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ABSTRACT
Developers can use lossy compression on images and many other
artifacts to reduce size and improve network transfer times. Native
program instructions, however, are typically not considered candi-
dates for lossy compression since arbitrary losses in instructions
may dramatically affect program output. In this paper we show
that lossy compression of compiled native instructions is possible
in certain circumstances. We demonstrate that the instructions se-
quence of a program can be lossily translated into a separate but
equivalent program with instruction-wise differences, which still
produces the same output. We contribute the novel insight that it is
possible to exploit such instruction differences to design lossy com-
pression schemes for native code. We support this idea with sound
and unsound program transformations that improve performance
of compression techniques such as Run-Length (RLE), Huffman and
LZ77. We also show that large areas of code can endure tampered
instructions with no impact on the output, a result consistent with
previous works from various communities.
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1 INTRODUCTION
Code compression techniques [5] are essential for domains such as
embedded systems, the Internet of Things or Wireless Sensor Net-
works (IoT/WSN). Smaller code size reduces memory requirements
of embedded systems. In turn, this translates into considerable sav-
ings in energy and manufacturing costs [8, 9]. Code compression
also enables a reduction in network traffic [1], which accounts
for enormous amount of energy consumption in IoT/WSN devices.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE NIER, 2018, Sweden
© 2017 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

Therefore, when remotely reprogramming IoT/WSN devices, an
efficient code compression scheme is considered as a key aspect of
performance.

In this paper, we show that it is possible to design lossy algo-
rithms yielding higher compression ratios for ARM instructions
than state of the art tool. These increased compression ratios en-
able to reduce energy consumption in over-the-air firmware update
operations. Our new idea of lossy compression is founded on the
areas of software diversity [3], approximate computing [10] and
fault tolerance communities.

To the best of our knowledge, all existing code compression
schemes are lossless. This limits the ability of a compressor to re-
duce data size, as the requirement to maintain all information is
enforced. This constraint is due to the belief that code cannot be
tampered with without modifying the program’s behavior. While
this intuition holds for the most part, it is not entirely true for all
the code. Recent works in the areas of automatic software diversi-
fication and approximate computing have came to challenge this
notion. These works have revealed the existence of forgiving zones
where some instructions can be exchanged by others, still allowing
the program to execute and maintain its Quality of Service (QoS)
within acceptable levels. The existence of such zones allows the
encoder to abandon lossless requirements when compressing code.

To understand why forgiving zones enable lossy compression
of code, we think of such zones as images. In images, lossy com-
pressors, such as chroma samplers, exploit the fact that humans
cannot detect small differences in colors. This allows for the loss of
information regarding the exact pixels’ color, making the resulting
compressed image not identical to the original, but still perceptually
identical to a human. The same principle applies to instructions
in forgiving zones: it is possible to lose information regarding the
exact instruction at a given address, knowing that such instructions
can be replaced by another similar one, still having the resulting
program yield the same correct output.

We found that these forgiving zones account for an important
part (22% - 55%) of the programs we inspected. This demonstrates
the existence of large ‘images of code’ within the programs where
lossy compression is possible. In other words, a compression scheme
can lose information in large portions of the program.

In this paper, we support our arguments for lossy compression
of code with the following evidence: (i) a set of unsound program
transformations that modify a list of native ARM instructions, aim-
ing at improving the efficiency of existing compression techniques
such as Run-Length (RLE), Huffman and LZ77 encodings; (ii) re-
sults that demonstrate that such program transformations actually
improve compression ratios for the programs in our dataset, while
still allowing the programs to produce correct outputs; (iii) a study
of the extent to which the programs in our dataset contain por-
tions that can endure tampered instructions; (iv) a literature review

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


ICSE NIER, 2018, Sweden Rodriguez et al.

showing that other authors have also found large forgiving zones,
which we see as evidence of the feasibility of lossy compression
beyond the field of embedded systems.

2 RELATEDWORK
Code Compression. A significant number of works [4, 6, 8] have
proposed code compression techniques. Lekatsas et. al. [8] realized
that assigning Huffman codes to all instructions was less efficient
than assigning codes to the different parts of an instruction (op-
codes, registers, conditionals) separately. Benini et.al. [4] store the
code compressed and then rely on a hardware unit to decompress
it on the fly, prior to passing it to the CPU. The ARM Thumbs ISA
[2] encodes a subset of the ARM ISA in 16-bits.

While code-size reduction is a well established field of study [5],
few significant improvements have been made lately in program
compression. This comes from the observation that existing meth-
ods have reached the limit in which no more compression can be
attained without losing information. Also, as most works in code
compression date before the discovery of forgiving zones by the
approximate computing and software diversity communities, to the
best of our knowledge all existing methods are lossless.

Code transformations. Compaction [6] is a technique that
exploits sound transformations to reduce program size. The novelty
of the ideas presented in this paper w.r.t compaction, rely on using
unsound transformations that change the behavior of the program,
losing information and producing a different set of instructions.

Forgiving Zones. Other authors have also found large Forgiv-
ing Zones inside programs in the areas of approximate computing
[10], software diversification [3] and fault tolerance [7, 11]. This
supports our belief that the results presented here are not limited to
a small set of embedded systems (or ARM instructions), but instead
they constitute a common feature of software that can be exploited
to create lossy compression algorithms for code.

3 ARM BACKGROUND
We now provide some notions of the ARMv5 32-bit Instruction
Set Architecture (ISA) required to understand the proposed lossy
transformations. The complete reference for the ARM assembler
language can be found elsewhere 1. Each ARMv5 32-bits instruction
is encoded in a 32-bit integer as follows:

opcode_<conditional> <operands>

ARM instructions contain one opcode field, one conditional field
and one operand field. The opcode field defines what the instruction
does. The conditional field defines if the instruction can be executed,
which will depend on the value held by the Current Processor Status
Register(CPSR). The exception to this rule is the ‘al’ conditional,
that makes the instruction always execute. Operands can be one
of the following: (i) a list of registers, (ii) a list of constant values
or (iii) a list of registers and constant values. Examples of valid
instructions are:
• b_eq 0x1234: Branches to address 0x1234 if bit ‘equals’
(eq) is set in the CPRS.

1http://infocenter.arm.com

• mov r0, r1: Moves always the content of register r1 to
r0. As the conditional field is ‘al’, this instruction always
executes, independently of the value stored on the CPRS.

4 TRANSFORMATIONS
We propose four different transformations that improve compres-
sion at the cost of losing information: (i) Lossy Huffman (ii) Lossy
RLE (iii) Lossy LZ7 and (iv) Truncation 2. This section goes into
the details of these transformations and provides examples of the
forgiving zones where they are applied.

(i) Lossy Huffman: This transformation consists in modifying
the program to improve the compression ratio of a lossless Huffman
encoding. To encode the program using a lossless Huffman, we
follow the idea on [8] which consists in assigning Huffman codes
to individual parts of instructions (opcodes, registers, conditionals),
instead of assigning codes to the complete instructions at once.

Then, we replace low frequency tokens by high frequency tokens,
effectively losing information. As frequent tokens require less bits to
encode in the Huffman encoding, the size of the resulting encoding
was reduced. Listings 1 and 3 are examples of forgiving zones
transformed using Lossy Huffman.

(ii) Lossy RLE: RLE replaces repeated occurrences of a token by
a counter and the token (i.e. {r0, r0, r0} becomes {3, r0}). The Lossy
RLE consists in modifying the program to improve the compression
ratio yielded by a lossless RLE encoding. To encode instructions
using a lossless RLE, we store the instructions divided by parts
(i.e. store all conditionals first, then store all opcodes, then store
all registers). Then we modify the program to increase the run’s
lengths, as larger runs require less space. Listing 1 shows an example
of suchmodifications. In the original program, destinations registers
are r0, r0, r6, while in the modified program destination registers
are r0, r0, r0, which is a larger run.

(iii) Lossy LZ77: The LZ77 algorithm replaces common sub-
strings by references. The lossy transformation consists in replacing
instructions by others to artificially create new substrings. Listing
3 presents an example of this, where instruction ‘mov r1, #0’ is
replaced by ‘sub r2, r2, #0’ to create the ‘sub r2’ substring.

(iv) Truncation: This transformation is inspired by the Chroma
Sampler used in images, which truncates the least significant bits,
losing information in the process. It does not try to improve any
existing lossless encoding.We truncate instructions to 28 bits, losing
the information in the 4 least significant bits of the instruction.
When decoding truncated instructions, the missing bits are filled
with zeros. Listing 2 exemplifies the effect of this, showing that the
resulting program branches to an instruction two addresses earlier
than the original.

5 FORGIVING ZONES
This section provides examples of some of the forgiving zones we
have found. These examples came from the basicmath program
of our dataset. All zones found in the programs of our dataset
can be found on the website of this paper 3. We present both the
original and transformed programs, then we expand on why the
lossy transformation produces a program which still exhibits an

2The transformations’ source code can be found here: https://github.com/lossycomp
3 https://github.com/lossycomp
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1 eors_mi r0, r6, r0

2 eors_gt r0, pc, r0

3 strbt_vs r6,{r6},-r6,ror#12

1 eors_lt r0, r6, r0

2 eors_gt r0, pc, r0

3 strbt_vs r0,{r0},-r0,ror#12

Listing 1: Forgiving Zone
1. The original program is on top, the
modified program below

1 s t r r3, {fp, #-0x34}

2 s t r r4, {fp, #-0x30}

3 mov r2, #0

4 ldr r3, {pc, #0x148}

5 sub r1, fp, #0x34

Listing 2: Forgiving Zone 2, example
of truncation

1 mov r1, #0

2 ldr r3, [pc, #0xf4]

3 sub r2, fp, #0x34

1 sub r2, r2, #0

2 ldr r3, [pc, #0xf4]

3 sub r2, fp, #0x34

Listing 3: Forgiving Zone 3. The
modified program (bottom) exchages
instruction at line 1 by other one.

acceptable behavior. We consider acceptable behavior if it produces
the same output as the original given the same input.

Forgiving Zone 1 is shown in Listing 1. The zone has been
processed with two transformations: the registers used by the in-
struction in line 3 (r6 to r0) and the conditional of instruction at
line 1 (mi to lt). We have found that some instructions are condi-
tioned to situations that never occur, like overflow (conditional vs)
in operations with bounded values. This allows to modify the rest
of the instruction, like in line 3, where registers are modified to
increase token frequency and run length. Also, two conditionals
might be exchangeable in certain contexts, such as line 1 where
‘minus/negative’ (mi) and ‘signed less than’ ‘lt) are the same if the
overflow bit is clear in the CPSR register. In our dataset, conditional
‘lt’ was more frequent that ‘mi’, hence the change removed an
uncommon token.

Forgiving Zone 2 is shown in Listing 2. The example shows the
particular effect of truncation in branching instructions. Truncation
results in the loss of information in the branching address, therefore
when decoding the instruction, the loss of information causes the
branching address to be approximate. Listing 2 shows a part of
the program where one of such modified branches jumps to. The
original instruction jumps to Line 3 while the modified one jumps
to Line 1. The two extra executed instructions store the value of
registers r3 and r4 to memory without major consequences to the
program.

Forgiving Zone 3 is shown in Listing 3. Here, the value assigned
to r1 in line 1 is never used, allowing to replace the instruction by
another one. This change creates an artificial substring.

6 EXPERIMENTAL RESULTS
In this section we provide evidence to support our claim that lossy
compression of code is possible. Initially we provide a study of
the size of the forgiving zones in our dataset. Later we compare
the compression ratios achieved with well known compression
schemes with the ratio achieved with those same methods after the
information loss caused by the transformations exposed in Sec. 4.

6.1 Dataset
We study seven programs from the MiBench 4 suite, a collection of
representative embedded applications and libraries.Table 1 shows
the programs of our dataset. All sources for the programs in our
dataset were obtained from the MiBench website and then compiled

4http://vhosts.eecs.umich.edu/mibench/

Table 1: Case studies for our experiments

Program Code Size in Bytes Purpose
sha 3096 bytes Set of Hash Algorithm SHA-0
qsort_small 1076 bytes Tests the qsort function
fft 8356 bytes Fast Fourier Transform
dijkstra_small 2292 bytes Dijkstra’s Algorithm
crc32 1140 bytes CRC error-detecting codes
bitcount 5880 bytes Bit counting functions
basicmath 7244 bytes Mathematical computations

for the ARMv5 32-bit ISA. The compiled native instructions were
used as input to our experiments.

6.2 Size of Forgiving Zones
Figure 1 shows which parts of the programs in our dataset were
forgiving. The figure shows one stacked bar per program. Each bar
is divided in four segments ‘Forgiving’, ‘QoS’, ‘Crash’ and ‘Froze’.
In turn, each segment represents a percentage of the program’s
instructions that were forgiving, crashed or froze the program or
that produced a different output.

sha qsort fft dijkstra crc bitcount math
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Figure 1: Size of forgiving zones of dataset’s programs

Instructions in the Forgiving Zones are those instructions that
could be exchanged by at least another instruction while maintain-
ing an acceptable behavior. The non-forgiving instructions were
divided in three groups ‘Crash’, ‘Froze’ and ‘QoS’. Crash instruc-
tions were those that crashed the program inmost attempts of being
exchanged. Similarly, Froze instructions where those for which a re-
placement usually prevented the program from exiting at all. Finally,
QoS instructions were those that produced an incorrect output in
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most attempts of replacement. If an instruction caused more than
one type of error, we selected the most common one. For example,
if an instruction was replaced five times and three replacements
caused the program to crash, we placed the instruction in the Crash
group.

Figure 1 shows that a large portion of the program could be
exchanged by at least another candidate. In three cases (qsort, fft
and bitcount) the forgiving zones accounted for more than 50% of
the instructions. The programs with larger forgiving zones are fft
and bitcount. Not surprisingly, those are also the programs for
which the lossy schemes improve the compression ratio the most.
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Figure 2: Improvement in compression ratio obtained with
Lossy Huffman, Lossy RLE and Lossy LZ77.
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Figure 3: Compression ratio using truncation only (percent)

6.3 Compression ratio improvement
To measure the changes in compression ratios, we encode each
program using a single encoder (Huffman, RLE and LZ77) each
time (i.e. no combination of encoders are used) and we measure
the lossless compression ratio obtained. In a second step, a set of
instructions is transformed using the lossy transformations trying
to maximize improvement in compression. If the program crashes
or produces an incorrect output, a different set of instructions is
selected until the transformed program yields the same output as
the original one. The resulting transformed program is compressed
again using each encoding to obtain the lossy compression ratio.
Figure 2 shows the percent to which the lossy compression ratio
is higher than the lossless ratio. Each program in our dataset is
represented by three bars. Each bar in the figure represents the
following metric’s value: (lossy/lossless ) ∗ 100, for each encoding
we studied (Huffman, LZ77 and RLE).

The results show that the presented lossy transformations im-
prove the compression ratio over the lossless encoding between
1.2% - 4.7%. Notice that higher improvements were achieved in

programs with larger forgiving zones. Better improvements were
obtained with Huffman encoding, as it sufficed to change a few in-
frequent tokens to obtain improvements when using this encoding.
RLE and LZ77 required to change larger portions of the program to
improve compression ratio, resulting in more rejected transformed
program versions.

Figure3 shows the compression ratio obtained using the Trun-
cation transformation. The values here represent the percent for
which the program containing truncated instructions is smaller
than the uncompressed original. The figure shows that truncated
programs were between 1.1% and 2.8% smaller. Truncation was the
least efficient transformation since many transformed programs
were rejected as they produced incorrect results.

7 CONCLUSIONS AND FUTUREWORK
This work introduces the following new idea: lossy compression of
native instructions is possible.We supported this claim by providing
a series of lossy transformations that modify a list of instructions
to improve the efficacy of existing compression algorithms. Our
emerging results show the beneficial impact of such transformations
in compression. We also provide evidence of large forgiving zones,
where instructions can be exchanged to increase compression ratio,
similarly to how pixel colors in images can be modified for the same
purpose. This is consistent with results from other authors, who
also have found large Forgiving Zones inside programs.

While the improvements obtained using our lossy transforma-
tions might not justify the risk of transforming a program, these
proofs of concept do provide evidence that lossy compression of
programs is possible and invite to further research in this direction.
Also, it is important to notice that in our experiments we only con-
sider a program correct if the output is identical to the original, not
exploiting the fact that some outputs might be considered correct
even if not identical to the original, something frequently exploited
by the approximate computing community. Hence, our future work
will consist in developing a lossy compression algorithm for na-
tive instructions, aiming to improve the compression ratio of the
state-of-the-art methods specifically designed to compress code.
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