setting (8×8 MIMO IC, 4-users,
d = 4, T = 2, I = 4)

double that of distributed IA. Interestingly, note that for I = 10 IWU-RR can
achieve, albeit not optimal, some degrees-of-freedom gain (shown by the linear
scaling of the sum-rate at high SNR), with just 2 F-B iterations. The latter does
strongly suggest that the gains of the current approach become more accentuated,
as the dimensions of the system grow.

Remark 6.3. One might be led to think at this point that the impressive gain
in sum-rate for the proposed schemes comes from the fact that the rank reduc-
tion transforms the initial IA problem into one of smaller dimensions (while dis-
tributed IA is solving the original problem), and thus that the latter simulations
do not provide a basis for a fair comparison. However, this argument can be di-
rectly refuted by comparing the sum-rate performance of distributed IA, with the
rank-preserving scheme (IWU-RP): as seen in Fig. 6.3, although both schemes yield
full-rank precoders, IWU-RP still significantly outperforms distributed IA (the gap
also increases with the number of turbo iterations, and as the dimensions of the
problem grow). This seems to suggest that those gains follow from introducing the
turbo iteration (for both schemes), and additionally from solving a relaxed problem
(in the case of IWU-RR).

Next, we fix both the number of F-B and turbo iterations in our schemes to
2 and simulate the performance of distributed IA for a varying number of F-B
iterations T (for a feasible 4× 4 MIMO IC, with d = 2). Fig. 6.4 clearly shows that
for T = 2 and T = 3, distributed IA has a similar performance as both our schemes
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in the medium-to-low SNR region (and a worse one in the high-SNR region). It is
only for T = 4 that it starts to outperform them in the medium-to-low SNR region
only. This implies that the overhead requirement of distributed IA is at least 50%
more than our schemes, for this particular case (further simulations suggest that
this trend increases with the system dimensions). Moreover, we see that distributed
IA delivers its “optimal” performance after a large enough number of F-B are run
(corresponding to extremely high communication overhead): this suggests that the
poor performance of dist IA in all simulations is due to the fact that there is
significant interference leakage for small values of T .

6.5.3 Performance in more realistic setup
In view of having a more realistic assessment - albeit still far from accurate - of the
algorithms’ performance, in somewhat more practical environments, we simulate
8 × 8 MIMO transmission with 4 cells, 1 user per cell, 4 streams per user (fixing
T = 2 for all algorithms, and I = 4 for our algorithms). We modify the gain of all
interfering channels (both intra and inter), such that the resulting SIR is −5dB,
to (coarsely) emulate cell edge users. We can see from Fig. 6.5 that though both
schemes have a similar performance as distributed IA in the very low-SNR region,
they outperform it for SNR values greater than 7dB (the gap being increasing
with the SNR): IWU-RR outperforms distributed IA by ∼ 30% at 15dB of SNR,
and ∼ 80% at 20dB. This indeed shows that our schemes are good candidates
for operating in such practical scenarios. On another note, we also see that IWU-
RR and SDR have a similar high-SNR slope (thus implying that IWU-RR finds a
rank-one solution in almost all cases). However, the massive gap between IWU-RR
and SDR, indicates that the solution provided by the IWU-RR yields significantly
higher effective channel gain than the solution found by the SDR.

6.5.4 Discussions
It is interesting to notice in Fig. 6.3-6.5 that the gains for both schemes seem to
happen in the medium-to-high SNR region: this is expected, since in that regime,
reducing interference is vital to increasing the sum-rate. The observed performance
boosts for both IWU-RR and IWU-RP are attributed to the introduction of the
turbo-iteration. Furthermore, in the case of IWU-RR, the massive performance gain
additionally comes from the fact it is solving a relaxed problem. On another note,
Fig. 6.3 shows that indeed the optimal rank-one solution to (6.1.5) provided by
SDR is massively suboptimal in terms of sum-rate performance. This also provides
a clear motivation for our work, where the proposed algorithms were mainly aimed
at avoiding this rank-one solution.

Though negligible, one can indeed see a degradation in performance of both
schemes, with respect to distributed IA, in the low-SNR region (as seen from
Fig. 6.3-6.6). Despite the that fact that full-rank filters are known to be optimal in
the high-SNR regime (thanks to the insights from interference alignment), in the
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Figure 6.6: Ergodic sum-rate of proposed schemes vs distributed IA, as a function
of operating SNR (4× 4, 3-user MIMO IC d = 2, T = 2)

very low-SNR (interference-free) regime however, matched filtering is the optimal
strategy, and consequently rank-one filters are optimal as well. We note that al-
though our rank-reducing algorithm does find a rank-one solution, it might be the
“wrong one”, i.e., different from the matched filtering direction: this is due to the
fact that both our algorithm and distributed IA look for solutions that reduce in-
terference, that most likely are not aligned with the matched filtering direction. On
the other hand, the full-rank solution given by distributed IA is likely to transmit
a reasonable amount of energy along that direction. This might explain the reason
that distributed IA exhibits better performance than IWU-RR, in the low-SNR
region. Moreover, recall that schemes such as the proposed ones and distributed
IA do not take into account the desired signal and noise subspace. As a result, one
can at best speculate about their low SNR behavior (since the SNR is not part of
their mathematical formulation). However, referring to Fig. 6.6, we can see that
this degradation is minimal (around 5% for IWU-RP and 8% for IWU-RR, over
the benchmark scheme). A possible alternative to mitigate this issue is to select the
scheme based on the operating SNR, i.e., select IWU-RP in the low-SNR region,
since it has a similar performance as distributed IA (as seen from Fig. 6.3-6.6): this
can be easily implemented since both algorithms have the exact same structure,
and only the updates have to be changed.

In conclusion, though both schemes are extremely similar in their algorithmic
structure (i.e. both update the filter weights within a turbo iteration), both are
distributed, optimize the same metric, and require the same (local) CSI quantities
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at each node, they indeed have some fundamental differences. The fact that the
filter update equations are different has several implications: the update IWU-RR
does not necessarily lead to full rank filters, and though it was shown that IWU-
RR attempts to solve the relaxed problem in (4), such claim cannot be made for
IWU-RP mainly due to the different constraints on the update structure. Finally,
we compared their performance in several scenarios via simulations, and suggested
reasons for the behavior we observed.

6.6 Conclusion

Within the context of the leakage minimization problem, we proposed two distinct
schemes based on rank-reducing (IWU-RR) and rank-preserving (IWU-RP) filter
updates, where the transmit and receive filter weights are iteratively refined in a
turbo-like structure. We then showed that they are well suited for delivering high
spectral efficiency (compared to the well-known distributed IA algorithm), while
generating very small overhead (typically, only a few F-B iterations). Though the
introduction of the so-called turbo iteration significantly boosted the performance of
both schemes, it is clear that its impact was much more significant when combined
with the rank-reducing updates in IWU-RR, thus allowing it to achieve a per-
formance that otherwise required a much larger number of F-B iterations. In that
sense, the proposed schemes enabled us to tradeoff the communication overhead as-
sociated with the F-B iterations - a rather expensive resource, with computational
complexity (an immensely cheaper resource).

6.7 Appendix

6.7.1 Proof of Proposition 6.2.1
Given UUU and QQQ, and using the fact that QQQ and QQQ⊥ are unitary and orthogonal,
the proof is simple after noting that any subspace UUU can be expressed as a sum of
its components over orthogonal directions (a result that trivially follows from the
orthogonal decomposition theorem), i.e. UUU = PUPUPU +PPP⊥UUU , where PPP and PPP⊥ are any
two orthogonal projection matrices. In particular, let PPP = QQQQQQ† and PPP⊥ = QQQ⊥QQQ⊥

† ,
then UUU = QQQQQQ†UUU +QQQ⊥QQQ⊥

†
UUU = QAQAQA+QQQ⊥BBB, where AAA = QQQ†UUU and BBB = QQQ⊥

†
UUU

6.7.2 Proof of Lemma 6.2.1
The result is a special case of [BE06], which shows that strong duality holds for
all complex valued quadratic problems with up to two quadratic inequality con-
straints. It is straightforward to show that (6.2.4) and its dual are strictly feasible.
Furthermore, since the equality constraint ‖XXX‖2F = ζ is equivalent to the two in-
equality constraints ‖XXX‖2F ≤ ζ and ‖XXX‖2F ≥ ζ, the results of [BE06] show that the
globally optimum solution of (6.2.4) can be obtained from its dual. For the specific
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formulation (6.2.4), the solution takes a particularly simple form. Adding the La-
grange multipliers of the two inequality constraints into a single dual variable µ,
the necessary and sufficient conditions of [BE06, Theorem 2.4] can be written as(

γ2
2 TTT
†QQQTTT + µ?III

)
XXX? = −γ1γ2 TTT

†QQQΘΘΘ (6.7.1)

‖XXX‖2F = ζ (6.7.2)(
γ2

2 TTT
†QQQTTT + µ?III

)
� 0 . (6.7.3)

The last inequality is fulfilled when µ > −γ2
2 λ1[TTT †QQQTTT ] (µ = −γ2

2 λ1[TTT †QQQTTT ] can
be excluded since it results in ‖XXX‖2F =∞). Next, we study g(µ) 4= ‖XXX?(µ)‖2F − ζ.
Let σ1, ..., σd be the eigenvalues of TTT †QQQTTT (sorted in increasing order), and vvv1, ..., vvvd
their corresponding eigenvectors. We first rewrite g(µ) as

g(µ) = γ2
1γ

2
2 tr[ ΘΘΘ†QQQTTT (γ2

2 TTT
†QQQTTT + µIII)−2TTT †QQQΘΘΘ ]− ζ

= γ2
1γ

2
2 tr[XXX†o( γ2

2 TTT
†QQQTTT + µIII )−2XXXo]− ζ ,

where XXXo = TTT †QQQΘΘΘ. Note that we can express the matrix (γ2
2 TTT †QQQTTT + µIII)−2 as

a function of σi, vvvi, µ, as (γ2
2 TTT †QQQTTT + µIII)−2 =

∑d
i=1(γ2

2σi + µ)−2vvvivvv
†
i . Thus, we

rewrite g(µ) as follows,

g(µ) = γ2
1γ

2
2 tr[XXX†o(

d∑
i=1

(γ2
2σi + µ)−2vvvivvv

†
i )XXXo]− ζ

=
d∑
i=1

γ2
1γ

2
2 tr(XXX†ovvvivvv

†
iXXXo)

(γ2
2σi + µ)2 − ζ =

d∑
i=1

(γ1γ2 ci)2

(γ2
2σi + µ)2 − ζ, (6.7.4)

where ci = ‖XXX†ovvvi‖2. A quick look at this last expression reveals that indeed g(µ)
is strictly monotonically decreasing in µ, for µ > −γ2

2σ1 = −γ2
2λ1[TTT †QQQTTT ]. Conse-

quently, g(µ) = 0 has a unique solution. To find the upper bound on µ to use in a
bisection search, note that if µ > 0 then

g(µ) < γ2
1γ

2
2

d∑
i=1

‖XXX†ovvvi‖2

µ2 − ζ = γ2
1γ

2
2

µ2 ‖XXX
†
oVVV o‖2F − ζ =

(
γ1γ2‖XXX†o‖F

µ

)2

− ζ .

where VVV o =
[
vvv1 . . . vvvd

]
. Consequently if µ ≥ γ1γ2‖XXX†o‖F /

√
ζ, we get g(µ) < 0.

This concludes the proof.

6.7.3 Proof of Lemma 6.3.1
Let Sk be the set of local and global minima of (K2), which can written as,

Sk = { x | p′(x) = 0, p′′(x) ≥ 0, 0 ≤ x < 1},
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where p(x) = (1− x2)e1 + x
√

1− x2e2 + x2e3. We will show that the above set has
a single element, thereby establishing that (K2) is a convex problem, and derive
the solution.
Defining a = e1 − e3, we start by finding the zero-differential points of p(x), i.e.,
p′(x) = 0 ⇒ e2

1−2x2
√

1−x2 = 2ax ⇒ 4(a2 + e2
2)x4 − 4(a2 + e2

2)x2 + e2
2 = 0 (e.1) where

the last equation stems from squaring both sides. Note that some of the roots of
(e.1) will not correspond to zero-differential points (we will remedy this fact later).
Letting X = x2, we can write the solution of (e.1) as,

X1 = 1/2 + a/2
√
a2 + e2

2, X2 = 1/2− a/2
√
a2 + e2

2.

Moreover, since we are interested in solutions to (K2) that lie in the interval [0, 1],
we verify that indeed X1, X2 lie in this interval. This can be easily done by con-
sidering two cases, a ≥ 0 and a ≤ 0. Using exactly the same manner, we can show
that if a ≤ 0, then 0 ≤ X1 ≤ 1/2 and 1/2 ≤ X2 ≤ 1, thus concluding that both
lie in the interval [0, 1]. This said, by discarding negative solutions, the solution to
(e.1) is x1 =

√
X1, x2 =

√
X2, i.e.,

x1 =
√
X1 =

√
1/2 + a/2

√
a2 + e2

2,

x2 =
√
X2 =

√
1/2− a/2

√
a2 + e2

2.

Note that both x1 and x2, lie in the interval [0, 1]. Recall that not all the solutions
of (e.1) correspond to zero-differential points of p(x) - in fact it is easy to show that
p′(x1) = 0 and p′(x2) 6= 0, implying that p(x) has a single unique zero-differential
point at x1. Thus, it remains to show that p′′(x1) = 0. Using the fact that x2

1 = X1,
x2

2 = X2, and noting that X1 +X2 = 1, we rewrite this condition as,

p′′(x1) ≥ 0⇔ −2a− e2

[(
X1
X2

)3/2
+ 3

(
X1
X2

)1/2
]
≥ 0

The last equation can be easily shown, by plugging in the values for X1 and X2
(we will omit the derivations since they are rather straightforward and easily re-
produced).

Thus, we conclude that the set of global minima of p(x), Sk, has a single element,
thereby establishing that p(x) is convex and has single global minimum given by
Sk = {

√
1/2 + a/2

√
a2 + e2

2}.
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Chapter 7

Antenna Domain Formation

7.1 Densification

In the context of cellular systems (and this thesis in particular), densification,
refers to having more BSs per unit area, and more antennas per BS. More-
over, ultra-dense deployments have been identified as one of the key scenarios

for 5G systems [MET14]. From a historical perspective, densification has given
the most significant gains in data rates. This is due to the fact that, in general,
more BSs / antennas, lead to more degrees-of-freedom. This is of course contingent
upon having effective ways of dealing with the resulting interference (since den-
sification results in more interference). Indeed, the fundamental insights provided
by techniques such as Interference Alignment [CJ08,MAMK08], and Coordinated
Multi-point [GHH+10], clearly state that the effective managing of interference (via
coordination among BSs) is necessary to achieve the optimal degrees-of-freedom, in
several communication scenarios.

While we have motivated and investigated mechanisms for distributed coordi-
nation in Part II (focusing on ones with low-overhead), we attempt to shed light
on the opposing paradigm of centralized coordination. Intuitively speaking, tighter
coordination can be achieved, when BSs stations are connected via high-capacity
links to a so-called aggregation node, that can be used to share CSI and/or data
among the different BSs. This is the basic setup of the so-called Cloud Radio Access
Network (Could-RAN).

Typically, a Cloud-RAN consists of Remote Radio Heads (RRHs) (assumed
to have limited baseband/processing capabilities) which are connected to the so-
called Aggregation Nodes (ANs) (assumed to have perfect and global CSI), via
wired/wireless links. In that sense, aggregation nodes act as centralized compute
nodes, that gather all the required CSI from a cluster of connected radio-heads,
perform the required optimization (e.g., precoding), and send the resulting param-
eters to the relevant radio-heads. An Antenna Domain (AD) is the collection of
radio-heads connected to a particular aggregation node. It is envisioned that each
antenna domain consists of a few (up to tens of) radio-heads, and serves a few dozen
(up to a hundred) users. The investigation of such setups, i.e., where base stations
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are connected via backhauls, was originally done in [ZQL13].
So far, all such approaches assume the presence of one antenna domain / aggre-

gation node: The problem reduces to managing intra-AD interference only, assum-
ing no inter-AD interference is present. The authors in [LHMJL13] investigated
dynamic clustering of base stations, where users within each cluster are served in
a Joint Transmission (JT)-like manner. The same model was adopted in [ZTCY15]
and [TCZY15], where the authors consider the problem of forming BS clusters in
the presence of caching and multi-cast transmission. A similar model for coordi-
nation was employed in [DY16], focusing on energy efficient transmission instead.
In [RGIG15], (looser) coordination among the radio-heads within the antenna do-
main was investigated (where Coordinated Beamforming (CB)-type precoding was
employed). Obviously, the model adopted by all such approaches - where all the
network is coordinated by one aggregation node, is not scalable.

10 

System-wide Operation 

AD 1

AN 1

AN 2

AD 2

VVV 1

VVV 2

VVV 3

VVV 4

VVV 5

Figure 7.1: Toy Example: intra-AD vs inter-AD interference (VVV 1, ...,VVV 5 are pre-
coders at the RRHs)

Going to the multi-AD/multi-AN setting, although the management of both
inter-AD and intra-AD interference (Fig. 7.1) becomes a critical problem, it remains
unaddressed yet. This is what we refer to as the Antenna Domain Formation (ADF)
problem:

(A) Given a set of radio-heads, each serving a set of users (Fig. 7.2), what is the
optimal assignment of radio-heads to aggregation nodes, that minimizes the
inter-AD interference?

(B) Given an initial state (i.e., assignment of users to radio-heads, and radio-heads
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RRH 2

RRH 3

RRH 4

RRH 1

AN 1

AN 2
RRH 5

Figure 7.2: Antenna Domain Formation (A)

to aggregation nodes in Fig 7.3), what is the optimal assignment of users to
antenna domains, using the total interference leakage as performance metric
(Fig 7.4)?

A) was addressed in our most recent work [GRIG16], where both intra-AD and
inter-AD interference were to be balanced. Intra-AD interference was inherently
present due to the CB-type of precoding (Weighted-MMSE [SRLH11]) that was
used within each antenna domain. Though closely related, this work will not be
included in the thesis.

In contrast, investigating B) under the assumption that intra-AD interference
is nulled by the proposed precoding, will be the main objective of this part in
the thesis. We focus on theoretical aspects of the so-called ADF problem: Given
an initial state (i.e., assignment of users to radio-heads, and radio-heads to ag-
gregation nodes), we study the optimal assignment of users to antenna domains,
using the total interference leakage as performance metric. In contrast to our earlier
work [GRIG16], we assume tighter coordination within each antenna domain. In
this chapter we describe the basic setup for the Cloud-RAN system under considera-
tion, and outline the main assumptions. Moreover, we formulate the ADF problem
as an integer optimization problem, and provide a small illustrative example to
motivate the problem.

In addition to the notation defined in Chap. 1, we introduce the following. For
any two vectors xxx,yyy (resp. matricesXXX,YYY ), inequalities such as xxx ≤ yyy (resp.XXX ≤ YYY )
hold element-wise. While 111n denotes the n× 1 vector of ones, 000n denotes the n× 1
vector of zeros, eeen is the nth elementary vector of appropriate dimension. Given a
set X , |X | denotes its cardinality, and conv(X ) its convex hull.
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RRH 2

RRH 3

RRH 4
RRH 1

AN 1

AN 2
RRH 5

Figure 7.3: Antenna Domain Formation (B): Initial state

RRH 2

RRH 3

RRH 4
RRH 1

AN 1

AN 2
RRH 5

AD 1
AD 2

Figure 7.4: Antenna Domain Formation (B): Resulting antenna domain structure

7.2 Model and Assumptions

Consider a large area, comprising of A aggregation nodes, NT remote radio-heads,
and KT users. The kth aggregation node, is connected to N radio-heads, via wire-
less/wired links, where each radio-head is serving a set of users. We refer to the
collection of radio-heads connected to each aggregation node, as an antenna do-
main. Thus, from a system-level perspective, each antenna domain is serving a set
of users (thereby abstracting the operation of the radio-heads in the system). A
small toy example of the considered system model is illustrated in Fig. 7.5. With
that in mind, each antenna domain comprises of N radio-heads and K users. Note
that for simplicity of notation, we assume that N and K are the same with in each
antenna domain (keeping in mind that the results of this chapter are still applicable
for cases where N and K vary across antenna domains). We denote by A the set of
aggregation nodes, and I the set of all users, i.e., I = {jn | 1 ≤ j ≤ A, 1 ≤ n ≤ K}.
Since all the quantities defined above are time-varying, the proposed model is for
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each scheduling time-slot (thus, any time-related indexes are omitted).
Radio-heads are assumed to have limited baseband/processing capabilities, re-

stricted to precoding only. Moreover, aggregation nodes act as “large” centralized
processors, that gather channel state information (CSI) from all the users, perform
the required processing/optimization, and communicate the optimal precoders to
the radio-heads. To avoid complicating the notation, we assume that each radio
head is equipped with M antennas, while each user has a single antenna. This can
be extended to multiple antennas at the receiver, and different antenna configura-
tion in a straightforward manner

We outline the main assumptions used throughout this part of the thesis.

Assumption 7.2.1 (Synchronization). The different radio-heads within each AD
are tightly synchronized, e.g., phase-level synchronization, essentially acting as a
large virtual antenna array. Each antenna domain consists of a small number of
RRHs (typically 2 ∼ 4).

Assumption 7.2.2 (CSI). Global and perfect CSI is assumed to be a priori avail-
able at each of the aggregation nodes.

Assumption 7.2.3 (Zero intra-AD interference). The precoding within each an-
tenna domain, is designed in such a way that no intra-antenna domain interference
is present, i.e., no interference among users within the same antenna domain.

We underline at this point that such assumptions are quite common for Cloud-
RAN related performance studies (e.g., [ZTCY15, TCZY15, LHMJL13]). Though
the resulting systems tend to have large overhead and complexity, we reiterate that
the main aim of this work is the study of performance bounds for antenna domain
systems, rather than practical design paradigms. More light is shed on the overhead
in Sect. 8.4.3.

Let jn denote the index of the nth user, in the jth antenna domain, jn ∈ I.
Then, its received signal is given by (assuming a downlink transmission scenario),

yjn =
K∑
q=1

hhhj,jnvvvjqsjq
√
pj +

A∑
i 6=j

K∑
m=1

hhhi,jnvvvimsim
√
pj + njn (7.2.1)

where hhhi,jn ∈ C1×MN is the (MISO) channel from antenna domain i to user jn,
vvvim ∈ CMN×1 the beamforming vector to user im ∈ I, sim the data symbol for user
im ∈ I such that E[sims

†
im

] = 1, njn the AWGN noise for user jn ∈ I such that
E[njnn

†
jn

] = σ2
jn
, and pj the transmit power for antenna domain j ∈ A. Moreover,

the proposed precoding design, i.e., zero intra-AD interference (Sect. 7.2), translates
to the following,

hhhj,jnvvvjq =
{
βj , ∀n = q

0 , ∀n 6= q
, ∀j ∈ A (7.2.2)
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where βj > 0 is a free parameter that is chosen to satisfy the maximum transmit
power constraint on the transmit precoder (per antenna domain), i.e.,

K∑
q=1
‖vvvjq‖22 ≤ K, ∀j ∈ A (7.2.3)

The resulting received signal and SINR are,

yjn = βjsjn
√
pj +

A∑
i 6=j

K∑
m=1

hhhi,jnvvvimsim
√
pi + njn

γjn =
β2
j pj∑A

i6=j
∑K
m=1 pi|hhhi,jnvvvim |2 + σ2

jn

(7.2.4)

where SNRjn = pjβ
2
j /σ

2
jn

is the SNR of user jn. Assuming optimal encoding/decoding,
and treating interference as noise, the achievable sum-rate of the network is given
by,

RΣ =
A∑
j=1

K∑
n=1

log2(1 + γjn) (7.2.5)

7.2.1 Motivation
We denote by ψim,jn the so-called interference coupling coefficient between users
im and jn,

ψim,jn =
{
pi|hhhi,jnvvvim |2, ∀ (im, jn) ∈ I2, im 6= jn,

0 , ∀im = jn

ψim,jn denotes the interference that user im ∈ I causes to user jn ∈ I. Moreover,
we recall that ψim,jn 6= ψjn,im . Let ΨΨΨ ∈ RKT×KT+ be the matrix formed by gathering
all the coupling coefficients, i.e.,

[ΨΨΨ]jn,im =
{
ψjn,im , ∀i 6= j

0,∀i = j
,∀ (jn, im) ∈ I2, (7.2.6)

and

xk,jn ∈ {0, 1}, ∀ jn ∈ I, k ∈ A (7.2.7)

be the assignment variable for user jn to antenna domain k. With that in mind,
gjn , the total interference leakage seen by user jn ∈ I, is given by,

gjn({xk,jn}) ,
∑
k∈A

∑
l∈A
l 6=k

 ∑
im∈I
im 6=jn

xk,imψim,jnxl,jn

 (7.2.8)
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where {xk,jn} denotes the set of all assignment variables. The total interference
leakage, f , is then

f({xk,jn}) ,
∑
jn∈I

gjn({xk,im}) (7.2.9)

and can be rewritten as,

f({xk,jn}) ,
∑
k∈A

∑
l∈A
l 6=k

∑
jn∈I

∑
im∈I
im 6=jn

xk,imψim,jnxl,jn

 (7.2.10)

Recall that due to the proposed precoding (i.e., zero intra-AD interference), the
inter-AD interference leakage coincides with the total interference leakage, f , in the
system.

Example 7.2.1 (Motivating Example). Consider the following toy example with
A = 2, K = 2, N = 1 (Fig. 7.5). Then the cost in (7.2.10) reduces to,

f({xk,jn}) =
∑
im∈I

∑
jn 6=im

x1,imψim,jnx2,jn , I = {11, · · · , 22}

Now the intuition behind the above cost becomes clear: the cost of having users im
and jn in different antenna domains is ψim,jn + ψjn,im , and zero otherwise. That
same criterion is the reason that intra-AD interference is not accounted for, in f .
The last equation shows that the total interference leakage in this network (Fig. 7.5)
corresponds to setting all the assignment variables to one, i.e., f({xk,jn = 1}) - a
“naive” assignment. Thus, better performance can be reaped-off with a “smarter”
assignment. This is the main motivation for using a cost function such as (7.2.10).

7.3 Problem Formulation

In the last part, we motivated the effect of assigning users to antenna domains.
That is the so-called ADF problem, that is formalized below.

Definition 7.3.1 (Antenna Domain Formation (ADF)). Given an initial state
(i.e., assignment of users to radio-heads, and radio-heads to aggregation nodes),
the ADF problem is given by the optimal assignment of users to antenna domains,
w.r.t. minimizing the total interference leakage in the system. The corresponding
optimization problem is the integer programming problem shown below,

(P )


min
{xk,jn}

f =
∑A
k=1

∑A
l 6=k(

∑
jn

∑
im 6=jn xk,imψim,jnxl,jn)

s. t.
∑
im
xk,im = ρk, ∀k ∈ A∑A

k=1 xk,im ≤ 1, ∀im ∈ I
xk,im ∈ {0, 1}, ∀(k, im) ∈ A× I

(7.3.1)
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Figure 7.5: Toy Example (interference marked in red): total interference equal to
inter-AD interference

The first constraint specifies that ρk ∈ Z+ users are to be assigned to each
antenna domain, i.e., the loading constraint. Such a constraint is needed for the sake
of load balancing on the backhaul (i.e., to prevent highly asymmetric cases where
all users get assigned to one antenna domain, while the rest are idle). Moreover, the
second constraint, i.e., the assignment constraint, ensures that each user is assigned
to at most one antenna domain. As a result, when

∑
k∈A < KT , some users are

not assigned to any antenna domain. Another way to interpret (P ) is from a user
assignment/selection perspective: given an initial state with K users (where K
large), the goal is to select the optimal subset (of size ρk < K), that minimizes the
interference leakage.

We first start by rewriting (P ) in vector and matrix form - both of which will
be used later in the text (keeping in mind that all are equivalent). Let xxxk be the
aggregate assignment vector for antenna domain k to all other users, and XXX the
aggregate assignment matrix for the system,

xxxk = [xk,11 , · · · , xk,AK ]T , xxxk ∈ BKT ,∀k ∈ A
XXX = [xxx1, ....,xxxA] ∈ BKT×A

Proposition 7.3.1. (P ) can be rewritten in equivalent vector form,

(P )


min f({xxxk}) =

∑A
k=1

∑A
l 6=k xxx

T
kΨΨΨxxxl

s. t.
∑A
k=1 xxxk ≤ 111KT ,

111TKTxxxk = ρk, xxxk ∈ BKT , ∀k ∈ A
(7.3.2)

and matrix form

(P )
{

min f(XXX) = tr(XXXTΨΨΨXXXΩΩΩ)
s. t. XXX111A ≤ 111KT , XXX ∈ Sρ

(7.3.3)
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where we denote by Sρ the set of all KT ×A binary matrices, that satisfy the loading
constraint, i.e.,

Sρ , {QQQ ∈ BKT×A | QQQT111KT = ρρρ} (7.3.4)

ρρρ , [ρ1, ..., ρA]T , and ΩΩΩ , 111A111TA − IIIA.

Proof. The derivations are shown in Appendix 8.7.1.

It can be seen from (7.3.2) that f is not jointly convex in all the variables,
due to the coupling among them. However, we underline the inherent multi-linear
nature of f (taken separately in each variable, f is linear), that we exploit for the
optimization.





Chapter 8

Proposed Approach

In the previous chapter, we motivated and formulated the ADF problem, (P )
in (7.3.1), as an integer optimization problem. In this chapter, we then employ
Block-Coordinate Descent (BCD) - that we have earlier developed in [GRIG16],

to iteratively solve the problem. The lack of theoretical guarantees on the obtained
solution, as well as the complicated nature of the problem, motivates us to find use-
ful and meaningful lower bounds on the ADF problem (since it represents the total
interference leakage). For that purpose, we derive the corresponding Dantzig-Wolfe
(DW) decomposition (a Linear Program (LP) with exponentially many variables),
and adapt the Column Generate Method (CGM) to compute the DW lower bound.
We also derive the dual problem (a natural lower bound), characterize the dual-
ity gap, and show that the DW lower bound is tighter than of the dual problem
(and consequently all related methods such as dual subgradient ascent, and La-
grange relaxation). Finally, we provide some numerical results that highlight the
performance of our proposed algorithm.

8.1 Algorithm

Our proposed approach consists of two parts, where the first one concerns the
optimal assignment of users to antenna domains, i.e., obtaining a solution to the so
called ADF problem in (7.3.1). Parts of the approach ware presented in our earlier
work [GRIG16] - albeit for a different system model. They are still summarized
here for completeness. In the second part, we develop the precoding mechanism.
We first present the following definition.

Definition 8.1.1 (Integrality Property for Linear Programming). Consider the
following binary linear program (LP),

(P ) xxx? = min
xxx

cccTxxx, s. t. xxx ∈ C, xxx ∈ BN ,

and its continuous relaxation (CR) (also known as LP relaxation),

(CR) x̂xx = min
xxx

cccTxxx, s. t. xxx ∈ C, 000N ≤ xxx ≤ 111N ,
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where C is a convex set. The set C is said to satisfy the integrality property if all its
vertexes correspond to integers: it is well-known for such cases, that the so-called
continuous relaxation (CR) is optimal [Fra05], and consequently, x̂xx is integer as
well, and x̂xx = xxx.

8.1.1 Algorithm Description

Due to the coupled nature of the objective function in (7.3.2), we leverage the
well known Block-Coordinate Descent (BCD) method, that has been applied to
several areas of signal processing, namely, transmitter and receiver optimization in
cellular networks [SRLH11, SSB+09,GKBS15,GCJ11]. In what follows, n denotes
the iteration number, i.e., xxx(n)

k denotes the value of xxxk at the nth iteration. We
denote by zzz(n)

k = {xxx(n+1)
1 , ...,xxx

(n+1)
k−1 ,xxx

(n)
k+1, ...,xxx

(n)
A } the block of fixed variables, for

the kth update at the nth iteration.
Our exposition here will be summarized, since the full details of the algorithm

are shown in [GRIG16]. All the derivations/formulations of this part are based on
(P ), as shown in (7.3.2). We let f(xxxk, zzz(n)

k ) denote the function f(xxxk), when the
variables in block zzz(n)

k are fixed, which can be written as,

f(xxxk, zzz(n)
k ) = xxxTkΨΨΨ

(
k−1∑
l=1

xxx
(n+1)
l +

A∑
l=k+1

xxx
(n)
l

)
,

, xxxTk rrr
(n)
k , (8.1.1)

where rrr(n)
k is referred to as the residual of antenna domain k, at the nth iteration.

Looking at the above equation, f(xxxk, zzz(n)
k ) is linear in xxxk, implying that f is linear

in each block of variables. The application of BCD yields the following update for
xxxk, at the nth iteration.

xxx
(n+1)
k =

argmin
xxxk

f(xxxk, zzz(n)
k )

s. t. 111TKTxxxk = ρk, xxxk ≤ ωωωk, xxxk ∈ BKT ,
(8.1.2)

where ωωωk , 111KT −
∑
l 6=k xxxl is the set of feasible assignments for xxxk. The above

problem belongs to the class of Mixed-Integer Linear Programs (MILPs). Moreover,
it is a special case of the generalized assignment problem (GAP). Though the generic
formulation of GAP is known to be NP-hard, we exploit the particular structure
of (8.1.2), to show that it is equivalent to a LP. Let C be the set formed by the
first two constraints in (8.1.2), i.e., C = {111TKTxxxk = ρk, xxxk ≤ ωωωk}. Recalling that
ρk and ωωωk are integers (by construction), one can see that the vertexes of C are
integers, and thus satisfies the integrality property (as presented in Definition 8.1.1).
Thus, following the result of Definition 8.1.1, its continuous relaxation will yield
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the optimal solution. Thus, the last problem is equivalent to,

xxx
(n+1)
k =

argmin
xxxk

f(xxxk, zzz(n)
k )

s. t. 111TKTxxxk = ρk, xxxk ≤ ωωωk, 000KT ≤ xxxk.
(8.1.3)

As seen from (8.1.1), when {xxxl}l 6=k are fixed, the cost function decouples in xxxk’s
and can thus be solved locally at antenna domain k, in a fully distributed manner :
Each aggregation node solves its own subproblem - a linear program, without any
loss in optimality. The process is formalized in Algorithm 7. In a nutshell, the
optimal update for xxxk at antenna domain k, is a function of the assignments at all
the other antenna domains (that thus have to be shared): Given assignments from
other antenna domains, (xxx(n+1)

1 , ...,xxx
(n+1)
k−1 ,xxx

(n)
k+1, ...,xxx

(n)
A ), antenna domain k forms

the residual rrr(n)
k , and can proceed to solve its optimization problem locally, and

update xxx(n+1)
k .

Algorithm 7 ADF via BCD
Input: ΨΨΨ, KT , ρρρ, A
for n = 0, 1, · · · , L− 1 do

// procedure at each aggregation node
obtain (xxx(n+1)

1 , ...,xxx
(n+1)
k−1 ,xxx

(n)
k+1, ...,xxx

(n)
A ) at antenna domain k

compute residual rrr(n)
k using (8.1.1)

compute feasible assignment ωωωk using (8.1.2)
compute xxx(n+1)

k as solution to (8.1.3)
end for
Output: XXX(L) = [xxx(L)

1 , ...,xxx
(L)
A ]

8.1.2 Convergence

Let {xxx(n)
k } be the sequence iterates produced by the BCD in (8.1.3), and {xxxok} ,

limn→∞{xxx(n)
k }. The monotonic nature of the BCD iterates was established in our

earlier work [GRIG16], and is presented below for completeness.

Lemma 8.1.1 (Monotonicity). With each update xxx(n)
k → xxx

(n)
k+1, f is non-increasing.

Moreover, the sequence of function iterates {f(xxx(n)
1 , ...,xxx

(n)
A )}n converges to a limit

point f({xxxok}).

Proof. Refer to Appendix 8.7.4

Although the above result establishes the convergence of the proposed BCD
method, it only establishes convergence to a limit. However, showing that this
limit is a stationary point of f is not possible under the BCD framework, due to
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the coupled nature of the assignment constraint (7.3.2). Even the strongest BCD
convergence results such as [Tse01] cannot establish convergence to a stationary
point.

8.1.3 Precoding
This far, we have only focused on the specifics of the ADF problem, while ignoring
the precoding. The main idea behind the precoder design is to null all intra-AD
interference, as shown in (7.2.2) and (7.2.3). More intuition could be gained by
rewriting the signal model (7.2.1) in vector form,

yyyj = HHHj,jVVV jsssj
√
pj +

A∑
i6=j

HHHi,jVVV isssi
√
pi +nnnj , (8.1.4)

where yyyj is the vector of received signals for users served by antenna domain j. In
the above,

HHHi,j ,


hhhi,j1

...
hhhi,jK

 ,VVV i , [vvvi1 , · · · , vvviK ]and sssi ,


si1
...
siK

 (8.1.5)

denote the channel between the antennas of antenna domain i and the users of
antenna domain j, the matrix of precoding vectors for antenna domain i, and
the vector of transmit symbols for users of antenna domain i, respectively. Then,
zero intra-AD interference condition, i.e., (7.2.2) and the maximum transmit power
constraint, i.e., (7.2.3) are equivalently written,

HHHi,iVVV i = βiIIIK , and ‖VVV i‖2F ≤ K , ∀i ∈ A (8.1.6)

Note that the total interference leakage f , can be equivalently written as,

f ,
A∑
i=1

A∑
j 6=i
‖HHHi,jVVV i‖2F =

A∑
i=1

A∑
j 6=i

tr(HHHi,jVVV iVVV
†
iHHH
†
i,j)

=
A∑
i=1

tr[VVV †i (
A∑
j 6=i

HHH†i,jHHHi,j)VVV i] ,
A∑
i=1

tr(VVV †iRRRiVVV i) , h({VVV i}). (8.1.7)

Note that while f in (7.2.10) denotes the interference leakage expressed as a function
of the assignment variables, h denotes interference leakage expressed as function of
the precoders. Though the two are equal, we make that distinction for clarity. The
precoder optimization problem for antenna domain i, is then formulated as follows.

VVV ?i =

argmin
VVV i

h(VVV i) = tr(VVV †iRRRiVVV i)

s. t. HHHi,iVVV i = βiIIIK .
(8.1.8)
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Note that the transmit power constraint can be explicitly enforced, since it can be
satisfied by changing the free parameter βi. The solution for this problem is a special
case of the next result (by setting di = K), where the solution is parametrized as
a function of some di, and solved for the general case.

Proposition 8.1.1. Consider the following convex problem.

VVV ?i =

 argmin
VVV i∈CMN×di

tr(VVV †iRRRiVVV i)

s. t. HHHi,iVVV i = βiIIIdi , di ∈ Z++

(8.1.9)

where RRRi =
∑A
j 6=iHHH

†
i,jHHHi,j , HHHi,j ∈ Cdi×MN , βi is a free parameter chosen to satisfy

the transmit power constraint, ‖VVV i‖2F = di. The globally optimal solution is given
by

VVV ?i =

√
di RRR

−1
i HHH†i,i

(
HHHi,iRRR

−1
i HHH†i,i

)−1

‖RRR−1
i HHH†i,i

(
HHHi,iRRR

−1
i HHH†i,i

)−1
‖F

. (8.1.10)

Moreover, for di ≤MN , the problem is feasible almost surely.

Proof. Refer to Appendix 8.7.2

8.2 Relaxations and Performance Bounds

It should be clear at this stage that problems such as (P ) are quite challenging. This
is further highlighted by the findings of the previous section: despite the widespread
effectiveness of methods such as BCD, one is not able to show any stationarity of
the obtained solution (i.e. no local optimality can be established). Moreover, it is
hard to theoretically ascertain how ‘close’ is an obtained solution to optimality.
To compensate for those shortcomings, finding meaningful lower bounds on (P )
is of interest: that is particularly relevant for our case, since the cost function, f ,
represents an actual physical quantity. Moreover, as discussed earlier in Sec. 7.2.1,
finding lower bounds on the interference leakage f , result in finding upper bounds on
the sum-rate. For the problem at hand we derive the corresponding Dantzig-Wolfe
(DW) decomposition, and establish that although the resulting problem is a LP, it
has exponentially many variables. We thus adapt the Column Generation Method
(CGM), for our particular problem. We also derive the dual problem for (P ), and
show that it yields a looser lower bound on (P ). We thus conclude that methods
that are based on the dual problem (e.g., Dual Subgradient Ascent, Lagrange Re-
laxation), offer worse lower bounds, than ones based on the DW decomposition
(e.g., CGM).
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8.2.1 Preliminaries

We here summarize some relevant concepts and definitions that will be applied
extensively, later in the work.

Definition 8.2.1 (Inner Representation of Bounded Polyhedron). Let P be a
bounded polyhedron (the intersection of finitely many half-spaces), i.e. P = {xxx ∈
Rn| AAAxxx = ccc}. Then, every point xxx ∈ P is expressed as a convex combination of its
extreme points,

xxx =
J∑
j=1

ψψψjwj ,
∑
j

wj = 1, wj ≥ 0, ∀j ∈ V, (8.2.1)

where V = {ψψψj}Jj=1 is the set of extreme points of P.

Definition 8.2.2 (Special LPs). Consider the following LP,

(LP ) xxx? = argmin
xxx∈Rn

cccTxxx, s. t. 111Tnxxx = 1, xxx ≥ 000n.

Let V be the set of vertexes (extreme points) for (LP ). Note that, V can be written
as V = {eeei}ni=1, where eeei is the ith elementary vector in Rn. Moreover, for LPs, the
optimal solution lies within V - a fundamental result for LPs.

(LP ) : xxx? = argmin cccTxxx, s. t. xxx ∈ V
⇔ i? = argmin1≤i≤n ccc

Teeei ,

and consequently, xxx? = eeei? . For such problems, the solution reduces to searching
over the cost ccc. A simple toy example is shown in Fig. 8.1.

1
0
0


0

1
0



0
0
1



Figure 8.1: Feasible region of a special LP in R3 (solid lines). All vertexes are
elementary vectors, i.e., binary.
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In what follows, we define the following notation,

Sρ , {QQQj}Sj=1, S = |Sρ|

αj , tr(QQQTj ΨΨΨQQQjΩΩΩ), ∀j = 1, · · · , S
qqqj ,QQQj111A − 111KT , ∀QQQj ∈ Sρ, qqqj ∈ ZKT

ΓΓΓ , [qqq1, · · · , qqqS ], ΓΓΓ ∈ ZKT×S+ . (8.2.2)

Moreover, note that Sρ has a decomposable structure, i.e. Sρ ,W(ρ1)×· · ·×W(ρA)
where W(ρi) = {xxx ∈ BKT | 111TKTxxx = ρi}. Thus,

S , |Sρ| =
A∏
i=1
|W(ρi)| where |W(ρi)| =

(
KT

ρi

)
. (8.2.3)

Remark 8.1. As it will become clear in this section, some of the decomposi-
tions/relaxations in question are computationally demanding. However, we under-
line the fact that such methods are intended for benchmarking purposes: they are
intended to run during an offline training phase, where “enough” computational
resources are available. Thus, the computation of quantities such as ΨΨΨ,Sρ, αj , qqqj
and ΓΓΓ is not a limiting factor.

8.2.2 Dantzig-Wolfe Decomposition
Initially proposed in their seminal paper [GBD60b], the Dantzig-Wolfe decompo-
sition has been widely adopted by the operations research community, for finding
bounds on integer programming problems. Based on our above definitions in (8.2.2),
we can rewrite Sρ and (P ) as,

Sρ = {XXX =
S∑
j=1

wjQQQj |
S∑
j=1

wj = 1, wj ∈ B,∀j}, (8.2.4)

(P )
{

min f(XXX) = tr(XXXTΨΨΨXXXΩΩΩ)
s. t. XXX ∈ Sρ, XXX111A ≤ 111KT .

(8.2.5)

The above problem is still difficult to tackle, due to the combinatorial nature of
XXX ∈ Sρ . The DW decomposition then proceeds by relaxing XXX ∈ Sρ, into a convex
one, by taking its convex hull, i.e.,

conv(Sρ) = {XXX =
S∑
j=1

wjQQQj | 111TSwww = 1, 000S ≤ www}. (8.2.6)
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As a result, every point in conv(Sρ) is represented as a convex combination of
the extreme points of conv(Sρ) (detailed in Definition 8.2.1). Since Sρ ⊆ conv(Sρ),
the resulting problem (PDW ), is a lower bound on (P ),

(PDW )
{

min f(XXX) = tr(XXXTΨΨΨXXXΩΩΩ)
s. t. XXX ∈ conv(Sρ), XXX111A ≤ 111KT .

(8.2.7)

Note that the assignment constraint can be written in an equivalent form,

XXX111A ≤ 111KT ⇔ (
∑
j

wjQQQj)111A ≤ 111KT ⇔ (
∑
j

wjQQQj111A) ≤ 111KT

⇔
∑
j

wjqqqj + (
∑
j

wj)111KT ≤ 111KT ⇔ ΓΓΓwww ≤ 000KT ,

where the last one follows from the fact that
∑
j wj = 1 (as defined by the DW

decomposition). Moreover, recalling that αj , tr(QQQTj ΨΨΨQQQjΩΩΩ), ∀j, and letting www =
(w1, · · · , wS)T , (8.2.7) is equivalent to,

(PDW )
{

min
www

αααTwww

s. t. ΓΓΓwww ≤ 000KT , 111TSwww = 1, www ≥ 000S .
(8.2.8)

A few remarks are in order at this stage. Note that despite the combinatorial and
non-convex nature of (P ), the DW always results in a linear program (provided
that Sρ is a bounded polyhedron). However, there is the additional caveat that
though (8.2.8) is a LP, it has an exponential number of variables, S: it is unfit for
conventional LP solvers. We thus adapt the Column Generate Method (CGM), for
our particular problem.

Remark 8.2. We note that (8.2.6) clearly shows that the DW decomposition is
a mapping from XXX in (7.3.3), to www in (8.2.8). However, this mapping is evidently
not one-to-one, since XXX uniquely reconstructs from www, but not vice versa [LD05].

Solution via Column Generation Method

The Column Generation Method (CGM), attempts to iteratively solve (8.2.8),
thereby mitigating the need for directly solving it: starting from ΓΓΓ0 - a matrix
consisting of a subset of mo columns of ΓΓΓ, one first solves the resulting restricted
master problem (RMP), i.e. a reduced version of (8.2.8). Then, at the lth itera-
tion, one selects an additional column that is added to ΓΓΓ0 (or multiple ones), and
solves the resulting RMP. Given a subset X of Sρ, we define, ΓΓΓ(X ) ∈ ZKT×|X|+ as
the matrix generated by the X columns of ΓΓΓ, and ααα(X ) ∈ R|X | the corresponding
sub-vector of ααα.

The procedure is formalized below. Let To ⊂ Sρ be the initial subset of columns
for ΓΓΓ, such that |To| = mo. At iteration l ≥ 1, given the previous selected columns
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Tl−1, and the corresponding optimal solutions for the RMP, π?l−1 and µµµ?l−1, the
vectors of reduced costs is defined as,

dddl , ααα(Zl−1)− Γ̂ΓΓ(Zl−1)Tµµµ?l−1 − π?l−1111|Zl−1|, (8.2.9)

where Zl−1 , Sρ/Tl−1 and Γ̂ΓΓ(Tl−1)T = [−ΓΓΓ(Tl−1)T , IIIKT ]. Then, the index of the
column to be updated is defined as,

i?l , argmin
i∈Zl−1

[dddl]i, (8.2.10)

and the set of active columns is updated as follows,

Tl = Tl−1 ∪ {i?l }.

Essentially, i?l is the index of the column in ΓΓΓ, that is added to the RMP. Then,
the updated RMP at iteration l, is denoted by (Rl),

(Rl) : www?(Tl)


argmin
www(Tl)

ααα(Tl)Twww(Tl)

s. t. ΓΓΓ(Tl)www(Tl) ≤ 000KT
111Tmlwww(Tl) = 1, www(Tl) ≥ 000ml

(8.2.11)

The above problem is a simple LP, and assuming that it is feasible, strong duality
holds. Then, it can be verified that its equivalent dual is written as,

(µµµ?l , π?l )

argmax
µµµl≥000 , πl

πl

s. t. Γ̂ΓΓ(Tl)Tµµµl + πl111ml ≤ ααα(Tl) ,
(8.2.12)

where ml , |Tl| = mo + l, and Γ̂ΓΓ(Tl)T = [−ΓΓΓ(Tl)T , IIIKT ]. The steps are detailed
in Table 8.1. Note that, in the worst case, CGM ends up adding all columns in ΓΓΓ,
i.e., solving the original problem (8.2.8). However, most often, the algorithm will
terminate much earlier than that.

When all reduced costs are non-negative, the optimal solution has been found,
i.e., the solution of the current RMP is the same as the original problem. Let L be
that iteration number, and www?(TL), (µµµ?L, π?L) be the corresponding optimal primal-
dual pair corresponding to (RL). Then, the optimal solution www? of the original
problem, (8.2.8) is given by,

www?i =
{
www?i (TL) if i ∈ TL
0, otherwise

, 1 ≤ i ≤ S. (8.2.13)

Looking at (8.2.13), the solution that CGM yields consists only of the component
in www that have a contribution to the solution (8.2.8), while setting the rest to zero.
Interestingly, in most cases, despite the exponential size of www, it will have only a
few non-zero entries. It is a well-known fact that despite its iterative nature, CGM
is an exact method, i.e., www? in (8.2.13) is the globally optimal solution to (PDW ).
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Initialization: T0,m0
for l = 1, 2, · · · , S −mo do
Zl ← Sρ/Tl
// update µµµ?l , π

?
l

Generate ΓΓΓ(Tl), Γ̂ΓΓ(Tl),ααα(Tl)
Compute µµµ?l , π?l by solving (Rl)
// update reduced costs and active columns
dddl ← ααα(Zl)− Γ̂ΓΓ(Zl)Tµµµ?l − π?l 111|Zl|
i? ← argmin

i∈Zl
[dddl]i

if [dddl]i? ≤ 0
Z ← Z ∪ {i?}
Compute ΓΓΓ(Z), ααα(Z) and solve (Rl) again

else dj ≥ 0
Compute optimal solution in (8.2.13)

end for
Output: www?

Table 8.1: DW solution via CGM

Remark 8.3. Note that the algorithm can be extended to taking ∆ ≥ 1 columns
at each iteration, that correspond to columns with negative reduced cost, thereby
speeding up the algorithm. However, for simplicity of exposition, we stick with the
above formulation, where one column is added at each iteration.

Bound on DW decomposition

In a last step, we shed light on the tightness of the proposed DW decomposition.
Using the already established framework, we derive two simple (yet potentially
loose) bounds.

Lemma 8.2.1 (Bounds on DW decomposition gap). Let XXX? and www? be optimal
solution for the primal problem (P3) in (7.3.3), and DW problem (PDW ) in (8.2.8),
respectively. Then the following holds,

0 ≤ f(XXX?)− fDW (www?) ≤ ησmax[ΨΨΨ]− min
1≤j≤S

αj ≤ η(σmax[ΨΨΨ]− σmin[ΨΨΨ]) (8.2.14)

where η ,
∑
k

∑
l 6=k ρkρl.

Proof. Refer to Appendix 8.7.5.

Interestingly, while the first bound is tighter, the second one is more informative:
The DW bound is tighter as the largest and smallest singular values of ΨΨΨ get closer.
In the limit case, the DW bound is exact, when all the singular values of ΨΨΨ are the
same.
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8.2.3 Dual Problem
In addition to being a natural lower bound on (P ), the dual problem, (D), is the
basis of several techniques for obtaining lower bounds. For instance, it is the “op-
timal bound” that the Lagrange Relaxation - one of most widely adopted methods
for finding lower bounds, can yield. Moreover, methods such as Dual Subgradient
Ascent - the analog of gradient ascent for non-differentiable problems, converge to
the optimal solution of (D). With that in mind we derive the dual problem (D),
associated with (P ), characterize the resulting duality gap, and show that the DW
decomposition offers a tighter bound than the dual problem (and hence all the
associated methods described above).

Suboptimality of Dual Problem Bound

Proposition 8.2.1. The dual problem, (D), is defined as,

(D) max
λλλ≥000KT

d(λλλ) = {min
XXX∈Sρ

tr(XXXTΨΨΨXXXΩΩΩ) + λλλT (XXX111A − 111KT )} , (8.2.15)

can be written as follows,

(D)
{

max
µµµ

cccTµµµ

s. t. Γ̄ΓΓTµµµ ≤ ααα, µµµ ≥ 000KT ,
(8.2.16)

where ccc = [000N , 1]T , and Γ̄ΓΓT = [−ΓΓΓT , 111S ].

Proof. Refer to Appendix 8.7.6

(D) in (8.2.16) is a LP, and since strong duality holds, we work with its (equiv-
alent) dual form. Moreover, pluging in the values of Γ̄ΓΓ and ccc, (D) in (8.2.16) is
equivalent to,

(D)
{

min
www

αααTwww

s. t. ΓΓΓwww ≤ 000S , 111TSwww ≥ 1, www ≥ 000S .
(8.2.17)

Comparing (D) in (8.2.17) to (PDW ) in (8.2.8) quickly reveals that (D) is a re-
laxation of (PDW ). Consequently, the bound provided by the DW decomposition
is tighter than that of the dual. Thus, methods such as Lagrange Relaxation and
Dual Subgradient Ascent (that yield a solution to (D)) will result in looser bounds
on (P ), when compared to methods based on the (PDW ).

Characterization of Duality Gap

As the dual problem is the object of several investigations in this work, it is natural
to inquire about the wideness of the duality gap: the difference between the optimal
solution of (P ), and that of (D). Indeed, such a gap could be large (or potentially
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unbounded). We note at this point that an exact characterization of the duality
gap is clearly infeasible (since one needs optimal solutions for both (P ), and (D)).
We thus provide a bound on the gap, in the result below.

Lemma 8.2.2 (Bound on Duality Gap). Let XXX? and λλλ? be optimal solution for
the primal problem (P ) in (7.3.3) and the dual (D) in (8.2.15), respectively. Then
the duality gap satisfies,

0 ≤ f(XXX?)− d(λλλ?) ≤ η(σmax[ΨΨΨ]− σmin[ΨΨΨ])

+ 111TKTλλλ
? −

∑
k

ρk min
i

[λλλ?]i , (8.2.18)

where η ,
∑
k

∑
l 6=k ρkρl.

Proof. Refer to Appendix 8.7.7

Discussions

In this section we investigated potential bounds on the ADF problem. Motivated
by the lack of optimality claims on the BCD solution, we derived problems that
correspond to lower bounds on the ADF problem: the DW decomposition, and the
dual problem. After deriving the latter, we provided an upper bound on the duality
gap to ensure it is bounded, and concluded that the dual problem is a relaxation
of the DW problem. Consequently, the DW problem offers as good a bound as
possible (or better) with respect to the dual problem. This in turn implies that
methods based on the DW decomposition (e.g., CGM) yield tighter approximations
than methods based on the dual problem (e.g., dual subgradient ascent, Lagrange
relaxation). We derived informative bounds on the gap between the DW and the
ADF problem. Focusing on the DW problem, we argued that it has exponentially
many variables. We thus adapted the CGM to iteratively solve the DW problem,
as it is ill-suited for conventional solvers. We shed light on the tightness of the DW
decomposition in the numerical results section.

8.3 The two antenna domain case

We focus in this section on the case of two antenna domains, since the problem
takes a rather simple form. Moreover, we propose an equivalent reformulation of
the ADF problem, that enables a straightforward and systematic solution. Firstly,
the cost function is given by f(xxx1,xxx2) = xxxT1 (ΨΨΨ + ΨΨΨT )xxx2. Moreover, note that in
this case, the assignment constraint is always satisfied and thus no longer needed.
We assume full-load conditions with equal loading for the antenna domains (i.e.,
ρ1 = ρ2 = KT /2). For this special case, xxx2 = 111KT − xxx1. Thus, the optimization
problem can be expressed in terms of xxx1 only (and one can drop all subscripts). With
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that in mind, the loading constraint is expressed as, 111TKTxxx = ρ. Letting Ψ̄ΨΨ = ΨΨΨ+ΨΨΨT ,
when A = 2, (P ) takes the following simple form,

(P ) : f(xxx?) = min
xxx∈Sρ

f(x) = (xxxTΨ̄ΨΨ111KT − xxxTΨ̄ΨΨxxx), (8.3.1)

where Sρ = {xxx ∈ BKT | 111TKTxxx = ρ}.

8.3.1 Equivalent formulation
We use a “DW-like” transformation to reformulate problems such as (P ), into an
equivalent form. The result below is given for the generic case.

Lemma 8.3.1. Let p(ZZZ) be any arbitrary (possibly non-convex) function, and con-
sider the following integer programming problem

(Q) ZZZ? = argmin p(ZZZ) s. t. ZZZ ∈ S, (8.3.2)

where S = {WWW j | j = 1, ..., n} is a finite discrete set. Then, the problem is equivalent
to,

(Q) ttt? =
{
argmin pd(ttt) = tttTθθθ

s. t. tttT111n = 1, ttt ≥ 000n,
(8.3.3)

where [θθθ]j , p(WWW j), j = 1, ..., n.

Proof. Refer to Appendix 8.7.3.

Lemma 8.3.1 can be directly applied to rewrite (8.3.1) in an equivalent form,

(P ) www? =
{
argmin wwwTααα
s. t. wwwT111KT = 1,www ≥ 000KT ,

where ααα = [α1, ...., αS ]T , αj = uuuTj Ψ̄ΨΨ111KT − uuuTj Ψ̄ΨΨuuuj , ∀j = 1, ..., S, and Sρ = {uuuj}Sj=1
Note that this last problem falls under the category of special LPs, and following
the discussion in Definition 8.2.2, its solution is an elementary vector. Thus, the
optimal solution to (P ) is given by,

xxx? = uuuj? , where j? = argmin1≤j≤S αj . (8.3.4)

Consequently, for the two antenna domain case, solving for xxx? reduces to just finding
the minimum of the S-dimensional vector, ααα. Although this is similar in complexity
to exhaustively searching for (P ), it does provide a systematic means of doing that.
Moreover, as argued in Remark 8.1, computing ααα is not a limiting factor.
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Figure 8.2: System-level Operation

8.4 Practical Aspects

8.4.1 System-Level Operation
We next detail the overall operation of the algorithm. Starting from a given deploy-
ment of aggregation nodes, radio-heads and users, each radio-head is first assigned
to an aggregation node (based on some rule, e.g., minimal distance), and then
synchronized within each antenna domain. Moreover, users are initially assigned
to antenna domains, based on strongest channels. After the CSI acquisition phase
(where each aggregation node acquires global CSI), the precoders are computed at
each aggregation node, and the matrix of coupling coefficients (consisting of chan-
nels and precoders) is computed at each aggregation node. Algorithm 7 is then
run across all the aggregation nodes to compute an ADF solution, that is in turn
used to (re-)assign users to antenna domains. Finally, the precoders are recomputed
based on the latter assignment. The overall system-wide operation of the proposed
method is summarized in Algorithm 8.

8.4.2 Choice of loading factors
We highlight the existence of an interesting result, regarding the choice of loading
factors: when

∑
i ρi ≤MN , then one can show that the leakage can be completely

nulled.
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Algorithm 8 Precoding and Antenna Domain Formation

// Start with a given users-to-antenna domain assignment
1. Compute precoders using (8.1.8)
2. Compute ΨΨΨ (based on CSI and precoders)
3. Compute ADF solution (XXX(L) in Algorithm 7)
4. Assign users to antenna domain based on XXX(L)

5. Recompute precoders using (8.1.8)

Corollary 8.4.1. Consider a special case of Proposition 8.1.1 by setting di = ρi,
where

∑
i ρi ≤MN ,

VVV ?i =

 argmin
VVV i∈CMN×ρi

h(VVV i) = tr(VVV †iRRRiVVV i)

s. t. HHHi,iVVV i = βiIIIρi .
(8.4.1)

Then, h(VVV ?i ) = 0, almost surely.

Proof. Refer to Appendix 8.7.8

Note that the same result of nulling all interference can be achieved by the so-
called global zero-forcing (ZF), wherein ZF is performed across all antenna domains
thereby suppressing all interference: this turns the whole system into a noise-limited
one. While global ZF would require synchronizing all radio-heads in the system, this
requirement is absent in our case, and yet it still achieves the same performance.
More light will be shed on this matter, in the numerical results section.

8.4.3 Communication Overhead and Complexity
In this section - included for completeness, we (roughly) estimate the cost associated
with deploying the proposed scheme (Algorithm 8), in terms of total communica-
tion overhead. This overhead chiefly consists of ADF overhead (Algorithm 7), the
CSI acquisition overhead, the data sharing overhead, and the radio-head synchro-
nization overhead. We use the coarse measure of counting the total number of
required training symbols, for each of the previous parts. We assume that the ag-
gregation nodes form a fully connected network. We underline the fact that we are
not advocating any specific algorithms for, say, channel estimation or radio-head
synchronization. We are rather estimating the number of training symbols that one
needs, using well-known methods.

At each iteration, aggregation node k updates its assignment vector, and broad-
casts the updated vector to all A− 1 other nodes. To estimate the total overhead,
we assume that a given assignment vector (of size KT ) can be encoded 8-bits at a
time (into a symbol), and then broadcast, thereby requiring KT /8 symbols. Then
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the total overhead is given by,

HADF = AL(KT /8) symbols , (8.4.2)

where L is the number of iterations of Algorithm 7. We assume a TDD uplink
pilot-based channel estimation done in an orthogonal fashion: each of the K users
sends out orthogonal pilot sequences that enables each of the antenna domains to
estimate the MN channel gains. Moreover, each antenna domain has to broadcast
its CSI to the other A− 1, for a total of

HCSI = KTNTM symbols . (8.4.3)

The precoding implicitly assumes that radio-heads within an antenna domain act
as virtual array (Sect. 7.2). Thus, the K data symbols for each antenna domain
have to be broadcast to all other ones, for a total of

HDS = AK = KT symbols . (8.4.4)

Finally, the overhead required to perform phase-level synchronization of the radio-
heads within each antenna domain, was studied in our earlier work [RGIG15]. Using
the latter results, we see that K training symbols are required to synchronize radio-
heads within each antenna domain (if carried out in the uplink phase), thereby
resulting in a total of,

HSY NC = AK = KT symbols . (8.4.5)

Note that each of the aforementioned quantities can occur at the backhaul be-
tween aggregation nodes, the backhaul between the radio-heads, and/or over-the-
air. Then, the total associated overhead is given as,

ΩCENT = KT (2 +MN +AL/8) symbols , (8.4.6)

At each aggregation node, the computational complexity of the proposed ap-
proach (Algorithm 8) is dominated by the matrix inversion step (of sizeMN×MN)
to compute the precoder (Proposition 8.1.1), as well as solving a KT dimensional
linear program (Algorithm 7). The resulting complexity is approximated as C =
O(M3N3) +O(K3

T ).

8.5 Numerical Results

8.5.1 Simulation Setup
Recall that A is the total number of antenna domains,N andK the number of radio-
heads and users per antenna domain, respectively, and M the number of antennas
at each radio-head. Aggregation nodes/radio-heads/users are dropped uniformly
within the area of interest, of size A∆2, ∆ = 100m. The position for aggregation



8.5. Numerical Results 155

nodes/radio-heads/users are kept fixed throughout the simulation, and no mobility
is considered. Then, for each simulation run, channels are generated randomly, and
averaging is done over 100 different channel realizations. To emulate a realistic set-
ting, channels between radio-heads and users are assumed to be spatially correlated
Rician (Kronecker model), with pathloss and shadow fading. The parametrization
is discussed at length in our earlier work [RGIG15][Sect. VII-A]. The system band-
width is 200 MHz, and noise level is set to σjn = −91 dBm (for all users). Moreover,
we assume that the loading factors are identical, ρi , ρ (i.e., the user load is split
equally among the antenna domains). The performance metric under consideration
is the sum-rate in (7.2.5), as well as the total interference leakage in the system, f .

For the assignment of radio heads to aggregation nodes, we benchmark our
proposed ADF algorithm (Algorithm 8) against a simple distance-based assignment
heuristic:

- each aggregation node picks the N -nearest radio-heads (to form an antenna
domain)

- users are associated to radio-heads (and consequently antenna domains) based
on strongest channels (ρi users are associated to antenna domain i)

- each antenna domain performs ZF to its users

Moreover, we use the following upper bound:

- Global ZF: whereby an equivalent system is used, with all interference set to
zero, i.e., global ZF across all antenna domains (requires synchronization of
all radio-heads in the system)

8.5.2 Sum-rate results
We first aim to investigate the sum-rate performance of a relatively small deploy-
ment with A = 2,M = 4, N = 2 radio-heads per antenna domain, and K = 8
users per antenna domain, while varying the loading factors ρ. Fig. 8.3 shows the
resulting sum-rate, and one can clearly see an increase in the performance of both
schemes, as ρ is decreased: this result is expected since interference decreases as
less users are served. More importantly, we see a very significant performance gap
between our proposed methods, and the benchmark, for all values of ρ. Note that
sum-rate values are plotted in log scale, for clarity. Moreover the aforementioned
gap is increasing with ρ, becoming massive for ρ = 4.

Similar trends are observed by moving on to a larger setup where A = 4,M =
2, N = 6 radio-heads per antenna domain, and K = 6 users per antenna domain,
as evidenced in Fig. 8.4. However, we clearly see that in that case (Fig. 8.4), the
performance gap is indeed more pronounced than the previous case (Fig. 8.3):
while the performance of the benchmark increases with smaller ρ, this increase is
significantly more pronounced for our algorithm. In particular, for the case where
ρ = 3, the gap is over 20 times. As detailed earlier, this is due to the fact that by an
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Figure 8.3: Average sum-rate performance for A = 2,M = 4, N = 2,K = 8

appropriate choice of ρ, the proposed scheme can totally suppress all interference
in the system.

To shed further light on the latter effect, we investigated further deployments
with A = 2, N = 2, K = MN , and where the loading factor is appropriately chosen
as ρ = K/2. Fig. 8.5 shows the sum-rate for such a system, for various values of
M . Most importantly, in this regime, our proposed algorithm coincides exactly with
that of the global ZF upper bound. This is due to the fact that all the latter schemes
are able to totally suppress all interference in the network.

8.5.3 Performance bounds

We compare in this section, the performance of the proposed BCD algorithm (Algo-
rithm 7), against the globally optimal solution (found via exhaustive search), as well
as the DW lower bound. We first look at the tightness of the DW decomposition,
with respect to the globally optimal solution of (P ). We consider a small scenario
(A = 2), assuming no fading, and looking at the (average) total interference leakage
f , as metric. As seen in Table 8.2, the error form approximating the globally optimal
solution of (P ), by the DW lower bound (solved using CGM in Table 8.1) is quite
tolerable (for ρ = 3, 4). We note that the case where ρ = 1 is too small, and not
practically relevant. We also compare in Table 8.2 the performance of the proposed
BCD algorithm (Algorithm 7) against that of the globally optimal solution. With
that in mind, we observe a similar trend here, where the proposed BCD algorithm
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N = 1, N = 2 N = 3,
K = 2 K = 4 K = 6
ρ = 1 ρ = 3 ρ = 4

Proposed 0.5329 7.5445 12.1334
Primal Opt 0.3443 6.7538 10.8226
DW decomp 0.2392 5.9249 9.3255

Error (DW) (%) 30.5330.5330.53 13.9913.9913.99 16.0516.0516.05
Error (Prop) (%) 54.7854.7854.78 11.7111.7111.71 12.1112.1112.11

Table 8.2: Average total inference leakage: proposed algorithm vs DW lower bound
vs globally optimal, for A = 2,M = 2,K = MN

has a similar performance as the globally optimal solution, for relevant cases.

8.5.4 Discussions

A clear observation that follows from the above results (Fig. 8.5), is that massive
performance gains can be achieved when the loading factor are appropriate chosen
- an expected result. Though the performance of our proposed scheme is extremely
close to that of global ZF (Sect. 8.4.2), it circumvents the corresponding need
for synchronizing all radio-heads in the system. Not surprisingly, we observe that
the performance depends on MN , the total number of transmit antennas in each
antenna domain, rather than onM andN , individually. This fact could be exploited
to greatly reduce the radio-head synchronization overhead, since it is independent
of M and N (as shown in Sect. 8.4.3). Finally, our results also suggest that both
the proposed BCD-based algorithm (Algorithm 7), and the the DW lower bound
approximate well the globally optimal solution to the ADF problem, for practical
cases.

8.5.5 Centralized vs Distributed Coordination

Note that this point that two approaches were presented: the centralized ADF algo-
rithm (Algorithm 8), a family of distributed ones, namely, max-DLT (Algorithm 3).
We compare their performance in terms of sum-rate and communication overhead,
in the simulation setup described this section (Chap. 8.5). We underline that each
antenna domain and its users, can be thought of as cell and its users. Thus, we run
max-DLT in a distributed manner, across all the antenna domains. Referring to the
communication overhead section for distributed algorithms (Chap 4.3.2), we set
the number cells to A, the number of data streams and receive antennas to one,
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and the resulting communication overhead reduces to,

ΩDIST = 2AKT +AK +AK = 2KTT + 2KT = KT (2T + 2) symbols , (8.5.1)

where T is the number of forward-backward iterations for max-DLT. In the above
equation, while the first term is the CSI acquisition overhead, the second and third
terms represent synchronization overhead (among different radio-heads) and data
sharing overhead (sharing the data among all the different antenna domains). More-
over, recall that the total communication overhead for the ADF algorithm (Algo-
rithm 8) was shown to be,

ΩCENT = KT (2 +MN +AL/8) symbols , (8.5.2)

With that in mind, note that ΩDIST ≤ ΩCENT when,

T ≤MN/2 +AL/16 . (8.5.3)

For the low-overhead algorithm that we advocate in this thesis, this is indeed the
case: the overhead of a distributed solution is better than that of its centralized
counterpart.

We next compare their sum-rate performance, considering a system with A =
2,M = 4, N = 2,K = 8. Note that for such as system, ΩDIST = 160 symbols,
ΩCENT = 224 symbols. The resulting sum-rates are shown in Fig 8.6. The result
depends on the SNR, and loading factor ρ. In most of the cases, its seems that max-
DLT performs better than the centralized ADF. The only exception is for low-load
condition ρ = 3, where the ADF solution slightly outperforms the distributed one, in
the high-SNR region only. In addition, note that in the low-to-medium SNR region,
distributed solutions (via max-DLT) are always better than the centralized one (via
ADF). Thus, one can conclude at this stage that given the communication overhead
models for max-DLT and the proposed ADF algorithm, distributed approaches such
as max-DLT offer better performance, with a lower overhead (this conclusion is
heavily dependent on the communication overhead models). Moving to a larger and
denser setting (Fig. 8.7), we observe the same trends described just above, where the
performance gap between max-DLT and the ADF algorithm is more pronounced.
However, we recall that our overhead models (for the proposed ADF method and
max-DLT), are not fully comprehensive and do not model all the required overhead.
Thus, the above conclusion holds for the overhead models in question : it does not
hold for any real system. Note in addition, that approaches such as max-DLT have
the additional advantage of taking both the signal and interference into account,
whereas the proposed ADF solely relies on the interference leakage.

8.6 Conclusion

We formulated the ADF problem as an integer optimization problem (using the
interference leakage at metric), and showed that it can be tackled using BCD. Mo-
tivated by the complicated nature of the problem, we argued the need for “good”
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lower bounds on the problem (as well as the interference leakage). We investigated
several “classical” lower bounds, such as the DW decomposition, the dual problem,
and showed that the DW lower bound is tighter. Due to the exponential number
of variables present in the DW lower bound, we adapted the Column Generation
Method to (globally) solve it. Finally, sum-rate results clearly indicate a large per-
formance gap between our proposed ADF algorithm, and the relevant benchmark.
Moreover, in practical setups, the proposed ADF algorithm, and the advocated
lower bound, seem approximate the optimal solution to the ADF problem, with
acceptable error.

8.7 Appendix

8.7.1 Proof of Proposition 7.3.1
The fact that (P ) can be rewritten in vector form, i.e., (7.3.2), is straightforward
and can be skipped. As for rewriting (P ) in matrix form (7.3.3), we first recall that
for any QQQ ∈ Rm×m, 111TmQQQ111m =

∑m
i=1
∑m
j=1Qi,j , and rewrite the cost function in

(P ) as,

f = tr[111TA(XXXTΨΨΨXXX)111A]− tr(XXXTΨΨΨXXX)

= tr(XXXTΨΨΨXXX111A111TA)− tr(XXXTΨΨΨXXX) = tr
(
XXXTΨΨΨXXXΩΩΩ

)
, (8.7.1)

where we used the fact that tr(AAABBB) = tr(BBBAAA), and let ΩΩΩ , 111A111TA − IIIA. Moreover,
the loading constraint can be rewritten as,∑

im

xk,im = ρk, ∀k ⇔ 111TKTXXX = [ρ1, ..., ρA]⇔XXXT111N = ρρρ.

Similarly, the assignment constraint can be reformulated as,

A∑
k=1

xk,im ≤ 1,∀im ∈ I ⇔XXX111A ≤ 111KT .

8.7.2 Proof of Proposition 8.1.1
Note that (8.1.8) is a convex problem (quadratic cost and linear constraint), it can
be solved using standard Lagrangian techniques. The associated Lagrangian is,

L(VVV i,MMM i) = tr(VVV †iRRRiVVV i) + tr [MMM i(HHHi,iVVV i − βiIIIdi)] ,

whereMMM i ∈ Cdi×di is the matrix of Lagrange multipliers. Differentiating the latter
w.r.t. VVV i and setting to zero yields,

∇VVV iL = 000⇔ VVV ?i = −RRR−1
i HHH†i,iMMM

?
i ,
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where MMM?
i is chosen to satisfy the linear constraint, i.e.,

HHHi,i(−RRR−1
i HHH†i,iMMM

?
i ) = βiIIIdi ⇔MMM?

i = −βi(HHHi,iRRR
−1
i HHH†i,i)

−1.

Combining the last two equations yields the optimal solution,

VVV ?i = βi RRR
−1
i HHH†i,i

(
HHHi,iRRR

−1
i HHH†i,i

)−1
.

The resulting transmit power is

‖VVV ?i ‖2F = β2
i ‖RRR

−1
i HHH†i,i

(
HHHi,iRRR

−1
i HHH†i,i

)−1
‖2F .

Thus transmit power constraint is satisfied with equality for

βi =
√
di/‖RRR−1

i HHH†i,i

(
HHHi,iRRR

−1
i HHH†i,i

)−1
‖F .

Note that when di ≤ MN , then there always exists at least one VVV i, such that
HHHi,iVVV i = βiIIIdi : the Moore-Penrose inverse of HHHi,i/βi. Due to the generic nature
of the channels, HHHi,i/βi is full-rank almost surely, its Moore-Penrose inverse exists
almost surely, and the problem is feasible almost surely.

8.7.3 Proof of Lemma 8.3.1
The proof follows from considering the following “DW-like” mapping,

S = {ZZZ =
∑
j

tjWWW j |
∑
j

tj = 1, tj ∈ B ,∀j = 1, ..., n}

= {ZZZ =
∑
j

tjWWW j | tttT111n = 1, ttt ∈ Bn}. (g.1)

Then, the cost in (Q) is written as p(ZZZ) =
∑
j tjp(WWW j). Letting ttt = [t1, ..., tn]T ,

and θj = p(WWW j), (Q) is equivalent to,

(Q)
{
argmin pd(ttt) = tttTθθθ

s. t. tttT111n = 1, ttt ∈ Bn.
(8.7.2)

It can be verified that the mapping in (g.1) is one-to-one from Z to ttt: every ttt yields
a unique ZZZ, and every ZZZ decomposes into a unique ttt. The equivalence between the
two problems follows from that.

8.7.4 Proof of Lemma 8.1.1
Note that the following is a direct consequence of (8.1.3)

f({xxx(n)
k }) ≥ f(xxx(n+1)

1 , zzz
(n)
1 ) ≥ f(xxx(n+1)

2 , zzz
(n)
2 )...

≥ f(xxx(n+1)
A , zzz

(n)
A ) , f({xxx(n+1)

k }),
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where the last equality follows from the fact that f(xxx(n+1)
A , zzz

(n)
A ) corresponds to

the case where all variables (xxx1, ....,xxxA), are updated. It follows that the sequence
{f(xxx(n)

1 , ...,xxx
(n)
A )}n converges to a limit point f0

8.7.5 Proof of Lemma 8.2.1
Let η =

∑
k

∑
l 6=k ρkρl. The left inequality follows immediately from the fact that

the DW decomposition is always a lower bound on the problem - by construction
(Sec 8.2.2). Moreover, the right one is obtained from upper bounding f(XXX?) and
lower bounding fDW (www?),

f(XXX?) =
∑
k

∑
l 6=k

xxx?
T

k ΨΨΨxxx?l ≤
∑
k

∑
l 6=k

σmax[ΨΨΨ]‖xxx?k‖2‖xxx?l ‖2

(e.1)= σmax[ΨΨΨ]
∑
k

∑
l 6=k

ρkρl = σmax[ΨΨΨ]η

where (e.1) follows from the fact that xxx?k must be feasible: thus, ‖xxx?k‖2 is the sum of
all non-zero elements, and equal to ρk. Moreover, a simple/naive lower bound can
be obtained on PDW in (8.2.8), by relaxing the first constraint,

fDW (www?) ≥ min
111TSwww=1,
www≥000S

αααTwww
(e.1)= min

1≤j≤S
αj = min

j
tr(QQQTj ΨΨΨQQQjΩΩΩ)

(e.2)
≥ ησmin[ΨΨΨ]

where (e.1) follows from the fact that problem in a special LP, whose solution
is obtained in Definition 8.2.2. Moreover, (e.2) follows similar reasoning used for
lower bounding d(λλλ?) in Appendix 8.7.7. The first and second bound follows from
combining (e.1) and (e.2) respectively.

8.7.6 Proof of Proposition 8.2.1
We rewrite (8.2.15) in a series of equivalent problems,

(D) max
λλλ≥000KT

d(λλλ) = { min
QQQj∈Sρ

tr(QQQTj ΨΨΨQQQjΩΩΩ) + λλλT (QQQj111A − 111KT )}

(D) max
λλλ≥000KT

d(λλλ) = { min
1≤j≤S

αj + λλλTqqqj}

(D)

 max
λλλ≥000KT , ζ

ζ

s. t. αj + λλλTqqqj ≥ ζ, ∀j = 1, · · · , S

(D)

max
λλλ,ζ

ζ

s. t. ααα+ ΓΓΓTλλλ ≥ ζ111S , λλλ ≥ 000KT

The result in (8.2.16) follows by letting µµµ = [λλλ, ζ]T , ccc = [000N , 1]T , and Γ̄ΓΓT =
[−ΓΓΓT , 111S ].
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8.7.7 Proof of Lemma 8.2.2
Let η =

∑
k

∑
l 6=k ρkρl. The left inequality, stating that the dual solution is always

a lower bound on the primal one, follows immediately from weak duality. Moreover,
the right one is obtained from upper bounding f(XXX?) and lower bounding d(λλλ?),

f(XXX?) =
∑
k

∑
l 6=k

xxx?
T

k ΨΨΨxxx?l ≤
∑
k

∑
l 6=k

σmax[ΨΨΨ]‖xxx?k‖2‖xxx?l ‖2,

(e.1)= σmax[ΨΨΨ]
∑
k

∑
l 6=k

ρkρl = σmax[ΨΨΨ]η,

where (e.1) follows from the fact that xxx?k must be feasible: thus, ‖xxx?k‖2 is the sum
of all non-zero elements, and equal to ρk. Using (8.2.15), we formulate the optimal
dual solution (and its lower bound) as,

d(λλλ?)

, min
XXX∈Sρ

tr(XXXTΨΨΨXXXΩΩΩ) + λλλ?
T

(XXX111A − 111KT )

= min
xxxk∈BKT ,∀k
xxxTk 111KT =ρk,∀k

∑
k

xxxTk

∑
l 6=k

ΨΨΨxxxl + λλλ?

− 111TKTλλλ
?

≥ min
xxxk∈BKT ,∀k
xxxTk 111KT =ρk,∀k

∑
k

∑
l 6=k

(σmin[ΨΨΨ]‖xxxk‖2‖xxxl‖2) + xxxTkλλλ
?

− 111TKTλλλ
?

(e.2)= σmin[ΨΨΨ]η − 111TKTλλλ
? +

∑
k

min
xxxk∈BKT
xxxTk 111KT =ρk

xxxTkλλλ
?

(e.3)= σmin[ΨΨΨ]η − 111TKTλλλ
? +

∑
k

min
xxxk≥000

xxxTk 111KT =ρk

xxxTkλλλ
?

(e.4)= σmin[ΨΨΨ]η − 111TKTλλλ
? +

∑
k

ρk

 min
zzzk≥000

zzzTk 111KT =1

zzzTkλλλ
?


(e.5)= σmin[ΨΨΨ]η − 111TKTλλλ

? +
∑
k

ρk min
i

[λλλ?]i.

Note that (e.2) follows from the fact that ‖xxxk‖2 = ρk for any feasible xxxk. (e.3) is
due to the fact that the problem is a MILP. Furthermore, we show that it satisfied
the integrality property (as per Definition 8.1.1): then, relaxing the binary con-
straint into a continuous one, yields the optimal solution. Finally, (e.4) is obtained
by letting zzzk = xxxk/ρk, and (e.5) from the fact that the problem is a Special LP
whose solution is detailed in Definition 8.2.2. The final result follows by combining
the above result with (e.1).
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8.7.8 Proof of Corollary 8.4.1
Let ZZZi ,

⋃
j 6=i

span(HHHi,j), and NNN i = null(ZZZi). Due to the generic random nature of

the channels, then one can verify that dim(NNN i) = MN − ρi, almost surely. In the
case where

∑
i ρi ≤MN , then

dim(NNN i) ≥ ρi ⇔ ∃ TTT i ∈ CMN×ρi ,TTT i ∈NNN i

⇔ ∃ TTT i ∈ CMN×ρi ,TTT †iHHHi,j = 000ρi×ρi , ∀j 6= i,

⇔ ∃ TTT i ∈ CMN×ρi ,TTT †iRRRiTTT i = 000ρi×ρi

Note that h(VVV i) ≥ 0, since it is a quadratic form. Moreover, since the problem
is convex and has a unique optimal solution, any solution that makes h zero, is
globally optimal then. Then, consider solutions of the form, VVV i = TTT iΘΘΘi, where ΘΘΘi

is an arbitrary unitary matrix. Then,

h(VVV i) = tr(ΘΘΘ†iTTT
†
iRRRiTTT iΘΘΘi) = tr(TTT †iRRRiTTT i) = 0





Chapter 9

Conclusions and Future Work

In this thesis, we have investigated optimization techniques for the most promis-
ing communication systems. Our contributions have addressed all three pillars
for increasing data rates in cellular systems, namely, (A) exploiting the massive

spectrum of mmWave MIMO systems, (B) increasing the spectral efficiency via BS
coordination, and (C) densification.

Under (A), we motivated the hybrid analog-digital MIMO architecture as a key
to scaling up the number of transmit/receive antennas for mmWave MIMO systems.
After characterizing the optimal precoder/combiner structure, we proposed an algo-
rithm (based on the Arnoldi Iteration) to blindly estimate the dominant subspaces
of the mmWave MIMO channel. This is motivated by the fact the such channels
are inherently sparse (in terms of eigenmodes): it is much more efficient to estimate
the non-zero eigenmodes, rather than the entire channel. In addition, we also de-
vised an iterative procedure to optimize the analog/digital precoder and combiner
(based on estimates of the dominant subspace). Simulation results showed that the
proposed approach significantly outperforms the only benchmark. We believe that
such an approach - subspace estimation exploiting channel reciprocity (or later ones
that build upon it), will be an essential component in the operation of mmWave
MIMO systems. The above approach assumes narrow-band channels: this is hard
to motivate, since mmWave MIMO systems have a large bandwidth, and are thus
inherently frequency selective. In the future, we consider extending the proposed
subspace estimation approach, to handle wide-band frequency selective channels.
Moreover, we also envision to reduce the communication overhead resulting from
the Arnoldi iteration.

Under (B), we investigated algorithms for distributed multi-user multi-cell co-
ordination, under the framework of F-B iterations. Despite the plethora of different
approaches developed over the years, we highlighted the fact that they all required
a large enough number of iterations that would destroy the gains brought about by
their use: we thus proposed two types of low-overhead algorithms that require just
a few F-B iterations. In the first algorithm, max-DLT, we lower bounded the sum-
rate using a so-called DLT bound, and derived the corresponding solution, dubbed
as non-homogeneous waterfilling: we highlighted its ability to turn off streams with

167



168 Conclusions and Future Work

low-SINR, thereby greatly speeding up the convergence of the algorithm. In the
second type of algorithm, we used the interference leakage as metric. The increased
convergence speed is due firstly due to relaxing the leakage minimization problem,
and the introduction of a turbo iteration at the transmitters/receivers, within each
F-B iteration, where the leakage is further decreased.

In (C), we focused on the opposing paradigm of fully centralized coordination,
given by the Cloud-RAN architecture - the most prominent candidate for den-
sification. In the case of multiple antenna domains, we highlighted the absence
of prior work tackling both intra-AD and inter-AD interference, and formulated
the so-called antenna domain formation problem, using the interference leakage as
metric. We proposed an iterative algorithm, based on Block Coordinate Descent,
to solve it. Motivated by the lack of theoretical guarantees on the optimality of
such a solution, we derived lower bounds on the problem (and the interference
leakage consequently), and compared them analytically. We also compared the per-
formance of the proposed (centralized) ADF algorithm to (distributed) max-DLT
(in the same Cloud-RAN simulation setup), and concluded that the low-overhead
fast-converging max-DLT outperformed the centralized ADF algorithm. We also
noticed that this performance gap increases as the deployment gets denser. We ar-
gued that this result is valid for the particular communication overhead model used
here. We thus conclude at this point, that for the algorithms and communication
scenarios considered in this thesis, distributed coordination algorithms (with focus
of fast-convergence), are a clear winner in the case of densification. In the future,
we plan to extend the numerical setup considered here, to include basic mobility
of the users. We wish to investigate the robustness of the proposed ADF approach
to changes in user positions, resulting from mobility: How is the sum-rate affected,
if the ADF algorithms is run at higher intervals? In addition, metrics including
fairness will also be considered.
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